UNIVERSITY OF LEIPZIG INSTITUTE FOR THEORETICAL PHYSICS Department: Theory of Elementary Particles

TP2 2015

Lecturer: PD Dr. A. Schiller

List of problems 2

4. Calculate the divergence and the curl of the vectors

$$
(\mathbf{a} \cdot \mathbf{r}) \mathbf{b}, \quad(\mathbf{a} \cdot \mathbf{r}) \mathbf{r}, \quad \mathbf{a} \times \mathbf{r}, \quad \phi(r)(\mathbf{a} \times \mathbf{r}), \quad \mathbf{r} \times(\mathbf{a} \times \mathbf{r}),
$$

where \mathbf{a} and \mathbf{b} are constant vectors and $\phi(r)$ is a scalar function of the magnitude r of the radius-vector \mathbf{r}.
5. Calculate the closed surface integrals

$$
\oint_{S} \mathbf{r}(\mathbf{a} \cdot \mathbf{n}) d a, \quad \oint_{S}(\mathbf{a} \cdot \mathbf{r}) \mathbf{n} d a
$$

using a variant of the divergence theorem, \mathbf{n} is the outward pointing unit vector of the surface S around the volume V.
6. Using Dirac delta functions in the appropriate coordinates, express the following charge distributions as three-dimensional charge densities $\rho(\mathbf{x})$.
(a) In cylindrical coordinates, a charge λ per unit length uniformly distributed over a cylindrical surface of radius b.
(b) In cylindrical coordinates, a charge Q spread uniformly over a flat circular disc of negligible thickness and radius R.
(c) The same as part (b), but using spherical coordinates.

