Overlap Hypercube Fermions in QCD with Light Quarks

- I. Construction of the <u>overlap HF</u> Locality, rotation symmetry and condition number
- **II.** Applications in the <u>*p*-regime</u> :

 $m_q$  vs.  $m_\pi$ ,  $m_
ho$ ,  $m_{
m PCAC}$ ,  $Z_A$  and  $F_\pi$ 

III. Applications in the  $\underline{\epsilon}$ -regime :  $F_{\pi}$  and  $\Sigma$ Topological charges and susceptibility

Zero-mode contributions to  $\langle PP \rangle$  in  $\chi$  limit

W. Bietenholz (HU Berlin) and S. Shcheredin (Bielefeld),  $\chi LF$ 

# I. Construction of the Overlap HF

For free fermions, the **perfect lattice action** is known analytically (W.B./Wiese '95). Dirac operator:

$$D_{x,y} = \gamma_{\mu}\rho_{\mu}(x-y) + \lambda(x-y)$$

with closed expressions for  $\rho_{\mu}(p), \lambda(p)$ .

Based on iterated RG transformations  $\rightarrow$  <u>no lattice artifacts</u>

Range of  $D_{x,y}$  is infinite  $\rightarrow$  optimise the RGT for locality, then truncate by periodic b.c. to a  $3^4$  hypercube  $\rightarrow \text{ supp } [\rho_{\mu}(x-y), \lambda(x-y)] \subset \{|x_{\nu} - y_{\nu}| \leq 1\}, \nu = 1 \dots 4$ 

**"Hypercube Fermion" (HF)**, still excellent scaling (W.B./Brower/Chandrasekharan/Wiese, '96).

**Gauging:** sum over *shortest lattice paths*, plus **fat links**  $U_{\mu}(x) \rightarrow (1 - \alpha)U_{\mu}(x) + \frac{\alpha}{6}\sum \text{staples}$ ; link amplification  $\rightarrow$  criticality

Truncation and imperfect gauging  $\rightarrow$  scaling and chirality somewhat distorted. Chirality can be corrected again by inserting the HF into the *overlap formula* (H. Neuberger, '97) :

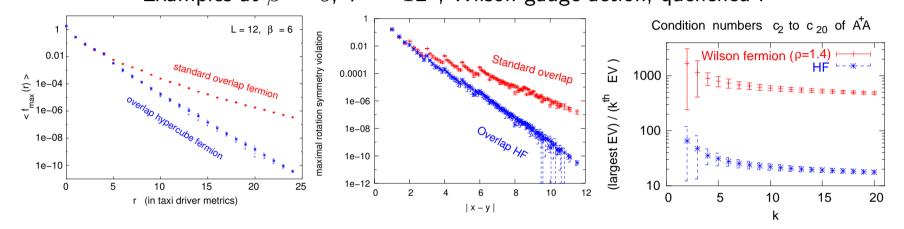
$$D_{\rm ov} = \rho (1 + A/\sqrt{A^{\dagger}A}) , \quad A := D_0 - \rho , \quad \rho \gtrsim 1$$

where  $D_0$  is some lattice Dirac operator (with  $D_0 = \gamma_5 D_0^{\dagger} \gamma_5$ ).

- Standard overlap fermion: based on D<sub>0</sub> = D<sub>Wilson</sub>
   Drastic change : D<sub>Wilson</sub> → D<sub>ov-W</sub>
- Overlap HF:  $D_0 = D_{\text{HF}}$  $D_{\text{HF}}$  is approx. chiral already  $\rightarrow$  modest modification :  $D_{\text{HF}} \rightarrow D_{\text{ov-HF}}$

Both are Ginsparg-Wilson operators  $\rightarrow exact \chi sym.$  (P. Hasenfratz, '98, M. Lüscher, '98)

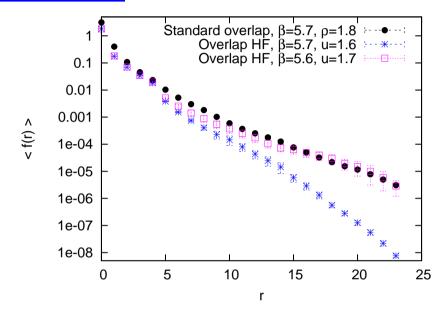
⇒ Virtues of the HF are essentially inherited by  $D_{\rm ov-HF}$ : high degree of **locality, approx. rotation symmetry, fast convergence** Examples at  $\beta = 6$ ,  $V = 12^4$ , Wilson gauge action, quenched :



