On the road to a chiral extrapolation of the generalized form factors of the nucleon

Thomas R. Hemmert

Theoretische Physik T39 Physik Department, TU München

Treffen der DFG-Forschergruppe "Gitter-QCD" Universität Leipzig, Germany Nov 18 -19, 2005

- The generalized form factors of the nucleon
- Comparison to the <x> data of T. Streuer et al.
- Comparison of $A_{2,0}$, $B_{2,0}$ and $C_{2,0}$ at $q^2=0$
- First observations on momentum dependence and radii
- Outlook

Generalized Form Factors

 Three generalized form factors (GFFs) in the isovector channel: A_{2,0}(t), B_{2,0}(t) and C_{2,0}(t)

$$i \langle p' | \overline{q} \gamma_{\{\mu,} \vec{D}_{\nu\}} q | p \rangle_{u-d} = \overline{u} (p') \left[A_{2,0}^{u-d} (t) \gamma_{\{\mu,} \overline{p}_{\nu\}} - \frac{B_{2,0}^{u-d} (t)}{2M_N} \Delta^{\alpha} \sigma_{\alpha\{\mu,} \overline{p}_{\nu\}} + \frac{C_{2,0}^{u-d} (t)}{M_N} \Delta_{\{\mu,} \Delta_{\nu\}} \right] u(p)$$

with
$$t = \Delta^2 = (p'-p)^2 \quad \text{and} \quad \overline{p} = \frac{1}{2} (p'+p); \quad \langle x \rangle_{u-d} = A_{2,0}^{u-d} (0)$$

- TEGANSQIE INVERSION MUNICIPAL MUNICIPAL
- The generalized form factors of the nucleon
- Comparison to the <x> data of Streuer et al.
- Comparison of $A_{2,0}$, $B_{2,0}$ and $C_{2,0}$ at $q^2=0$
- First observations on momentum dependence and radii
- Outlook

Quenched Data (Streuer et al.)

 Fit to HBChPT O(p⁴) result for <x> looks reasonable (Fit at β=8.0, β=8.45 result ??)

T.R. Hemmert, "Chiral Extrapolation for Generalized Form Factors"

- The generalized form factors of the nucleon
- Comparison to the <x> data of T. Streuer et al.
- Comparison of $A_{2,0}$, $B_{2,0}$ and $C_{2,0}$ at $q^2=0$
- First observations on momentum dependence and radii
- Outlook

Differences in the GFFs

- A_{2,0}, B_{2,0} and C_{2,0} behave very differently as functions of m_{π} at small t
- A_{2,0}(t=0) has a chiral log as LNA and plateaus very fast according to the present data situation
- $B_{2,0}$ and $C_{2,0}$ have a term ~ m_{π}^{3} as LNA: $B_{2,0}(t=0)=B_{40} M_{N}(m_{\pi}) + O(p^{5})$ $C_{2,0}(t=0)=S_{42} M_{N}(m_{\pi}) + O(p^{5})$
- → We do not expect that $B_{2,0}(t=0)$ and $C_{2,0}(t=0)$ reach a plateau in m_{π} as fast as $A_{2,0}(t=0)$!

- The generalized form factors of the nucleon
- Comparison to the <x> data of T. Streuer et al.
- Comparison of $A_{2,0}$, $B_{2,0}$ and $C_{2,0}$ at $q^2=0$
- First observations on momentum dependence and radii
- Outlook

Momentum dependence/Radii

 Radii of isovector Dirac/Pauli form factors A_{1,0}(t), B_{1,0}(t), have well-known chiral singularities:

 $r_1 \sim log m_{\pi}$, $r_2 \sim 1/m_{\pi}$

 \rightarrow Size of nucleon increases near the chiral limit

Radius of isovector GFF A_{2,0}(t) stays finite in the chiral limit !!

- What about the radii of $B_{2,0}(t)$, $C_{2,0}(t)$?

Conclusion: Our global p-pole fits for the GFFs still hide a lot of interesting structures !

Isovector Radii of the Nucleon

Chiral Extrapolation: NR-SSE Data: Quenched (improved) Wilson fermions QCDSF collaboration, Phys. Rev. D71, 034508 (2005).

- O(p⁴) + O(p⁵) BChPT calculation for isovector vector and axial-vector GFFs has started (M. Dorati and TRH)
 - 5 + 12 diagrams, in MIR-regularization (T. Gail and TRH, forthcoming), cross-talk of LECs in vector/axial-vector channel
 - Plateau-behaviour for <x> needs to be established first, then calculation of finite size effects possible in a second step
- Numerical comparison of the here presented O(p⁴) HBChPT results for A_{2,0}, B_{2,0} and C_{2,0} at t=0 with lattice clatare Publication Nov 19, 2005