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• Summary & Outlook

Recent work : hep-lat/0410009, in preparation

I do not cover:

Quark bilinears and first moment for overlap fermions with improved

gauge actions

NPB693 (hep-lat/0404007), and in preparation



Introduction

• Generalised parton distributions (GPDs) very interesting objects

They contain more information about the hadron structure

than the usual structure functions:

transverse structure, orbital angular momentum carried by

quarks and gluons,. . .

• GPDs unify parametrisations for large class of hadronic

correlators, e.g. form factors and distribution functions

combine inclusive, semi-inclusive and exclusive processes
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• Generalised parton distributions (GPDs) very interesting objects

They contain more information about the hadron structure

than the usual structure functions:

transverse structure, orbital angular momentum carried by

quarks and gluons,. . .

• GPDs unify parametrisations for large class of hadronic

correlators, e.g. form factors and distribution functions

combine inclusive, semi-inclusive and exclusive processes

• GPDs well-defined QCD objects systematically studied in

perturbation theory (e.g. Geyer, Müller, Robaschik,. . . ,

Ji, Radyushkin,. . . )

• Limited experimental access: ep −→ epγ, ep −→ epπ+π−

first data from e.g. HERMES show some evidence



• Need complementary information from lattice QCD:

Calculate non-forward matrix elements of local composite

operators with twist T = 2

Oµ1···µn =

(
i

2

)n−1

ψ̄ γ(µ1

↔
Dµ2 · · ·

↔
Dµn)ψ

〈p′|Oµ1···µn |p〉 =

ψ̄(p′)γ(µ1
ψ(p)

h
n−1
2

i∑
i=0

An,2i(∆
2)∆µ2 · · ·∆µ2i+1Pµ2i+2 · · ·Pµn)

−
1

2M
ψ̄(p′) i∆ασα(µ1

ψ(p)

h
n−1
2

i∑
i=0

Bn,2i(∆
2)∆µ2 · · ·∆µ2i+1Pµ2i+2 · · ·Pµn)

+Cn(∆
2)Mod(n+ 1,2)

1

M
ψ̄(p′)ψ(p)∆(µ1

· · ·∆µn)

[∆ = p− p′, P = p+p′
2 , (· · · ): index symmetrisation and trace

subtraction]



Generalised form factors A,B,C related to moments of GPDs∫ 1

−1
dx xn−1H(x, ξ,∆2) =

h
n−1
2

i∑
i=0

An,2i(∆
2)(−2ξ)2i + Mod(n+ 1,2)Cn(∆

2)(−2ξ)2n

ξ = −n ·∆, n · p = 1

Off-forward parton distribution H with: H(x,0,0) = q(x)

First lattice results 03: QCDSF and LHPC

recent results of QCDSF, see talk of Göckeler



• Important: relate lattice results to continuum:

−→ need renormalisation factors

• Non-perturbative determination of Z-factors preferable

But

– Computationally rather complicated (concerning clear signals)

– Some aspects (explicit dependence on a, mixing, ...) can be

naturally studied in lattice perturbation theory

– Complications:

H(4) less stringent than O(4): possibilities for mixing increase

Mixing with operators containing external ordinary derivatives

starts from n = 3 (2nd moment)



• Important: relate lattice results to continuum:

−→ need renormalisation factors

• Non-perturbative determination of Z-factors preferable

But

– Computationally rather complicated (concerning clear signals)

– Some aspects (explicit dependence on a, mixing, ...) can be

naturally studied in lattice perturbation theory

– Complications:

H(4) less stringent than O(4): possibilities for mixing increase

Mixing with operators containing external ordinary derivatives

starts from n = 3 (2nd moment)

• This talk: Perturbative Z-factors for the 2nd moment of

GPDs for Wilson and clover fermions



Operators and mixing

Well known that operators of second and higher moments mix:

One-loop result for a matrix element of a certain operator contains

structures which differ from its Born structure

−→ No multiplicative renormalisation of operators

Set of possible operators determined by the transformation properties

under H(4) and charge conjugation

Only operators can mix which belong to the same representation and

have identical charge conjugation parity (Göckeler et al., 1996)



Determine the mixing matrix of renormalisation factors

Consider dimensionally regularised vertex function of operator Oj,
j = 1, . . . , N , ḡ2R = g2RCF /(16π2)

Renormalised vertex in one-loop in MS scheme

ΓRj (p′, p, µ, gR) = ΓBorn
j (p′, p) + ḡ2R

264 NX
k=1

(−γVjk) ln
(p′ + p)2

4µ2
ΓBorn
k (p′, p) + fj(p

′, p)

375
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Determine the mixing matrix of renormalisation factors

