The equation of state in lattice QCD: with physical quark masses towards the continuum limit

Y. Aoki¹ Z. Fodor^{1,2} S. Katz² K. Szabo¹

¹University of Wuppertal

²Eötvös University

Leipzig meeting

通 と く ヨ と く ヨ と

For $N_f = 2 + 1$, with physical quark masses:

- Order of transition
- *T*_c
- EoS
- Karsch, Laermann, Peikert, 2000:
 - staggered p4 action: very good at extreme high T
 - N_t = 4, $a \simeq 0.25 fm @ T_c$ far from cont. lim.
 - scaling, taste viloation
 - unphysical quark masses
 - $m_0^{(2)} = -m_1^{(2)}$, $m_2^{(2)} = -2m_1^{(2)}$ (8. T_c . Change as 1.
 - finite step size for molecular dynamics
 - string tension for scale

- We do
 - Tree level improved gauge, stout-link improved KS (Morningstar & Peardon)
 - $N_t = 4, 6$
 - "physical quark mass"

 exact algorithm: RHMC (Clark & Kennedy)

For $N_f = 2 + 1$, with physical quark masses:

• Order of transition

• *T_c*

EoS

- Karsch, Laermann, Peikert, 2000:
 - staggered p4 action: very good at extreme high T
 - $N_t = 4, a \simeq 0.25 fm @ T_c: far from cont. lim.$
 - scaling, taste viloation
 - unphysical quark masses
 - *m*^{sim}_{ud} = *m*^{phys}_s, *m*^{sim}_s = 2*m*^{phys}_s @ 1
 ★ Change as T.
 - finite step size for molecular dynamics
 - string tension for scale

We do

- Tree level improved gauge, stout-link improved KS (Morningstar & Peardon)
- ► $N_t = 4, 6$
- "physical quark mass"
 - * always keep $m_{ud}^{sim} \simeq m_{ud}^{phys}, m_{s}^{sim} \simeq m_{s}^{phys}$
- exact algorithm: RHMC (Clark & Kennedy)

/0.1입다와윎/오~ㅋ> ~ㅋ> ~ㅋ

For $N_f = 2 + 1$, with physical quark masses:

• Order of transition

• T_c

EoS

- Karsch, Laermann, Peikert, 2000:
 - staggered p4 action: very good at extreme high T
 - $N_t = 4, a \simeq 0.25 fm @ T_c:$ far from cont. lim.
 - ★ scaling, taste viloation
 - unphysical quark masses

$$\begin{array}{l} \star \quad m_{ud}^{sim} = m_s^{phys}, \\ m_s^{sim} = 2m_s^{phys} @ T_d \end{array}$$

- ★ Change as T.
- finite step size for molecular dynamics
- string tension for scale

We do

- Tree level improved gauge, stout-link improved KS
 - (Morningstar & Peardon)

•
$$N_t = 4, 6$$

- "physical quark mass"
 - \star always keep $m_{ud}^{sim}\simeq m_{ud}^{phys}, \ m_{s}^{sim}\simeq m_{s}^{phys}$
- exact algorithm: RHMC (Clark & Kennedy)

э

For $N_f = 2 + 1$, with physical quark masses:

• Order of transition

• *T_c*

EoS

- Karsch, Laermann, Peikert, 2000:
 - staggered p4 action: very good at extreme high T
 - $N_t = 4, a \simeq 0.25 fm @ T_c:$ far from cont. lim.
 - scaling, taste viloation
 - unphysical quark masses

$$\begin{array}{l} \star \quad m_{ud}^{sim} = m_s^{phys}, \\ m_s^{sim} = 2m_s^{phys} @ T_d \end{array}$$

- ★ Change as T.
- finite step size for molecular dynamics
- string tension for scale

- We do
 - Tree level improved gauge, stout-link improved KS (Morningstar & Peardon)

- "physical quark mass"
 - * always keep $m_{ud}^{sim} \simeq m_{ud}^{phys}$, $m_{s}^{sim} \simeq m_{s}^{phys}$
- exact algorithm: RHMC (Clark & Kennedy)
- ► r₀ for scale

Stout-Link Smearing

- Analitic in Uorig
 - Convensional molecular dynamics can be used
- Link smearing with simlar effect with HYP
 - reduces taste vilolation very well

LCP The line of constant physics

- $m_{ud}(\beta), m_s(\beta).$
- Fix m_s using N_f = 3 degenerate simulations and LO ChPT

(4) (3) (4) (4) (4)

- obtain $m_s(\beta)$
- $m_{ud} = m_s/25$

• should be checked in $N_f = 2 + 1$ simulation.

