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Motivation:

• Instantons = classical solutions of Euclidean Yang-Mills eq. of motion, disco-
vered by Belavin, Polyakov, Shvarts and Tyupkin (1975)

– successful in semi-classical calculations of hadronic correlation functions
– solve U(1)A problem
– explain spontaneous chiral symmetry breaking
– but could not be related to confinement

• The same applies to the periodic instanton (= HS caloron), discovered by
Harrington, Shepard in 1978.

• In 1998 time periodic instantons with arbitrary asymptotic holonomy were
discovered by Kraan, van Baal, Lee, Lu

– The possible contribution of KvB calorons to a confining potential has not
been studied numerically so far. This and other aspects of a KvB caloron
gas model are the aims of the present work.
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Could KvB calorons be relevant in the QCD vacuum at T 6= 0?

• Gross, Pisarski, Yaffe(1980): Classical solutions with non-trivial, asymptotic
holonomy are suppressed by a factor e−const·V , where V is the 3D volume.

⇒ ignored for instanton model

• Diakonov(2004) calculated the holo-
nomy dependence of the free energy
of a non-interacting KvB caloron gas
using the one-loop KvB caloron quan-
tum weight.

• Trivial holonomy is only stable above
a certain temperature but becomes un-
stable below.
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Figure taken from Diakonov et al. Free

energy vs. asymptotic holonomy v for

T = 1.3Λ (dotted), T = 1.125Λ

(solid), T = 1.05Λ (dashed) in

dimensionless units, (v=0: trivial

holonomy).
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Summary: SU(2)-calorons:

• Caloron ≡ instanton at finite temperature T = 1
β , periodic in time.

• Exists for arbitrary holonomy P∞ ∈ SU(2)
with P∞ = e2πi~ω~τ = lim

|~x|→∞
Pexp

(
i
∫ β

0
A4(~x, t)dt

)
, ω = |~ω|, ω̄ = 0.5− ω

⇒ A4 does not vanish for |~x| → ∞: Aper
4,∞ = 2πT~ω~τ

• Consists of 2 constituents with 3D-distance d.

• d � β: Constituents form one action lump

• d � β: Two separate, static BPS-monopoles
Fraction of action in lumps is ω

ω̄

• ω = 0 or ω = 0.5: Trivial holonomy

• 0 < ω < 0.5: Non-trivial holonomy Action density in XZ-plane of two merged

constituents, ω = ω̄.
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• 8 parameters per caloron ∀P∞ ∈ SU(2):

ρ Determines constituent separation d = πρ2

β → 1 parameter

x0 Position → 4 parameters
SU(2)-rotation along ~ω~τ → 1 parameter
Spatial rotation → 2 parameters

• Dirac string between constituents when separated:
→ Very strong vector potential between constituents,
→ fine-tuned to be free of action.

Action density in

XZ-plane for diso-

ciated caloron

↔
Corresponding

vector potential∑
µ |Aµ|2
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A SU(2) KvB caloron gas model:

• Aim: Simulate QCD vacuum as multi caloron system, measure string tension

• Caloron solutions only available for charge |Q| = 1 (except for special cases).
⇒ Construction of approximate classical solutions by superposition of Aµ(x)

• Caloron number determined by density n and physical volume

• All caloron parameters sampled randomly

• No additional weighing since configurations are considered as classical solutions

• Caloron size sampled according to a ρ-distribution D(ρ, T )
• Quantum fluctuations are accounted for by suitable

ρ-distribution D(ρ, T ).

• Non-periodic lattice v embedded in bigger volume V ,
equal number of calorons and anti-calorons in V

• Physical scale enters the calculation through the
free parameters n(T ), D(ρ, T ), ω(T ),
which have to be fixed by lattice observations.

7



Creating multi-caloron systems by superposition:

Calorons are solutions of Yang-Mills equation Fµν = F̃µν , (not linear in Aµ).

⇒ Superposing N calorons
∑N

i A
(i)
µ is not exact solution ↔ interaction Sint.