Overlap HF vs. standard overlap at  $\rho = 1.4$ 

- $f_{\max}(r)$  "maximal correlation" between unit source  $\bar{\psi}_x$  and  $\psi_y$  with  $r = ||x y||_1$ (Hernández et al. '99)
- Measure for violation of rot. sym. :  $f_{\max}(|x-y|) f_{\min}(|x-y|)$
- Condition numbers c<sub>k</sub>: (largest EV of A<sup>†</sup>A) / (smallest EV, after projecting out k − 1 modes)
   Gain factor ≈ 25 → factor 5 in polynomial degree, vs. factor 15 of HF overhead

Locality at strong coupling:



- $\beta = 5.7$   $(a \simeq 0.17 \text{ fm}) : D_{\text{ov}-W}$  with optimal  $\rho$  barely local  $\overline{D_{\text{ov}-\text{HF}}}$  with optimal link amplification has powerful locality, stronger than  $D_{\text{ov}-W}$  at  $\beta = 6$ ,  $\rho = 1.4$
- $\beta = 5.6$ : for  $D_{ov-W}$  locality collapses, no valid Dirac operator but  $D_{ov-HF}$  is still local

The overlap-HF formulation provides chiral fermions on coarser lattices.

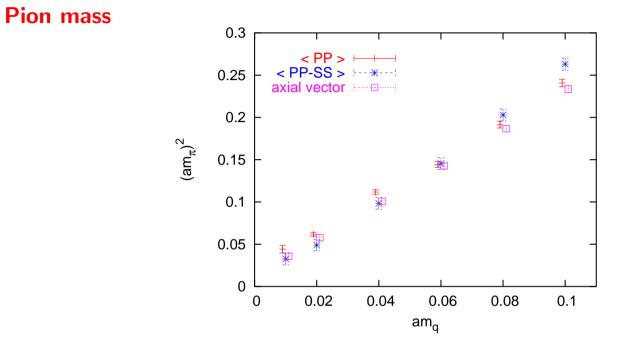
### **II.** Applications in the *p*-Regime

*p*-regime : *p* expansion of  $\chi$ PT is applicable, box length  $L \gg \frac{1}{m_{\pi}}$ 

We consider  $\beta = 5.85$   $(a \simeq 0.123 \text{ fm})$   $V = 12^3 \times 24$ ,  $V_{\text{phys}} = (1.48 \text{ fm})^3 \times 2.96 \text{ fm}$ Bare quark masses :  $am_q = 0.01, \ 0.02, \ 0.04, \ 0.06, \ 0.08, \ 0.1$   $\triangleq \mathbf{m_q} \simeq \mathbf{16.1} \text{ MeV} \dots \mathbf{161} \text{ MeV}$ ,  $D_{\text{ov}}(m_q) = \left(1 - \frac{m_q}{2\rho}\right) D_{\text{ov}}^{(0)} + m_q$ { At smallest  $m_q$  close to  $\epsilon$ -regime } Statistics : 100 propagators

We evaluate the **pion mass** in three ways:

- Pseudoscalar correlator  $\langle PP 
  angle$  ,  $P = ar{\psi} \gamma_5 \psi$
- ullet  $\langle A_4 A_4 
  angle$  ,  $A_4 = ar{\psi} \gamma_5 \gamma_4 \psi$
- $\langle PP SS \rangle$ ,  $S = \bar{\psi}\psi$ : subtraction useful at small  $m_q$ , avoids contamination by zero modes, which plagues quenched results

