UNIVERSITY OF LEIPZIG INSTITUTE FOR THEORETICAL PHYSICS Department: Theory of Elementary Particles

TP2 2015

Lecturer: PD Dr. A. Schiller

List of problems 1

1. Verify the identities

$$
\begin{aligned}
(\mathbf{A} \times \mathbf{B}) \cdot(\mathbf{C} \times \mathbf{D}) & =(\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D})-(\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C}) \\
(\mathbf{A} \times \mathbf{B}) \times(\mathbf{C} \times \mathbf{D}) & =(\mathbf{A} \cdot(\mathbf{B} \times \mathbf{D})) \mathbf{C}-(\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})) \mathbf{D} \\
& =(\mathbf{A} \cdot(\mathbf{C} \times \mathbf{D})) \mathbf{B}-(\mathbf{B} \cdot(\mathbf{C} \times \mathbf{D})) \mathbf{A}
\end{aligned}
$$

2. (i) Write in invariant vectorial form

$$
\varepsilon_{i n l} \varepsilon_{i r s} \varepsilon_{l m p} \varepsilon_{s t p} a_{n} a_{r} b_{m} c_{t} .
$$

(ii) Using the totally antisymmetric tensor $\varepsilon_{i j k}$ write the product

$$
(\mathbf{a} \cdot[\mathbf{b} \times \mathbf{c}])\left(\mathbf{a}^{\prime} \cdot\left[\mathbf{b}^{\prime} \times \mathbf{c}^{\prime}\right]\right)
$$

as sum of terms which contains only scalar products of the appearing vectors.
3. (i) Using Cartesian coordinates x, y, z, calculate

$$
\operatorname{grad} r, \quad \operatorname{div} \mathbf{r}, \quad \operatorname{curl} \mathbf{r}, \quad \operatorname{grad}(\mathbf{c} \cdot \mathbf{r}), \quad(\mathbf{c} \cdot \boldsymbol{\nabla}) \mathbf{r},
$$

where \mathbf{r} is the radius vector, \mathbf{c} is a constant vector.
Hint: For the magnitude of the radius vector use $r=|\mathbf{r}|=\sqrt{\mathbf{r} \cdot \mathbf{r}}=$ $\sqrt{x^{2}+y^{2}+z^{2}}$.
(ii) Using the differential vector operator $\boldsymbol{\nabla}$ and the rules of differentiation and multiplication of vectors (without using Cartesian components) show that the following identities are valid

$$
\begin{aligned}
\operatorname{grad}(\varphi \psi) & =\varphi \operatorname{grad} \psi+\psi \operatorname{grad} \varphi \\
\operatorname{div}(\varphi \mathbf{A}) & =\varphi \operatorname{div} \mathbf{A}+\mathbf{A} \cdot \operatorname{grad} \varphi \\
\operatorname{curl}(\varphi \mathbf{A}) & =\varphi \operatorname{curl} \mathbf{A}-\mathbf{A} \times \operatorname{grad} \varphi
\end{aligned}
$$

