UNIVERSITY OF LEIPZIG INSTITUTE FOR THEORETICAL PHYSICS Department: Theory of Elementary Particles

TP2 2015

Lecturer: PD Dr. A. Schiller

List of problems 11
(31. and 32. required, use 33. to collect an additional point)
31. A circular wire of radius R carries a current I. A sphere of radius $a(a \ll R)$ made of paramagnetic material with permeability μ is placed with its center at the center of the circuit.
Determine the magnetic dipole moment of the sphere resulting from the magnetic field of the current \mathbf{B}_{0} (assumed to be uniform at the scale of the small sphere).
Determine the force per unit area \mathbf{f} on the sphere using the effective surface current density $\boldsymbol{\lambda}_{e}$ due to the magnetization of the sphere $\left(\mathbf{f}=\boldsymbol{\lambda}_{e} \times \mathbf{B}_{0}\right)$.

Hint: Since $a \ll R$, think of the sphere as being in a uniform magnetic field \mathbf{B}_{0} and make use of the magnetic scalar potential to determine the magnetic induction inside the sphere.
32. A circular wire loop of radius R is rotating uniformly with angular velocity ω about a diameter $P Q$. At its center, and lying along this diameter, is a small magnet of total magnetic moment \mathbf{m}.
What is the induced electromotive force (emf) between the point P (or Q) and a point on the loop mid-way between P and Q ?
33. Consider a square loop of wire, of side length l, lying in the x, y-plane at $z=0[$ corners $(0,0,0),(l, 0,0),(0, l, 0),(l, l, 0)]$.
Suppose a particle of charge q is moving with a constant velocity v, where $v \ll c$, in the x, z-plane at a constant distance z_{0} from the x, y-plane. (Assume the particle is moving in the positive x direction with $y=0$.)
At $t=0$ the particle cross the z-axis. Thus, at time t the position of q is $\left(v t, 0, z_{0}\right)$.
Give the induced electromotive force (emf) in the loop as a function of time. Hint: To get the magnetic field at an observation point (x, y, z), use the Biot and Savart law with the current $\mathbf{I}=q \mathbf{v}=q v \mathbf{e}_{x}$. Thus, the time dependence in the magnetic field is a result of the changing distance between the moving charge and the observation point.