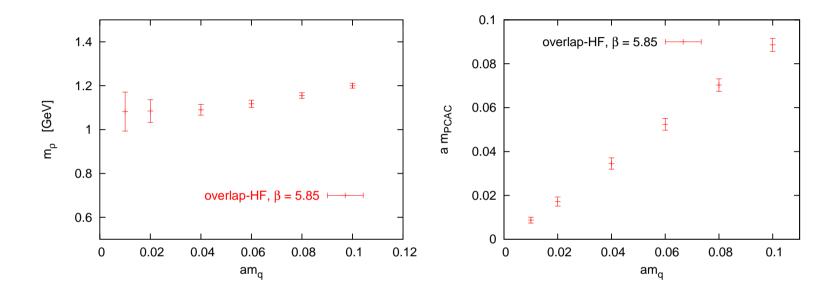


 $m_\pi^2 \propto m_q$  ; Intercept for  $m_{\pi,PP-SS}^2(m_q=0)=-0.001(15)$ 

Hierarchy at small  $m_q$ :  $m_{\pi,PP} > m_{\pi,AA} > m_{\pi,PP-SS}$ (agrees with P. Hasenfratz et al. '02)

Smallest pion mass :  $m_{\pi,PP-SS}(am_q = 0.01) \simeq (279 \pm 32) \text{ MeV}$  $\rightarrow \frac{L}{\xi} \approx 2$ , edge of *p*-regime

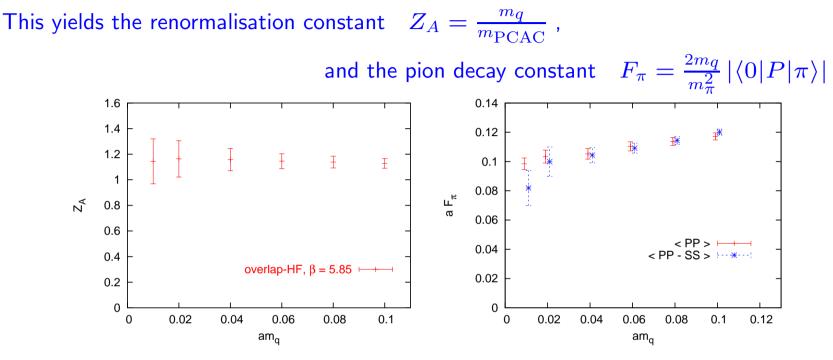




Chiral extrapolation :

 $m_{
ho} \in [978 \text{ MeV}, 1057 \text{ MeV}]$ ,  $m_{
m PCAC} \in [-0.00094, 0.00035]$  $m_{
m PCAC} = \sum_{\vec{x}} \langle \partial_4 A_4^{\dagger}(x) P(0) \rangle / 2 \sum_{\vec{x}} \langle P^{\dagger}(x) P(0) \rangle$  (for  $D_{
m ov-W}$ , see  $\chi$ LF, '04)

8



Chiral extrapolation :

•  $Z_A = 1.17(2)$ ; much closer to 1 than  $Z_A$  for standard overlap at same  $\beta$ ( $Z_A \simeq 1.45$  at  $\rho = 1.6$ ,  $\chi \text{LF}$  '04;  $Z_A \simeq 1.55$  at  $\beta = 6$ ,  $\rho = 1.4$ , Berruto et al. '03) •  $F_{\pi,PP} \in [109 \text{ MeV}, 114 \text{ MeV}]$ ,  $F_{\pi,PP-SS} \in [95 \text{ MeV}, 113 \text{ MeV}]$ above theor. value in the  $\chi$  limit: 86 MeV (Colangelo/Dürr, '04)  $\rightarrow$  to be reconsidered in the  $\epsilon$ -regime at smaller  $m_q \dots$ 

# III. Applications in the $\epsilon$ -Regime

 $\frac{\epsilon \text{-regime}}{\ln \chi \text{PT } p \text{-expansion fails due to dominant 0-modes}}$ But: analytical treatment of zero modes with collective variables (Gasser/Leutwyler, '87), higher modes captured by  $\epsilon \text{-expansion}$ 

Motivation: unphysical setting, but physical values of the Low Energy Constants (LEC, free parameters in  $\chi$ PT,  $F_{\pi}$ ,  $\Sigma$ ...) can be evaluated in small volumes  $\rightarrow$  LEC at  $V = \infty$ .

