UNIVERSITY OF LEIPZIG INSTITUTE FOR THEORETICAL PHYSICS Department: Theory of Elementary Particles

TP2 2015

Lecturer: PD Dr. A. Schiller

List of problems 12
voluntary, to collect additional points
34. A right-circular solenoid of finite length L and radius a has N turns per unit length and carries a current I.
Show that the magnetic induction on the cylinder axis in the limit $N L \rightarrow \infty$ is

$$
B_{z}=\frac{\mu_{0} N I}{2}\left(\cos \theta_{1}+\cos \theta_{2}\right)
$$

where the angles are defined in the figure.

35. The Lorentz force law for a particle of mass m and charge q is

$$
\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B}) .
$$

(a) Show that if the particle moves in a time-independent electric field $\mathbf{E}=-\boldsymbol{\nabla} \Phi(\mathbf{r})$ and any magnetic field, then the energy $\frac{1}{2} m \mathbf{v}^{2}+q \Phi$ is a constant.
(b) Suppose the particle moves along the x-axis in the electric field

$$
\mathbf{E}=A \mathrm{e}^{-t / \tau} \mathbf{e}_{x}
$$

where A and τ are constants. Suppose that the magnetic field is zero along the x-axis and $x(0)=\dot{x}(0)=0$. Find $x(t)$.
36. A particle with charge q is traveling with velocity \mathbf{v} parallel to a wire with a uniform linear charge distribution λ per unit length. The wire also carries a current I (parallel to the velocity).
What must be the velocity for the particle to travel in a straight line parallel to the wire, a distance r away?