Sint = S(
∑N

i A
(i)
µ )−

∑N
i S(A(i)

µ ) 6= 0 → good approximations if Sint ≈ 0

Problem Sint � S0:

1. At non-trivial holonomy A4,∞ 6= 0
⇒ interaction with distant calorons

2. If a caloron is located between two
separated constituents
⇒ interaction with Dirac string

3. If action lumps of different calorons
come too close
⇒ interaction between action lumps

Solution:

→ Superpose in algebraic gauge

→ Move Dirac string from inside of
caloron to outside by applying gauge
transformation.

→ Improve self-duality by pseudo-
ADHM technique.
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Selection of caloron density n(T ):

• Caloron density shall be fixed by topological
susceptibility

χ =
∫

d4x < 0|T (q(x)q(0))|0 >= lim
a→0

V→∞

< Q2 >

V

• Assuming that calorons and anti-calorons appe-
ar with same probability and are placed without
correlation in the QCD vacuum, the topologi-
cal susceptibiliy χ and the caloron density n are
equal: χ = n

• T-dependence of topological susceptibiliy χ(T )
for SU(2) was measured by Alles et al. (1998)

• For confined phase:
χ

1
4 = 198± 8MeV (T-independent)

Figure taken from Alles et al.

Temperature T Caloron density n(T )

≤ TC (198 MeV )4

1.10 TC (178 MeV )4

1.20 TC (174 MeV )4

1.32 TC (165 MeV )4

1.54 TC (157 MeV )4

1.79 TC (136 MeV )4

Model parameter n(T ) adapted

from data of χ(T )
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Fixing of holonomy parameter ω(T ):

• Holonomy parameter ω shall be determined by
lattice measurements of average Polyakov loop

M(~x) =
1
2
Tr

Nt∏
t=1

U4(~x, t)

• For dilute caloron gases the average Polyakov
loop < M > is connected to the holonomy
parameter < M >= cos(2πω).

• T-dependence of < M > for SU(2) in limit
V →∞ was extracted by Engels et al. (1999)

< M(T ) >= B ·
(

T − TC

TC

)β

, T → T+
C

B = 0.825(1), β = 0.327

• For confined phase: ω = 0.25
→ max. non-trivial holonomy (T-independent)

Figure taken from Engels et al.

T-dependence of < M > to fix
model parameter ω(T )
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Choice of size distribution D(ρ, T ):

• Quantum weight of KvB caloron (Diakonov, 2004):

Z =
∫

d3z1

∫
d3z2 e

−8π2

g2 f(ρ), ρ =
√

β|z1−z2|
π , z1,z2 monopole positions

• For ρ � β: f(ρ) ∝ ρb−5, b = 11
3 NC

• For ρ � β: f(ρ) ∝ e
−V P (v)−2π2

β ρ2P ′′(v)
, P (v) = v2v̄2

12π2T
, P ′′ = d2

dv2P (v)

⇒ divergent for v/(4πT ) = ω ∈ [ω−, ω+], ω± = 0.25 (1±
√

1
3)

⇒ ρ-distribution has to be cut off

• Similar problem as with instantons. Hard-core type interactions lead to ex-

ponential suppression of large sizes ∝ e−const·ρ2
(Diakonov & Petrov (1984),

Müller-Preussker & Ilgenfritz (1981), Münster & Kamp (2000))
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• Lattice observation helps: Average caloron size is approximately T-independent
in confined phase ρ̄ ≈ 0.33fm (Chu, Schramm, 1995).

• For small T ⇒ ρ̄/β � 1 ⇒ calorons are non-dissociated ⇒ exponential
suppression from instanton calculation also applicable to calorons.

• For large T , but T < TC calorons start to dissociate into static monopoles with
3D extent ≈ β independent of ρ ⇒ suppression from caloron interaction
unrealistic.

• 3D volume in f(ρ) ∝ e−V P (v)+... can be interpreted as ρ-dependent, specific
caloron volume Vcal = C0(ω)πβ2|z1 − z2|, C0(ω) ≈ 1 leading again to an
exponential suppression (Hofmann, 2005).