Challenge for simulations with Ginsparg-Wilson fermions. However: quenching  $\rightarrow \log$ . finite size effects (Damgaard, '01)

Peculiarity of  $\epsilon$ -regime: observables depend strongly on the *topological sector* (Leutwyler/Smilga, '92)

### Evaluation of $\Sigma$ from the Dirac Spectrum

 $\rho_{n}^{(\nu)}(z)$ 

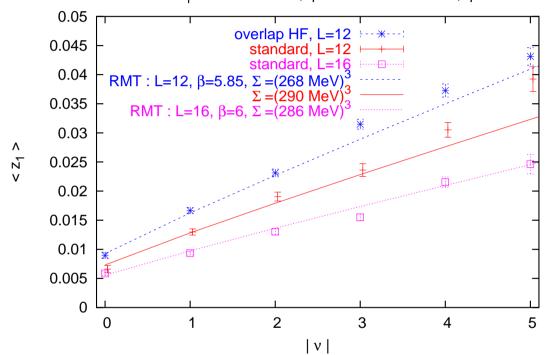
 $\chi$  Random Matrix Theory conjectures the densities of the low lying Dirac eigenvalues  $\lambda$  in the  $\epsilon$ -regime (Damgaard/Nishigaki, '98) :

 $z := \lambda \Sigma V$  (dim'less) n = 1, 2, 3... (lowest eigenvalues, excluding zeros)  $\nu := index \equiv top.$  charge

W.B./Jansen/Shcheredin, Giusti/Lüscher/Weisz/Wittig, Galletly et al., '03 :  $\chi$ RMT predictions hold for leading EVs if the volume is not too small ( $L \gtrsim 1.1$  fm)

Scalar condensate  $\Sigma$  : only free parameter, determined by the fit.

 $V = (1.48 \text{ fm})^3 \times 2.96 \text{ fm}$  at  $a \simeq 0.12 \text{ fm} (\beta = 5.85)$ , and  $a \simeq 0.093 \text{ fm} (\beta = 6)$ 



 $\Sigma V < \lambda_1 >$  on 12<sup>3</sup> x 24,  $\beta$ =5.85 and 16<sup>3</sup> x 32,  $\beta$ =6

Prediction works well in particular for  $|
u|=0,\ 1,\ 2$ 

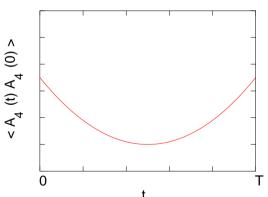
For the overlap-HF the fits yields :  $\Sigma = (268(2) \text{ MeV})^3$ 

#### Preliminary result for $F_{\pi}$ from the axial-vector correlator

Correlators to first order in **quenched**  $\chi$ PT (q $\chi$ PT) (Damgaard et al., '02, '03)  $\langle Vector - Vector \rangle = 0$  (all orders)  $\langle Scalar - Scalar \rangle$  and  $\langle Pseudoscalar - Pseudoscalar \rangle$ involve additional LEC, specific to quenching.

 $\Rightarrow \text{Focus on } \langle Axialvector - Axialvector \rangle$ in leading order **only**  $\Sigma$  **and**  $F_{\pi}$ 

Bare axial current at  $\vec{p} = \vec{0}$ :  $A_{\mu}(t) = \sum_{\vec{x}} \bar{\Psi}(t, \vec{x}) \gamma_5 \gamma_{\mu} \Psi(t, \vec{x}) \langle A_4(t) A_4(0) \rangle$  in a volume  $L^3 \times T$ :



Parabola: min. at t = T/2;  $F_{\pi}^2/T$ : additive,  $\Sigma \rightarrow$  curvature

W.B./Chiarappa/Jansen/Nagai/Shcheredin, '03 : Simulations at  $m_q = 21.3$  MeV,  $\beta = 6$  on  $V = 10^3 \times 24$  and  $12^4$ 

- First lattice failed; consistent with  $\chi$ RMT study: L  $\simeq$  0.98 fm is too small
- MC history in ν = 0 has strong spikes , smoother at ν ≠ 0 , Spikes exactly for conf's with very small EV , most frequent at ν = 0 { Remedy: "Low Mode Averaging", Giusti et al. '04 }

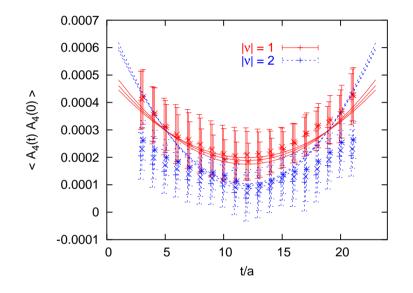
Decent agreement with q $\chi$ PT in  $V = (1.12 \text{ fm})^4$ ,  $|\nu| = 1$ :  $F_{\pi} = (86.7 \pm 4.0) \text{ MeV}$ 

Renormalisation with  $Z_A \simeq 1.55 \rightarrow F_{\pi}^{\rm r} \approx 130 \, {\rm MeV} > 93 \, {\rm MeV}.$ 

 $\Sigma$  cannot be extracted (curves hardly sensitive to  $\Sigma = 0$  or  $\Sigma = (250 \text{ MeV})^3$ ).

