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Abstract

This paper is based on a talk I gave by choice at 06/18/10 within the course
Theoretical Physics II: Electrodynamics provided by PD Dr. A. Schiller at Uni-
versity of Leipzig in the summer term of 2010. A basic knowledge in special
relativity is necessary to be able to understand all argumentations and formulae.

First I shortly will revise the transformation of velocities and accelerations. It
follows some argumentation about the hyperbolic path a uniformly accelerated
particle will take. After this I will introduce the Rindler coordinates. Lastly
there will be some examples and (probably the most interesting part of this
paper) an outlook of acceleration in GRT.

The main sources I used for information are Rindler, W. Relativity, Oxford
University Press, 2006, and arXiv:0906.1919v3.



Chapter 1

Transformation of
acceleration between two
reference frames

The Lorentz transformation is the basic tool when considering more than one
reference frames in special relativity (SR) since it leaves the speed of light c
invariant. Between two different reference frames1 it is given by

x = γ(X − vT ) (1.1)

t = γ(T −X v

c2
) (1.2)

By the equivalence principle, for the backtransformation it is valid that2

X = γ(x+ vt) (1.3)

T = γ(t+ x
v

c2
) (1.4)

where v denotes the relative velocity between the two frames and γ is the usual

γ =
1√

1− v2

c2

(1.5)

One can easily check the invariance of the so called (Minkowski) line element

ds2 = −c2dt2 + dx2 + dy2 + dz2 = −c2dT 2 + dX2 + dY 2 + dZ2 (1.6)

1We denote the reference frame of the stationary observer by capital letters and the moving
observers reference frame by small letters

2In fact, this simple pattern is valid also for the inverse transformation of velocities: replace
x,t with X,T and the other way round and change the direction of v, i.e. v → -v.

1



Before we may start with the transformation of accelerations, we of course
need the transformation of velocities. Hence consider first of all the
differentials

dx = γ(dX − vdT ) (1.7)

dt = γ(dT − dX v

c2
) (1.8)

So we have for the transformation of velocities3

u =
U − v

1− U v
c2

(1.9)

By the usual chain rule for differentiation we get

du =
dU(1− U v

c2 ) + (U − v)dU v
c2

(1− U v
c2 )

=
dU

γ2(1− U v
c2 )2

(1.10)

where we used the definition of γ to simplify the expression.
Now it is not hard to see that for accelerations4

a =
A

γ3(1− U v
c2 )3

(1.11)

Since we will only consider rectilinear motion in one direction, U=v and it
follows the simple formula

a = γ3A (1.12)

3We will denote the velocities as U and u for the rest frame and the moving reference
frame, respectively.

4Accelerations are written as A and a with the same convention as for velocities.
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Figure 1.1: Graphical representation of the Lorentz factor
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Chapter 2

Rindler Coordinates

2.1 Hyperbolic motion

We want to describe uniformly accelerated motion. To get an idea how it
should look like, consider the equation we derived in the last chapter:

a = γ3A (2.1)

One finds that the RHS is equivalent to d(γv)
dT . In fact we have

d(γv)

dT
= v

dγ

dT
+ γ

dv

dT
= γA(1 + γ2

v2

c2
) = γ3A (2.2)

Now we can easily integrate this equation and get

aT = γv (2.3)

Solving for v (note the dependence of γ on v) gives v = dX
dT = aT√

1+ a2T2

c2

.

Integrating once again finally yields:

X =
c2

a

√
a2T 2

c2
+ 1 (2.4)

or equivalently

X2 − c2T 2 =
c4

a2
(2.5)

This equation represents a hyperbolic path in a Minkowski diagram, i.e. a
uniformly accelerated observer will follow a hyperbolic path in the stationary
frame.
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2.2 The uniformly accelerated reference frame
- Rindler coordinates

We now will exploit the fact that uniformly accelerated observers will follow a
hyperbolic path. This explicitely means that we can write a coordinate
transformation from the stationary reference frame to the moving one by using
hyperbolic functions. The most general way to use them is the following1:

X = (x+
c2

a
) sinh

a(t− t0)

c
+X0 −

c2

a
(2.6)

cT = (x+
c2

a
) cosh

a(t− t0)

c
+ cT0 (2.7)