$N_f = 3$ Spectrum scaling of N/ρ ratio

• $a \simeq 0.25 \text{ fm} \rightarrow 0$: 2 $\sim 3\%$ effect

æ

$N_f = 2 + 1$ Spectrum

 $\beta = 3.45, 3.625, 3.75$: $a \simeq \{5, 7, 9\}/T_c, m_s^{sim} = m_s^{phys}$ by LCP

- Discrepancy to the physical spectrum $\leq 5 8\%$
- Will be tested with finer lattice.

$N_{f} = \underset{\Delta_{\pi} = \frac{m_{\pi'} - m_{\pi}}{m_{\pi}}}{1}$ Spectrum: Taste Symmetry

- Linear extrapolation in reasonable χ^2
- Taste symmetry under control

Y. Aoki (U. Wuppertal)

4 A N

Simulation Procedure

- many β 's (16 pts for $N_t = 4$, 14 pts for $N_t = 6$)
- given β , $m_s^{sim} = m_s^{phys}(\beta)$ fixed. $\rightarrow m_{ud}^{phys} = m_s^{phys}/25$.

•
$$T \neq 0$$
: $m_{ud}^{sim} = m_{ud}^{phys}$
• $N_s = 3N_t$.

•
$$T = 0$$
: $m_{ud}^{sim} = \{3, 5, 7, 9\} \times m_{ud}^{phys}$

• keeping $L_s m_{\pi} > 3$

• several β 's checked: finite size effect less than stat. err.

A (10) A (10)

Simulation Procedure

- many β 's (16 pts for $N_t = 4$, 14 pts for $N_t = 6$)
- given β , $m_s^{sim} = m_s^{phys}(\beta)$ fixed. $\rightarrow m_{ud}^{phys} = m_s^{phys}/25$.

•
$$T \neq 0$$
: $m_{ud}^{sim} = m_{ud}^{phys}$
• $N_s = 3N_t$.

•
$$T = 0$$
: $m_{ud}^{sim} = \{3, 5, 7, 9\} \times m_{ud}^{phys}$

• keeping $L_s m_{\pi} > 3$

• several β 's checked: finite size effect less than stat. err.

< 回 > < 回 > < 回 > -

Simulation Procedure

- many β 's (16 pts for $N_t = 4$, 14 pts for $N_t = 6$)
- given β , $m_s^{sim} = m_s^{phys}(\beta)$ fixed. $\rightarrow m_{ud}^{phys} = m_s^{phys}/25$.

•
$$T \neq 0$$
: $m_{ud}^{sim} = m_{ud}^{phys}$
• $N_s = 3N_t$.

•
$$T = 0$$
: $m_{ud}^{sim} = \{3, 5, 7, 9\} \times m_{ud}^{phys}$

- keeping $L_s m_{\pi} > 3$
- several β 's checked: finite size effect less than stat. err.

• Imp • I

EoS procedure

$$\frac{p}{T^4}\Big|_{(\beta,m)}^{(\beta,m)} = -\frac{f}{T^4}\Big|_{(\beta_0,m_0)}^{(\beta,m)} = -N_t^4 \int_{(\beta_0,m_0)}^{(\beta,m)} d(\beta,m_{ud},m_s) \left(\begin{array}{c} \langle -\mathbf{S}_g/\beta \rangle \\ \langle \bar{\psi}\psi_{ud} \rangle \\ \langle \bar{\psi}\psi_s \rangle \end{array}\right)^{4.00} \left[\begin{array}{c} \langle \mathbf{S}_{gauge} \rangle & \mathbf{RHMC} \\ \mathbf{I} & \mathbf{I} \\$$

We use exact algorithm: no need of step size extrapolation.