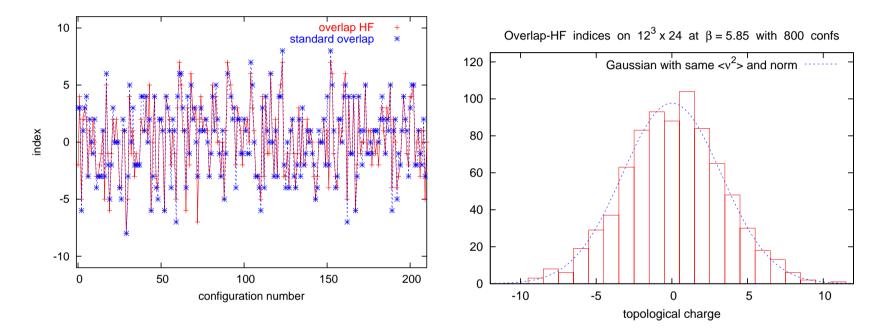
{ See also : Fukaya/Hashimoto/Ogawa, '05 }

Preliminary result for overlap-HF ( $12^3 \times 24$ ,  $\beta = 5.85$ ) 10 propagators in each of the sectors  $|\nu| = 1$ ,  $|\nu| = 2$ ;  $m_q = 1.6$  MeV, 4.8 MeV, 8 MeV



Global fit with  $\Sigma = (268 \text{ MeV})^3$ :  $F_{\pi} = (96 \pm 10) \text{ MeV}$ Renormalised :  $F_{\pi}^{r} = (104 \pm 9) \text{ MeV}$  (agrees with quenched literature)

Alternative method based on 0-mode contributions to meson correlators in the  $\chi$  limit: see below.

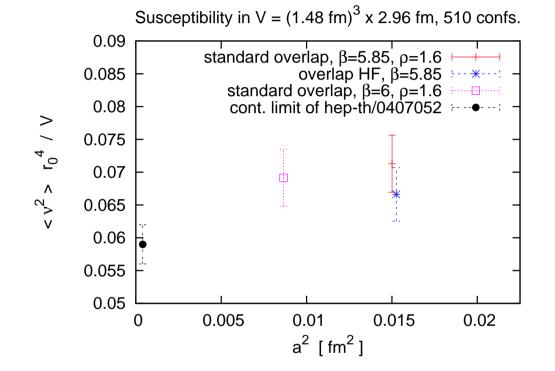


### **Topological Charges** :

Left: part of index histories for standard overlap and overlap-HF, same conf's,  $\langle |\nu_{\rm ov-W} - \nu_{\rm ov-HF}| \rangle \approx 0.8$ , max. deviation: 5

Right: charge histogram for overlap-HF, compatible with a Gaussian, parity (?) (c.f. Alles/D'Elia/DiGiacomo, '05)

## **Topological susceptibility** $\chi = \frac{1}{V} \langle \nu^2 \rangle$ (relevant for mass of $\eta'$ )



Comparison to the continuum limit by Del Debbio/Giusti/Pica '04 ( for  $\langle \nu^2 \rangle r_0^4/V$  ). *Considering finite* a and  $\rho = 1.6$ : agreement within the errors Overlap HF data closer to cont. limit (same confs at  $\beta = 5.85$ )

17

Giusti/Hernández/Laine/Weisz/Wittig '04:  $q\chi$ PT predictions for the

### **ZERO-MODE CONTRIBUTIONS** to $\langle P P \rangle_{|\nu|}$

 $\Rightarrow$  from the zero-modes alone we can evaluate  $F_{\pi}$  and  $\alpha$  $\alpha$ : Low Energy Constant, specific to quenching,

enters leading order of  $\langle P P \rangle$ .