Consider dimensionally regularised vertex function of operator Oj,
j = 1, . . . , N , ḡ2R = g2RCF /(16π2)

Renormalised vertex in one-loop in MS scheme

ΓRj (p′, p, µ, gR) = ΓBorn
j (p′, p) + ḡ2R

264 NX
k=1

(−γVjk) ln
(p′ + p)2

4µ2
ΓBorn
k (p′, p) + fj(p

′, p)

375

Regularised vertex on the lattice (without possible 1/ak)

ΓLj (p′, p, a, gR) = ΓBorn
j (p′, p) + ḡ2R

264 NX
k=1

(−γVjk) ln
a2(p′ + p)2

4
ΓBorn
k (p′, p) + fLj (p′, p)

375

General form of connection between ΓL and ΓR

ΓRj (p′, p, µ, gR) = Zψ

N∑
k=1

ZjkΓ
L
k (p

′, p, a, gR)

Zψ relating lattice to MS is known: Zψ = 1 + ḡ2R
(
ln(a2µ2) + fψ

)



Result for the mixing matrix

Zjk = δjk − ḡ2R

[(
−γVjk + δjk

)
ln(a2µ2) + cVjk + fψ δjk

]

The p and p′ independent constants cVjk have to fulfil

fLj (p′, p)− fj(p
′, p) =

N∑
k=1

cVjkΓ
Born
k (p′, p)

If the last equation cannot be satisfied, mixing operators have been

overlooked



Second moment in lattice perturbation theory

We consider non-forward matrix elements between off-shell quark

states of the following operators:

ODD
µνω = −

1

4
ψγµ

↔
Dν

↔
Dωψ (1)

O∂∂
µνω = −

1

4
∂ν∂ω

(
ψγµψ

)
(2)

O∂D
µνω = −

1

4
∂ν

(
ψγµ

↔
Dωψ

)
(3)

O∂
µνω = −

i

2
∂ν

(
ψ

[
γµ, γω

]
ψ

)
(4)

In addition spindependent operators: γµ → γµγ5

and transversity operators with two derivatives: γµ → σµτ

Mixing problem for form factors studied by Shifman and Vysotsky

(1981) (see also Lepage, Brodsky and Efremov, Radyushkin)

They derived mixing matrices for anomalous dimensions only

between operators (1) ↔ (2)

Operators (3,4) are special for lattice GPD (trafo under H(4))



How to define lattice operators with derivatives
↔
D at q 6= 0 ?

Apply lattice momentum transfer q to lattice position x or to the

“position centre”(
ψ̄

↔
Dµ ψ

)
(q) =

∑
x

×

1

2a

[
ψ̄(x)Ux,µψ(x+ aµ̂)− ψ̄(x+ aµ̂)U†

x,µψ(x)
] {

eiq·x + eiq·(x+aµ̂)

2eiq·(x+aµ̂/2)

}



How to define lattice operators with derivatives
↔
D at q 6= 0 ?

Apply lattice momentum transfer q to lattice position x or to the

“position centre”(
ψ̄

↔
Dµ ψ

)
(q) =

∑
x

×

1

2a

[
ψ̄(x)Ux,µψ(x+ aµ̂)− ψ̄(x+ aµ̂)U†

x,µψ(x)
] {

eiq·x + eiq·(x+aµ̂)

2eiq·(x+aµ̂/2)

}
Feynman rules for operators

O(g0):

ODDµνω(p′, p) = ψ̄(p′)γµψ(p)
1

a
sin

a(p+ p′)ν
2

1

a
sin

a(p+ p′)ω
2

8>><>>:
cos a(p−p

′)ν
2 cos a(p−p

′)ω
2

1

9>>=>>;
O(g1):

ODDµνω(p′, p, k) = g
X
σ
ψ̄(p′)γµAσ(k1)ψ(p) cos

a(p+ p′)σ
2

×

1

a

24δνσ sin
a(p+ p′ − k)ω

2
+ δωσ sin

a(p+ p′ + k)ν
2

35
8>><>>:

cos a(p−p
′+k)ν
2 cos a(p−p

′+k)ω
2

1

9>>=>>;
· · ·



Clover fermions:

reduce cut-off effects in the fermion action from O(a) to O(a2)

choosing coefficient csw properly (Jansen, Sommer)

Action:

SF = SWilson
F + csw iga

4
∑

x,µν=±

r

4a
ψ̄(x)σµνF

clover
µν (x)ψ(x)

Fµν standard “clover-leaf” form of lattice field strength

Clover contributions result in additional qqg vertex contributions

vanishing in the continuum limit

Contributions to matrix elements: O(c0sw), O(c1sw) and O(c2sw)