Here, x represents the spatial offset of the origin of the moving reference frame
w.r. to the origin of the stationary frame, t0 is a time offset and X0 a spatial
offset of some moving particle. That means, our new coordinate frame
represents a reference frame which moves with constant proper acceleration a.
Of course if we just want to look at the motion of some uniformly accelerating
observer, this observer will be at rest in its own rest frame, i.e. in the frame
x,t we defined by the two equations above. For the inverse transformation one
easily sees that

x =

√
(X −X0 +

c2

a
)2 − c2(T − T0)2 − c2

a
(2.8)

ct =
c2

a
tanh−1

c(T − T0)

X −X0 + c2

a

+ ct0 (2.9)

For the line element in the new frame it is also not hard to show that

ds2 = −(1 +X
a

c2
)2dt2 + dx2 + dy2 + dz2 (2.10)

Note the very important fact that by the equivalence principle this line
element gives also the metric for a uniform gravitational field, i.e. we found a
very basic metric without considering the Einstein field equations or even
thinking about GRT!

1Note that this transformation is only defined on the so called Rindler wedge, i.e. the
region T ∈ R, −T < X < T
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Figure 2.1: Rindler wedge. Straight lines correspond to constant times t, curved
lines represent constant values of x.
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We now want to show what we claimed: that in the new reference frame
defined by the given coordinate transformation we indeed have a constant
acceleration. For this we will put x=0, i.e. we consider an observer which is at
rest at the origin of the moving frame. Further note that we always have
dT
dt = γ.

dX

dT
=
dX

dt

dt

dT
=
dX

dt
γ−1 =

c

γ
sinh

a(t− t0)

c
(2.11)

dT

dt
= γ = cosh

a(t− t0)

c
(2.12)

dX

dT
= c tanh

a(t− t0)

c
(2.13)

d2X

dT 2
=

d

dT

dX

dT
=

a

cosh a(t−t0)
c

=
a

γ3
(2.14)

⇒ d2x

dt2
=
d2X

dT 2
γ3 = a (2.15)
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Chapter 3

Some applications of
accelerated motion

3.1 Bell’s spaceship

Bell’s spaceship is a thought experiment which was first designed by E.Dewan
and M.Beran in 19591 to show the reality of length contraction, but the most
known version is due to Bell (1976).
In Bell’s version, 2 spaceships are initially at rest in some common inertial
frame and are connected by a taught string of length d. At some time t0 they
both start to accelerate such that the difference between them remains d w.r.
to the rest frame. The question is whether the string breaks or not.
We now will do a full analysis of this, but we will first of all not use the
assumption of fixed distance but find a general formula for arbitrary values of
accelerations and distances (which is of course coupled to one another).
So let us start with our transformation we derived in chapter 2:

x =

√
(X −X0 +

c2

a
)2 − c2(T − T0)2 − c2

a
(3.1)

We now can solve for X=X(T,x) which is the equation of motion of one
spaceship w.r. to the stationary frame.

X =

√
(x+

c2

a
)2 + c2(T − T0)2 − c2

a
+X0 (3.2)

1Dewan, E.; Beran, M. (March 20 1959). ”Note on stress effects due to relativistic con-
traction”. American Journal of Physics (American Association of Physics Teachers) 27 (7):
517518. doi:10.1119/1.1996214. Retrieved 2006-10-06.
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To simplify our analysis, we put x=0, T0 = 0 and we choose X01 and X02
2

such that we get

Xi =
c2

a
(

√
1 +

a2iT
2
i

c2
− 1) + d12(i) (3.3)

where 1j(i) is the indicator function defined as 1j(i)=
{
1,i=j
0,i6=j .

At this point we can see that after a long time (
a2iT

2
i

c2 >> 1) our spaceship will
follow a straight line with slope c, i.e. it will travel at maximum with speed c,
no matter how small or large our constant proper acceleration is, which is
consistent with Einsteins second postulate.
To proceed further, let us first do some side calculations. Remember that

aT = γv (3.4)

v2 = c2(1− 1

γ
) (3.5)

⇒ γ =

√
1 +

a2T 2

c2
(3.6)

From this we get the following formulae:

Xi =
c2

ai
(γ − 1) + d12(i) (3.7)

Ti =
γv

gi
(3.8)

If we now define δ = 1
a2
− 1

a1
we can write the differences in space and time as

∆X = d+ c2(γ − 1)δ (3.9)

∆T = γvδ (3.10)

At this point we see that if δ = 0, i.e. both proper accelerations are the same,
the distance in the stationary frame remains the same. Let us now perform a
Lorentz transformation to the accelerated frame3. We get

∆x = γ(∆X − v∆T ) = γ(d+ c2δ(1− 1

γ
)) (3.11)

If we now consider the case of equal proper accelerations (δ = 0) we see that
the physical length of the rod is γd, i.e. it gets longer and longer. So finally it

2Index 1 refers to the left one in a Minkowski diagram, i.e. the one which is behind the
other, index 2 refers to the leading one. Note that of course now there are also different gi, Ti,
i=1,2, corresponding to the two spaceships.

