4. Consider the following force field vector

\[\mathbf{F} = (F_x, F_y, F_z) = (ax + by^2, az + 2bxy, ay + bz^2). \]

Is that force conservative? If yes, calculate the corresponding potential energy.

5. A particle of mass \(m \) moves under a force \(F = -cx^3 \), where \(c \) is a positive constant. Find the potential energy \(V(x) \). If the particle starts from rest at \(x = -a \), what is the velocity when it reaches \(x = 0 \)? Where in the subsequent motion does it instantaneously come to rest?

6. A particle of mass \(m \) moves under a conservative force with potential energy

\[V(x) = \frac{cx}{x^2 + a^2}, \]

where \(a \) and \(c \) are positive constants. Find the position of stable equilibrium, and the period of small oscillations about it. If the particle starts from this point with velocity \(v \), find the values of \(v \) for which it (i) oscillates, (ii) escapes to \(-\infty\) and (iii) escapes to \(+\infty\).