One-loop diagrams

Quark self energy

p p + k p

k

p p

k

One-loop diagrams contributing to the quark self-energy

Vertex function

p p
′

p p
′

One-loop vertex and tadpole diagrams

p p
′

p p
′

One-loop cockscomb diagrams



Computation

Mathematica package extended developed for forward matrix

elements (Wilson, clover, overlap)

Evaluate a typical lattice integral of the form

Iµ1···µn(a, p
′, p) =

∫ π/a

−π/a

d4k

(2π)4
Kµ1···µn(a, p

′, p, k)

Numerator of K: polynomial in sines and cosines of lattice momenta k

Denominator of K contains the denominators of lattice quark and

gluon propagators



Computation

Mathematica package extended developed for forward matrix

elements (Wilson, clover, overlap)

Evaluate a typical lattice integral of the form

Iµ1···µn(a, p
′, p) =

∫ π/a

−π/a

d4k

(2π)4
Kµ1···µn(a, p

′, p, k)

Numerator of K: polynomial in sines and cosines of lattice momenta k

Denominator of K contains the denominators of lattice quark and

gluon propagators

• Calculation is performed following Kawai, Nakayama, Seo (1981)

(dimensional regularisation, two external momenta):

expand d-dimensional lattice integrals in external momenta and

perform a “continuum” calculation in dim. regularisation such

that the 1/ε-poles have to cancel



I is calculated by rearranging it into two parts

I = Ĩ + (I − Ĩ)

Ĩ: Taylor expansion of original I in p and p′

Ĩ(a, p′, p) = I(a,0,0) +

+
X
α

8<:p′α ∂I(a, p′, p)∂p′α

˛̨̨̨
p′=p=0

+ pα
∂I(a, p′, p)

∂pα

˛̨̨̨
p′=p=0

9=; + . . .

Order of expansion given by the degree of UV divergence of I



I is calculated by rearranging it into two parts

I = Ĩ + (I − Ĩ)

Ĩ: Taylor expansion of original I in p and p′

Ĩ(a, p′, p) = I(a,0,0) +

+
X
α

8<:p′α ∂I(a, p′, p)∂p′α

˛̨̨̨
p′=p=0

+ pα
∂I(a, p′, p)

∂pα

˛̨̨̨
p′=p=0

9=; + . . .

Order of expansion given by the degree of UV divergence of I

−→ Difference I − Ĩ UV finite

calculated in the (Euclidean) continuum (a→ 0)

Original UV poles appear now as IR poles in the Taylor expansion

and are regularised using dimensional regularisation with d > 4

For IR regularization

(I − Ĩ)|a→0 → I|a→0 = Icont(p′, p)

Meaning: one-loop continuum calculation in d dimensions



Some semi-analytic approaches known for Icont (loop diagrams

with three different propagators): Davydychev, Tarasov,

Campbell,...

We use our own parametrisation

The first Taylor expanded part Ĩ(p′, p, a) at finite a is calculated

in d dimensions as well

Poles in ε (with d = 4− 2ε) analytically cancel those of Icont



• Complete computation of diagrams in symbolic terms

– Free Lorentz index structure → construct all possible

representations

– Number of analytic and numeric checks:

Analytic cancellation of pole terms

Recover results for forward case

– Decoupling between symbolic computation of diagrams and

numeric computations of lattice integrals

– Expensive in CPU time and memory



Examples for renormalisation factors

Define index combinations:

O{ν1ν2ν3} =
1

6

(
Oν1ν2ν3 +Oν1ν3ν2

+Oν2ν1ν3 + Oν2ν3ν1 +Oν3ν1ν2 +Oν3ν2ν1
)

O‖ν1ν2ν3‖ = Oν1ν2ν3 −Oν1ν3ν2
+Oν3ν1ν2 −Oν3ν2ν1 − 2Oν2ν3ν1 + 2Oν2ν1ν3

O〈〈ν1ν2ν3〉〉 = Oν1ν2ν3 +Oν1ν3ν2 −Oν3ν1ν2 −Oν3ν2ν1

Present renormalisation matrix in the form:

Zjk = δjk − ḡ2R

(
γjk ln(a2µ2) + cjk

)



Consider the following irreducible epresentations:

τ
(4)
2 , C = −1

ODD
{124} O∂∂

{124}



Consider the following irreducible epresentations:

τ
(4)
2 , C = −1

ODD
{124} O∂∂

{124}

γjk =

 25
6 −5

6

0 0



cjk =

0@ −11.563 + 2.898 csw − 0.984 c2sw 0.024− 0.255 csw − 0.016 c2sw
0 20.618 + 4.746 csw − 0.543 c2sw

1A

Numbers in red agree with previously calculated forward matrix

elements (action improvement only)



