On the road to a chiral extrapolation of the generalized form factors of the nucleon

Thomas R. Hemmert
Theoretische Physik T39
Physik Department, TU München

Treffen der DFG-Forschergruppe "Gitter-QCD" Universität Leipzig, Germany Nov 18 -19, 2005

Outline

- The generalized form factors of the nucleon
- Comparison to the $<x>$ data of T. Streuer et al.
- Comparison of $\mathrm{A}_{2,0}, \mathrm{~B}_{2,0}$ and $\mathrm{C}_{2,0}$ at $\mathrm{q}^{2}=0$
- First observations on momentum dependence and radii
- Outlook

Generalized Form Factors

- Three generalized form factors (GFFs) in the isovector channel: $\mathrm{A}_{2,0}(\mathrm{t}), \mathrm{B}_{2,0}(\mathrm{t})$ and $\mathrm{C}_{2,0}(\mathrm{t})$

$$
\begin{aligned}
i\left\langle p^{\prime}\right| \bar{q} \gamma_{\{\mu,} \vec{D}_{v\}} q|p\rangle_{u-d}=\bar{u}\left(p^{\prime}\right) & {\left[A_{2,0}^{u-d}(t) \gamma_{\{\mu,} \bar{p}_{\nu\}}-\frac{B_{2,0}^{u-d}(t)}{2 M_{N}} \Delta^{\alpha} \sigma_{\alpha\{\mu,} \bar{p}_{\nu\}}\right.} \\
& \left.+\frac{C_{2,0}^{u-d}(t)}{M_{N}} \Delta_{\{\mu,} \Delta_{\nu\}}\right] u(p)
\end{aligned}
$$

with
$\mathrm{t}=\Delta^{2}=\left(p^{\prime}-p\right)^{2} \quad$ and $\quad \bar{p}=\frac{1}{2}\left(p^{\prime}+p\right) ; \quad<x>_{u-d}=A_{2,0}^{u-d}(0)$

Outline

- The generalized form factors of the nucleon
- Comparison to the $<x>$ data of Streuer et al.
- Comparison of $\mathrm{A}_{2,0}, \mathrm{~B}_{2,0}$ and $\mathrm{C}_{2,0}$ at $\mathrm{q}^{2}=0$
- First observations on momentum dependence and radii
- Outlook

Quenched Data (Streuer et al..)

- Quenched overlap data lie higher than LHPC results: Finite Size Effects?
- Fit to HBChPT O(p4) result for <x> looks reasonable (Fit at $\beta=8.0, \beta=8.45$ result ??)

Outline

- The generalized form factors of the nucleon
- Comparison to the $<x>$ data of T. Streuer et al.
- Comparison of $\mathrm{A}_{2,0}, \mathrm{~B}_{2,0}$ and $\mathrm{C}_{2,0}$ at $\mathrm{q}^{2}=0$
- First observations on momentum dependence and radii
- Outlook

Differences in the GFFs

- $\mathrm{A}_{2,0}, \mathrm{~B}_{2,0}$ and $\mathrm{C}_{2,0}$ behave very differently as functions of m_{π} at small t
- $\mathrm{A}_{2,0}(\mathrm{t}=0)$ has a chiral log as LNA and plateaus very fast according to the present data situation
- $\mathrm{B}_{2,0}$ and $\mathrm{C}_{2,0}$ have a term $\sim \mathrm{m}_{\pi}{ }^{3}$ as LNA:

$$
\begin{aligned}
& \mathrm{B}_{2,0}(\mathrm{t}=0)=\mathrm{B}_{40} \mathrm{M}_{\mathrm{N}}\left(\mathrm{~m}_{\pi}\right)+\mathrm{O}\left(\mathrm{p}^{5}\right) \\
& \mathrm{C}_{2,0}(\mathrm{t}=0)=\mathrm{S}_{42} \mathrm{M}_{\mathrm{N}}\left(\mathrm{~m}_{\pi}\right)+\mathrm{O}\left(\mathrm{p}^{5}\right)
\end{aligned}
$$

\rightarrow We do not expect that $\mathrm{B}_{2,0}(\mathrm{t}=0)$ and $\mathrm{C}_{2,0}(\mathrm{t}=0)$ reach a plateau in m_{π} as fast as $A_{2,0}(t=0)$!

Outline

- The generalized form factors of the nucleon
- Comparison to the $<x>$ data of T. Streuer et al.
- Comparison of $\mathrm{A}_{2,0}, \mathrm{~B}_{2,0}$ and $\mathrm{C}_{2,0}$ at $\mathrm{q}^{2}=0$
- First observations on momentum dependence and radii
- Outlook

Momentum dependence/Radij

- Radii of isovector Dirac/Pauli form factors $\mathrm{A}_{1,0}(\mathrm{t})$, $\mathrm{B}_{1,0}(\mathrm{t})$, have well-known chiral singularities:

$$
r_{1} \sim \log m_{\pi}, r_{2} \sim 1 / m_{\pi}
$$

\rightarrow Size of nucleon increases near the chiral limit

- Radius of isovector GFF $\mathrm{A}_{2,0}(\mathrm{t})$ stays finite in the chiral limit !!
- What about the radii of $\mathrm{B}_{2,0}(\mathrm{t}), \mathrm{C}_{2,0}(\mathrm{t})$?

Conclusion: Our global p-pole fits for the GFFs still hide a lot of interesting structures !

Isovector Radii of the Nucleon

Chiral Extrapolation: NR-SSE

Data: Quenched (improved) Wilson fermions QCDSF collaboration, Phys. Rev. D71, 034508 (2005).

Outlook

- $\mathrm{O}\left(\mathrm{p}^{4}\right)+\mathrm{O}\left(\mathrm{p}^{5}\right)$ BChPT calculation for isovector vector and axial-vector GFFs has started (M. Dorati and TRH)
$-5+12$ diagrams, in MIR-regularization (T. Gail and TRH, forthcoming), cross-talk of LECs in vector/axial-vector channel
- Plateau-behaviour for $<x>$ needs to be established first, then calculation of finite size effects possible in a second step
- Numerical comparison of the here presented $\mathrm{O}\left(\mathrm{p}^{4}\right) \mathrm{HBChPT}$ results for $\mathrm{A}_{2,0}, \mathrm{~B}_{2,0}$ and $\mathrm{C}_{2,0}$ at $\mathrm{t}=0$ with tattice"cdrattaoneng 'P Publiticativer"