• For T � TC holonomy becomes trivial and f(ρ) ∝ e−
4
3(πρT )2
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Temperature ρ-distribution fixation of parameters

T < TC D(ρ, T ) = a · ρb−5 · exp(−cρ2)
∫

D(ρ, T )dρ = 1, ρ̄ = 0.33fm

T > TC D(ρ, T ) = a · ρb−5 · exp(−4
3(πρT )2)

∫
D(ρ, T )dρ = 1

• T-dependence ρ̄(T ) (solid),
intervall of standard deviation [ρ̄−σ, ρ̄+σ]
(dashed)

• For T � TC ρ̄(T ) is given by the
HS caloron quantum weight.

• Both ansatzes are continously connected
for TC ≈ 200MeV .

• For confined phase:
ρ̄ = 0.33 fm (T-independent)
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String tension σ in the confined phase:

V (R) = −log(W (R, R2))/R2 from spatial

Wilson loops in fundamental and adjoint representation.

Temperature T = 198 MeV < TC .

Holonomy parameter ω = 0.25

Caloron density n
1
4 = 198MeV

String tension: σ ≈ 320MeV
fm

QQ̄-potential calculated from Polyakov loop correlator

in fundamental and adjoint representation.

Temperature T = 198 MeV < TC .

Holonomy parameter ω = 0.25

Caloron density n
1
4 = 198MeV

String tension: σ ≈ 200MeV
fm
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String tension σ in the deconfined phase:

V (R) = −log(W (R, R2))/R2 from spatial

Wilson loops at different temperatures.

T=218 MeV > TC , ω = 0.19: σ ≈ 100MeV
fm

T=260 MeV > TC , ω = 0.15: σ ≈ 50MeV
fm

For comparison: T = 198 MeV < TC , ω = 0.25: σ ≈ 320MeV
fm

QQ̄-potential V calculated from Polyakov loop correlator at different

temperatures.

T=218 MeV > TC , ω = 0.19: V stops rising ⇒ no string tension

T=260 MeV > TC , ω = 0.15: V stops rising ⇒ no string tension

For comparison: T = 198 MeV < TC , ω = 0.25: σ ≈ 200MeV
fm
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Comparison KvB calorons (ω = 0.25) and HS calorons (ω = 0):

V (R) = −log(W (R, R2))/R2 from spatial

Wilson loops for contrast of ω = 0.25 and ω = 0

at T = 198 MeV.

ω = 0.25: σ ≈ 320MeV
fm

ω = 0.00: σ ≈ 210MeV
fm

QQ̄-potential V calculated from Polyakov loop correla-

tor for contrast of ω = 0.25 and ω = 0

at T = 198 MeV.

ω = 0.25: σ ≈ 320MeV
fm

ω = 0.00: V stops rising ⇒ no string tension
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Analysis of monopol clusters:

Maximal 3D-extent of monopol clusters after fixing

the maximally abelian gauge. Some large clusters are

found in the confined phase (T=198 MeV < TC ,

ω=0.25,n
1
4=198 MeV), but not for a deconfining tem-

perature T=260 MeV, ω=0.15,n
1
4=165 MeV).

Number of links per monopol cluster after fixing the

maximally abelian gauge. Some large clusters are found

in the confined phase (T=198 MeV < TC , ω=0.25,

n
1
4=198 MeV), but not for a deconfining temperature

T=260 MeV, ω=0.15,n
1
4=165 MeV).
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Conclusion and outlook:

• String tensions σ ≈ 200− 320 MeV/fm can be obtained from a KvB caloron
gas model. Compare with TC/

√
σ = 0.709 for pure SU(2) (Teper et al.).

⇒ Expected string tension σ ≈ 400MeV/fm for TC ≈ 200MeV

• The QQ̄ potential from the Polyakov loop correlator runs into a plateau
for T > TC mainly because of ω(T ) → 0.

• Caloron gas with non-trivial holonomy yields better results in confined phase
than caloron gas with trivial holonomy (HS calorons).
→ HS calorons can not reproduce linear rising QQ̄ potential from Polyakov
loop correlator in confined phase.

• Some large monopole clusters can be observed in confined phase.

• More statistic has to be collected.
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