τ
(8)
1 , C = −1

O1 = ODD
{114} −

1

2

(
ODD
{224} +ODD

{334}

)
O2 = O∂∂

{114} −
1

2

(
O∂∂
{224} +O∂∂

{334}

)
O3 = ODD

〈〈114〉〉 −
1

2

(
ODD
〈〈224〉〉 +ODD

〈〈334〉〉

)
O4 = O∂∂

〈〈114〉〉 −
1

2

(
O∂∂
〈〈224〉〉 +O∂∂

〈〈334〉〉

)
O5 = O∂D,5

||213||

O6 = O∂D,5
〈〈213〉〉

An additional operator is zero in one-loop



{O1, ...,O6}, same dimension

γjk =

0BBBBBBBBBBBB@

25
6 −5

6 0 0 0 0

0 0 0 0 0 0

0 0 7
6 −5

6 1 −3
2

0 0 0 0 0 0

0 0 0 0 2 −2

0 0 0 0 −2
3

2
3

1CCCCCCCCCCCCA

Wilson fermion case O(c0sw)

c
(I,II)
jk

=

0BBBBBBBBBBB@

−12.1274 −2.7367/1.4913 0.3685 0.9934/− 0.4160 0.0156 0.1498

0 20.6178 0 0 0 0

3.3060 18.1841/− 8.0156 −14.8516 ∓4.3023 −0.9285 0.7380

0 0 0 20.6178 0 0

0 3.2644 0 0 0.3501 0.0149

0 3.2644 0 0 0.0050 0.3600

1CCCCCCCCCCCA



Extra clover contributions (preliminary, without operator
improvement)

c
(I)
jk

(csw) =

0BBBBBBBBBBB@

2.9217 −0.6864 −0.0328 0.1728 −0.0188 0.0570

0 4.7456 0 0 0 0

0.3333 −0.0551 2.1523 0.9696 −1.7581 2.2984

0 0 0 4.7456 0 0

0 −1.4411 0 0 1.6479 0.8658

0 −1.4411 0 0 0.2886 2.2251

1CCCCCCCCCCCA

c
(I)
jk

(c2sw) =

0BBBBBBBBBBB@

−0.9817 −0.1012 −0.0291 0.0424 −0.0100 0.0069

0 −0.5432 0 0 0 0

0.3705 0.2154 −1.7074 0.1159 −0.4429 0.1033

0 0 0 −0.5432 0 0

0 1.4157 0 0 −1.7033 0.5676

0 1.4157 0 0 0.1892 −1.3249

1CCCCCCCCCCCA



O1 - 1
a part

In one-loop 1
a contributions to the matrix element of operator Oµνω

Group theory and charge conjugation:

construct a possible candidate from the lower dimensional operator

O∂
µνω = −

i

2
∂ν

(
ψ

[
γµ, γω

]
ψ

)



O1 - 1
a part

In one-loop 1
a contributions to the matrix element of operator Oµνω

Group theory and charge conjugation:

construct a possible candidate from the lower dimensional operator

O∂
µνω = −

i

2
∂ν

(
ψ

[
γµ, γω

]
ψ

)

Operator in the same representation as O1:

O8 = O∂
114 −

1

2

(
O∂

224 +O∂
334

)
Get multiplicative mixing

O1

∣∣
1/a−part

= ḡ2R(−0.518 + 0.0832 csw − 0.00983 c2sw)
1

a
OBorn

8

Subtract nonperturbatively from matrix element of O1

difficult task in simulations



Summary & Outlook

• Found perturbative Z-factors for 2nd moments of GPDs -

Wilson fermion and clover case

Operators with γµ, γµγ5 and transversity operators

• Mixing more complicated than for forward matrix elements

• Small mixing for τ(4)
2 (three different indices)

Mixing sizeable for τ(8)
1 (two indices equal)

Additional mixing with lower dimensional operator

• Results concerning mixing are valid in general

Applicability for numerical results using clover fermions

Add tadpole or mean field improvement implemented as

renormalisation of the link matrices



Perturbative one-loop Z-factors for moments of structure

functions and GPD’s
Wilson Clover Overlap Overlap Domain wall/

Wilson gauge improved gauge improved gauge

SF

Quark bilinears x x x x x/x

1st moment x x x x (S. Aoki et al.)

2nd moment x x x

3rd moment x x x

GPD’s

2nd moment x x

3rd moment

Feynman rules for overlap fermions: Ishibashi, Kikukawa, Noguchi, Yamada

• Future:

Improvement of operators in the nonforward case ?

Calculate Z-factors for 2nd moments of GPD with overlap

fermions

Inclusion of improved gauge actions