 $\mathcal{L}_{q\chi PT}^{(2)}$  is formulated with aux. scalar  $\phi_0$ , which supplements the quenching effect K: couples  $\phi_0 U$ , plus  $\frac{1}{2}\alpha_0(\partial_\mu\phi_0)^2 + \frac{1}{2}m_0^2\phi_0^2$ Count  $m_0 = \mathcal{O}(\epsilon)$  and define  $\alpha = \alpha_0 - 4N_c^2 KF_\pi/\Sigma$  $\Rightarrow$  first order observables only involve  $F_\pi$  and  $\alpha$  (dim'less)

Pseudoscalar density  $P= ar{\psi}\gamma_5\psi$ 

$$egin{aligned} &\langle P(x)P(y)
angle &=& N_f P_1(x,y) - N_f^2 P_2(x,y) \ &P_1(x,y) &=& \mathrm{Tr}[i\gamma_5(D+m_q)^{-1}(x,y)\cdot i\gamma_5(D+m_q)^{-1}(y,x)] \ &P_2(x,y) &=& \mathrm{Tr}[i\gamma_5(D+m_q)^{-1}(x,x)]\cdot \mathrm{Tr}[i\gamma_5(D+m_q)^{-1}(y,y)] \end{aligned}$$

Spectral decomposition of propagators  $\rightarrow$  residuum given by zero modes:

$$\begin{split} \lim_{m_q \to 0} (m_q V)^2 \langle P(x) P(0) \rangle_{\nu} &= N_f C_{|\nu|}^{(1)}(x) + N_f^2 C_{|\nu|}^{(2)}(x) \\ \text{connected} : & C_{|\nu|}^{(1)}(x) &= -\langle v_j^{\dagger}(x) v_k(x) \cdot v_k^{\dagger}(0) v_j(0) \rangle_{\nu} \\ \text{disconnected} : & C_{|\nu|}^{(2)}(x) &= \langle v_j^{\dagger}(x) v_j(x) \cdot v_k^{\dagger}(0) v_k(0) \rangle_{\nu} \end{split}$$

summed over (exact) **zero modes**,  $Dv_j = 0$ .

Spatial average:  $\frac{1}{V} \int d^3x P(x) P(0) \rightarrow C^{(i)}_{|\nu|}(t)$ Fits for  $C^{(i)}_{|\nu|}(t)$  are troublesome; more handy:

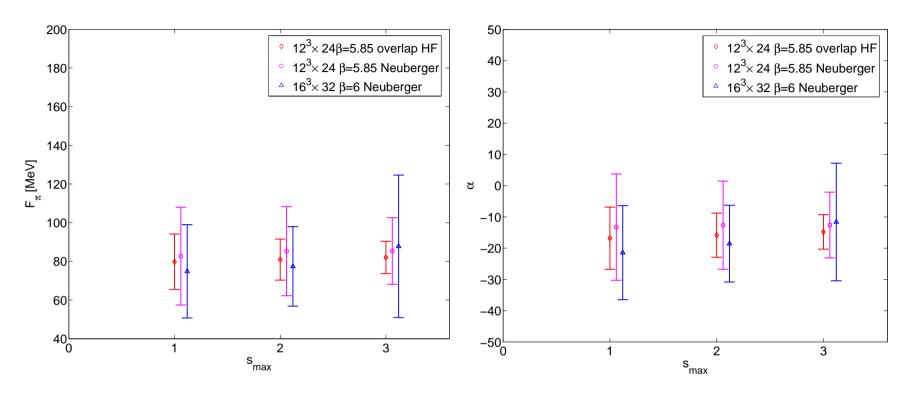
$$rac{1}{L^2}rac{d}{dt}C^{(i)}_{|
u|}(t)|_{t=T/2} = D^{(i)}_{|
u|}\cdot s + \mathcal{O}(s^3) \;, \qquad s = t - rac{T}{2}$$

Measure slopes  $D^{(i)}_{|
u|}$  up to  $s=\pm 1,\pm 2,\ldots$  , fits yield values for  ${f F}_\pi,\ lpha$ 

Combined fit for  $F_{\pi}$  and  $\alpha$  for zero-mode pseudoscalar correlators of standard overlap operator and the overlap-HF operator in  $V = (1.48 \text{ fm})^3 \times 2.96 \text{ fm}$ ,  $\langle \nu^2 \rangle$  as measured in each case.