3In fact, this is a comoving frame attached to the rod.
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has to break when this elongation exceeds the elastic limit of the rod.
Let us now look what happens if we choose that the physical length of the rod
should remain the same, i.e. ∆x = d:

∆x = d = γ(d+ c2δ(1 +
1

γ
)) (3.12)

⇒ δ =
d

c2
(3.13)

⇒ a2 =
c2a1

da1 + c2
(3.14)

We see that, in order to have a constant length of the rod, the proper
accelerations must follow the relationship (3.14). Generalizing, this means that
every point of a rigid rod has to have a different proper acceleration to achieve
that the length of the rod does not change. To make sure that this length
measurement makes sense, i.e. takes place at the same time in the comoving
frame attached to the rod, ∆t should be zero. This is indeed the case:

∆t = γ(∆T − v

c2
∆X) = γ(− v

c2
d+ vδ) = 0 (3.15)
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3.2 Relation to the Schwarzschild metric

We now will work with a simplified version of the Rindler coordinates:

x =
√
X2 − T 2 (3.16)

t = tanh−1
T

X
(3.17)

a =
1

x
(3.18)

Note that the proper acceleration is indeed constant since in the moving
frame, the observer is at rest, i.e. has a constant value of x.
We easily can expand this simplified coordinates to all 4 quadrants4 of the
Minkowski diagram by the following transformations:

Table 3.1:
I(x>0) and III(x<0) II (x>0) and IV (x<0)

T = x sinht x cosht
X = x cosht x sinht
X/T = tanht cotht
X2 − T 2 = x2 −x2
dT 2 − dX2 = x2dt2 − dx2 −x2dt2 + dx2

If we now replace x by another variable, say r, by 2r − 1 =
{
x2(I,III)
−x2(II,IV ) , we

have a unified appearance of the metric:

ds2 = (2r − 1)dt2 − (2r − 1)−1dr2 − dy2 − dz2 (3.19)

If we compare this to the Schwarzschild metric (in spherical coordinates) one
sees some similarity to our metric:

ds2 = (1− 1

2R
)dT 2 − (1− 1

2R
)−1dR2 −R2(dθ2 + sin2 θdφ2) (3.20)

4Clockwise starting from the Rindler wedge: I,IV,III,II.
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3.3 Black hole thermodynamics

The starting question in this section is: can black holes radiate? It comes out,
that indeed black holes can radiate. This was discovered by Hawking in 1974
after much original work of Bekenstein about the entropy of a black hole. The
black hole radiation occurs due to quantum-mechanical processes. For an easy
picture, imagine vacuum fluctuations near, but outside the Schwarzschild
radius of some black hole. Then it may be possible that one of the created
virtual particles is swallowed and the other escapes, so effectively there is a net
flux of energy (and hence mass) out of the black hole since the virtual particles
are converted into real particles. This energy need is taken from the black hole.
This implies that a black hole must have a temperature and an entropy. We
only now will give the formulae for this because the derivation is more
involved:

T =
~c3

8πGkBM
(3.21)

S =
kBc

3A

4G~
(3.22)

M is the mass of the black hole, kB the Boltzmann’s constant and A the
surface area of the black hole.
From this one can also calculate the total lifetime of a black hole. It is given by

t ≈ 1.5× 1066
(
M

M�

)3

years (3.23)

For a black hole of 1 earth mass this is approximately 4 ×1049 years which is
practically not observable.
But now we know that by the equivalence principle, an accelerated observer
should see a virtual heat bath! This effect is called Unruh effect and was first
discussed by Davies in 1975 and then analysed by Unruh in 1976. The
temperature here is given by

T =
~a

2πckB
(3.24)

For an acceleration corresponding to the acceleration due to the gravitation of
the earth (g=9.81ms2 ) this is a mere 4 ×10−20K, but for very high accelerations
occuring in particle accelerators, this may become measurable. Indeed, there
are indications of its reality.
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