T=0: no m^{sim} = m^{phys} data.

$$\left. rac{\mathcal{P}}{\mathcal{T}^4} \right|_{(eta,m_{ud}^{phys})} = \left. rac{\mathcal{P}}{\mathcal{T}^4} \right|_{(eta,m_{ud}^{sim})} - N_t^4 \int_{m_{ud}^{sim}}^{m_{ud}^{phys}} dm_{ud} \langle ar{\psi}\psi_{ud}
angle.$$

Extrapolation only needed for $\langle \bar{\psi}\psi_{ud} \rangle (m_{ud}^{phys}) \leftarrow m_{ud}^{sim} \equiv \{3, 5, 7, 9\} \times m_{uds}^{phys}$.

EoS procedure

$$\frac{p}{T^4}\Big|_{(\beta,m_0)}^{(\beta,m)} = -\frac{f}{T^4}\Big|_{(\beta_0,m_0)}^{(\beta,m)} = -N_t^4 \int_{(\beta_0,m_0)}^{(\beta,m)} d(\beta,m_{ud},m_s) \left(\begin{array}{c} \langle -\mathbf{S}_g/\beta \rangle \\ \langle \bar{\psi}\psi_{ud} \rangle \\ \langle \bar{\psi}\psi_s \rangle \end{array}\right) \cdot \begin{array}{c} \overset{\mathbf{4.00}}{\overset{\mathbf{4.00}}{\overset{\mathbf{4.404}}{\overset{\mathbf{4.40}}{\overset{\mathbf{4.404}}{$$

We use exact algorithm: no need of step size extrapolation.

T=0: no m^{sim} = m^{phys} data

$$\left. rac{\mathcal{P}}{\mathcal{T}^4} \right|_{(eta,m_{ud}^{phys})} = \left. rac{\mathcal{P}}{\mathcal{T}^4} \right|_{(eta,m_{ud}^{sim})} - N_t^4 \int_{m_{ud}^{sim}}^{m_{ud}^{phys}} dm_{ud} \langle ar{\psi}\psi_{ud}
angle.$$

Extrapolation only needed for $\langle \bar{\psi}\psi_{ud} \rangle (m_{ud}^{phys}) \leftarrow m_{ud}^{sim} \equiv \{3, 5, 7, 9\} \times m_{uds}^{phys}$.

EoS procedure

We use exact algorithm: no need of step size extrapolation.

T=0: no $m_{ud}^{sim} = m_{ud}^{phys}$ data. $\frac{p}{T^4}\Big|_{(\beta, m_{ud}^{phys})} = \frac{p}{T^4}\Big|_{(\beta, m_{ud}^{sim})} - N_t^4 \int_{m_{ud}^{sim}}^{m_{ud}^{phys}} dm_{ud} \langle \bar{\psi}\psi_{ud} \rangle.$

Extrapolation only needed for $\langle \bar{\psi}\psi_{ud} \rangle (m_{ud}^{phys}) \leftarrow m_{ud}^{sim} = \{3, 5, 7, 9\} \times m_{ud}^{phys}$.

Y. Aoki (U. Wuppertal)

EoS

Multiplied with c_{SB}/c_{N_t} ($c_{SB} = \lim_{N_t \to \infty} c_{N_t}$), $N_t = 4$ (red), 6(blue).

Y. Aoki (U. Wuppertal)

Quark number susceptibility

2

How close to the physical and continuum limit?

Assuming $T_c = 173$ MeV.

$$\Delta'_{\pi} = \frac{m_{\pi'}^2 - m_{\pi}^2}{T_c^2} = (m_{\pi'}^2 - m_{\pi}^2)N_t^2$$

 $(T = 0 \text{ masses, measured at } \beta_c(N_t))$

- Stout-link smearing improvement was used to reduce the taste violation. Works quite well.
- We have obtained LCP with $N_f = 3$ simulation
- $N_f = 2 + 1$:
 - reasonable agreement to real world light meson spectrum
 - controlled flavor symmetry breaking
- The equation of state was calculated with $N_t = 4$ and 6 lattices.
- For the reliable continuum extrapolation, N_t = 8 simulation is needed.

3

・ロト ・ 四ト ・ ヨト ・ ヨト ・