Statistics :

| Dirac operator   | eta  | lattice size     | u =1 | u =2 |
|------------------|------|------------------|------|------|
| standard overlap | 5.85 | $12^3 \times 24$ | 132  | 115  |
| overlap HF       | 5.85 | $12^3 \times 24$ | 221  | 192  |
| standard overlap | 6    | $16^3 \times 32$ | 115  | 94   |



s: fitting range around T/2.

In particular the overlap HF yields a neat plateau.  $F_{\pi} = (80 \pm 14) \text{ MeV}$ ,  $\alpha = -17 \pm 10$ . Standard overlap data consistent.  $F_{\pi}$  moves down compared to  $\langle AA \rangle$  (theory: 86 MeV at  $m_q = 0$ ). *Giusti et al. in*  $V \simeq (1.49 \text{ fm})^4 : F_{\pi} \simeq (117 \pm 16) \text{ MeV}$ ,  $\alpha \in [-1.8, 7.8]$ 

# **Conclusions**

- $D_{\rm ov-HF}$  provides better locality than  $D_{\rm ov-W} \rightarrow$  applicable on coarser lattices
- Rotation symmetry improved
   Scaling promising (toy models, preliminary QCD results), under investigation
- <u>p-regime</u> : results for  $m_{\pi}$ ,  $m_{\rho}$ ,  $m_{PCAC}$ ,  $F_{\pi}$  vs.  $m_q$  similar to standard overlap  $\rightarrow$  independent confirmation,  $Z_A$  much closer to 1
- $\underline{\epsilon}$ -regime :  $\Sigma = (268(2) \text{ MeV})^3$  from Dirac spectrum  $F_{\pi} \simeq 104(\pm 9) \text{ MeV}$  from  $\langle A_4 A_4 \rangle$  (preliminary) agrees exactly with  $\chi$  extrapolation from p-regime 0-mode result at  $m_q = 0$  :  $F_{\pi} = (80 \pm 14) \text{ MeV}$ ,  $\alpha = -17 \pm 10$ Topology conserving gauge action may be helpful

Thanks to M. Papinutto and C. Urbach for numerical tools

Modified lattice gauge action to "freeze" the topol. sector : Hernández/Jansen/Lüscher '99, Neuberger '00

Theoretical condition for topology conservation:

$$S_P := 1 - \frac{1}{3} \operatorname{Re} \operatorname{Tr}(U_P) < \varepsilon \simeq 1/20.5$$
  
 $U_P : \text{any plaquette}$ 

Implementation (Lüscher '01, Fukaya/Onogi '03)

$$S_{\varepsilon}(U_P) = \begin{cases} \frac{S_P(U_P)}{1 - S_P(U_P)/\varepsilon} & S_P(U_P) < \varepsilon \\ +\infty & \text{otherwise} \end{cases}$$

W.B./Jansen/Nagai/Necco/Scorzato/Shcheredin '04

see also Fukaya/Hashimoto/Hirohashi/Ogawa/Onogi, '05

| $1/\varepsilon$ | eta  | $r_0/a$ | $eta_W$ | $	au_{ m aut}^{ m top}$ / $	au_{ m aut}^{ m plaq}$ |
|-----------------|------|---------|---------|----------------------------------------------------|
| 0               | 6.18 | 7.14(3) | 6.18    | := 1                                               |
| 1               | 1.5  | 6.6(2)  | 6.13    | $\sim 29$                                          |
| 1.18            | 1    | 7.2(2)  | 6.18    | $\sim 80$                                          |
| 1.52            | 0.3  | 7.3(4)  | 6.19    | $\sim 241$                                         |

### Relax $\varepsilon$ , decrease $\beta$ for $\approx$ const. scale, (local HMC)

Approx. const. scale  $r_0/a$  on a  $16^4$  lattice

 $\beta_W$  : corresponding  $\beta$  value for the Wilson gauge action

 $au_{
m aut}$  : autocorrelation time with respect to  $\,Q_{
m top}$  , and to the plaquettes

Allows us to sample a specific top. sector, desired in the  $\epsilon$ -regime.

Also condition number for  $D_{ov}$  decreases.