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List of problems 8 (22. and 23. required, 24. voluntary)

Find the form of the Maxwell equations in vacuum (no medium, but sources
present) under the transformation (# is a constant angle)

E =Ecosf+cBsinf,

E
B = ——sinf + Bcos¥.
¢

Discuss the Poynting vector S = E x H and the electromagnetic energy
density u = (1/2) (E- D + B - H) under this transformation.

Starting with the retarded solution to the three-dimensional wave equation
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show that the source f(x/,t") = d(2")d(y") 0(t'), equivalent to a t = 0 point
source at the origin in two spatial dimensions, produces a two-dimensional
wave,

2¢O(ct — p)
where p? = z? + y? and O(&) is the unit step function [©(¢) = 0(1) if
£ < (>)0].

voluntary, to collect an additional point:

U(x,y,t) =

Consider a point charge e moving along a prescribed path given by r(¢)
with arbitrary velocity u(t) = dr/dt. The corresponding sources are

p(x,t) =ed(x—r(t)), Jxt)=ut)px,t).

From the general expressions of the retarded electromagnetic potentials find
for such a charge the Liénard-Wiechert potentials
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where the retarded time is the solution of the relation
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Note that both the instantaneous position and velocity of the point charge
have to be taken at the retarded time.

Hints:

In the retarded potentials first reintroduce the integration over time t' via

the 0 function ,
St —t+ [x = x]
c

and than first integrate over x’ using the three-dimensional § function from
the corresponding source.

The remaining ¢ function containing the time ¢’ cannot be used explicitly
for the integration over t’. Therefore, introduce use a new variable f
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f=t—t+

and use f for the integration. In other words, show that
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where the retarded time is the solution of f = 0.



