UNIVERSITY OF LEIPZIG INSTITUTE FOR THEORETICAL PHYSICS Department: Theory of Elementary Particles

TP2 2015

Lecturer: PD Dr. A. Schiller

List of problems 3
7. Each of two charged spheres of radius a, one conducting and one having a spherically symmetric charge density that varies radially as $r^{n}(n>-3)$, has a total charge Q. Use Gauss's theorem to obtain the vector of the electric fields both inside and outside each sphere.
Sketch the behavior of the fields as a function of the radius for the first sphere, and for the second with $n=-2,+2$.
Hint: Inside a conductor the electric field is zero.
8. A sphere of radius R_{1} has charge density ρ uniform within its volume, except for a small spherical hollow region of radius R_{2} located at a distance a from the center $\left(R_{2}+a<R_{1}\right)$.
(a) Find the electric field E inside the hollow sphere.
(b) Find the potential Φ at the center of the hollow sphere.

Hint: Use the superposition of two uniformly and oppositely charged spheres.
9. An amount of charge q is uniformly spread out in a layer on the surface of a disc of radius a.
Find the electrostatic potential $\Phi(z)$ at any point on the axis of symmetry $(z>0$ and $z<0)$. Calculate the vector of the electric field $\mathbf{E}(z)$ on that axis.

