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Abstract

Molecular diffusion in the pore system of zeolites exhibits a number of peculiarities which do not occur in bulk liquids. Examples are

presented, discussed by using both analytical methods and MD simulations and compared with results of experimental studies. The

in¯uence of different input parameters is discussed. # 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

As a unique feature of zeolitic adsorbate±adsorbent sys-

tems, intracrystalline molecular propagation proceeds under

well-de®ned steric con®nement.

As an example, Fig. 1 shows the structure of a zeolite of

type LTA. It consists of large cavities in simple cubic

arrangement. The upper part provides an impression of

the position of the atoms in the zeolite structure, while

the lower part gives a simpli®ed representation in which the

silicon and aluminium atoms are indicated by the points of

intersection between the solid lines. For a better visualiza-

tion of the structure, the planes formed by the aluminium±

silicon-4-rings and 6-rings are shaded. An alternative way of

structure visualization is shown in Fig. 2. This presentation

shows a zeolite of type MFI (with the representatives ZSM-5

and silicalite), which consists of a network of sinusoidal and

straight channels in x and y direction, respectively.

As a consequence of the con®nement by the internal

surface, zeolitic diffusion reveals a number of peculiarities

which have no correspondence in the bulk ¯uid. These

peculiarities include the existence of structure-related pro-

pagators, the mutual dependence of the rate of propagation

in different crystallographic directions, the deviation from

normal diffusion in perfectly ordered systems and the dom-

inating role of the guest±host interaction in molecular

propagation. Each of these peculiarities are considered in

more detail in this contribution.

The presentation is mainly based on the application of

molecular dynamics (MD) simulations and analytical meth-

ods. In the last section the in¯uence of changing different

input parameters (potential, model) is discussed. Wherever

possible, the results are compared with the information

provided by experimental methods.

2. Structure-related propagator

The internal dynamics of ¯uid systems is most informa-

tively represented by the propagator P(r,t|r0,0), which

denotes the (conditional) probability density that a mole-

cule, initially at position r0, will have got to position r at

time t. Experimentally accessible is the averaged propagator

P�r; t� �
Z

p�r0�P�r0 � r; tjr0; 0�dr0; (1)

where p(r0) denotes the probability density of ®nding a

molecule at position r0. The averaged propagator represents

the probability distribution of molecular displacements r
during the time interval t for an arbitrarily selected molecule

within the sample under study. The pulsed ®eld gradient

(PFG) NMR technique [1] allows the determination of the

averaged propagator [2,3] over time and space scales of

typically milliseconds and micrometers. In quasielastic

neutron scattering (QENS) ± with the relevant time and

space scales of 1±100 ps and nanometers ±, the averaged

propagator P(r,t) is generally referred to as the self-part

Gs(r,t) of the van Hove auto-correlation function G(r,t)

[4±14]
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G�r; t� � 1
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* +

; (2)

with N denoting the particle number. For distinguishable

particles one can split G(r,t) into the self-part Gs and the

distinct-part Gd

Gs�r; t� � 1

N

XN

j�1

��r� rj�0� ÿ rj�t��
* +

; (3)

Gd�r; t� � 1

N

XN

j�1

XN

`�1�6�j�
��r� r`�0� ÿ rj�t��

* +
; (4)

where Gs correlates positions of the same particle (j�`) at

different times while Gd correlates positions of different

ones (j6�`). Gs(r,t) gives the probability density that within

time t a particle moves by r, while Gd(r,t) gives the prob-

ability density of ®nding any different particle at distance r
from the former position of some particle.

In a homogeneous system, the propagator P(r,t) (Eq. (1))

is easily found to be a Gaussian

P�r; t� � �4�Dt�ÿ3=2
exp�ÿr2=�4Dt��; (5)

with D denoting the self-diffusivity.

The evolution of the probability of particle displacements

as contained in the spatial±temporal dependence of the

propagator, corresponding to Eq. (5), is shown in Fig. 3

(top).

In such representations one is clearly con®ned to show the

propagator with respect to one coordinate only. Fig. 3

(bottom) illustrates that the heterogeneity of the host system

leads to a ®ne-structure of the propagator with spacings

given by the separation between adjacent pore centres. The

propagator in Fig. 3 (bottom) has been determined by MD

simulations for methane in a cation-free A-type zeolite (for

short: ZK4) for potential set B (see Table 1), loading I�3

(throughout this paper given in molecules per supercage)

and temperature T�300 K [15].

Fig. 4 uses an alternative representation of the propagator

for demonstrating the diffusion behaviour of ethane in ZK4

in a time interval of t�1±1000 ps [16,17]. In this case, the

propagator was calculated with respect to two coordinates x,

y. It is to be seen that the propagator shows a more

complicated structure than in the case of CH4, most likely

Fig. 1. Structure of zeolites of type LTA (left: internal view, atoms,

windows (w); right: general view, cavities, windows).

Fig. 2. Structure of zeolites of type MFI. The indicated diffusion path

allows molecular propagation in the z-direction by subsequent steps in the

x and y directions (cf. Section 3).

Table 1

Parameter sets used for the LJ (12,6) potential (Eq. (20))

Zeolite � (AÊ ) � (kJ molÿ1)

LTA CH4±CH4 3.817 1.232

LTA CH4±Si 2.14 0.29

LTA CH4±O (set A) 3.14 1.5

LTA CH4±O (set B) 3.46 0.81

LTA C2H6±O 3.775 1.536

Silicalite CH4±CH4 3.730 1.230

Silicalite CH4±O 3.214 1.108

Silicalite Xe±Xe 4.064 1.870

Silicalite Xe±O 3.296 1.679
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as a consequence of the more intricate intermolecular

interaction.

The speci®c structurization of the propagators (see Fig. 3

(bottom) and Fig. 4) is caused by the re¯ections of the guest

molecules at the walls of the cavities in the zeolites which

yield peaks in the correlation functions. For an ideal zeolite

lattice, the periodicity of the propagator is conserved over

arbitrarily large space and time scales. This is demonstrated

by Fig. 5.

For zeolites of non-cubic structure, the propagator exhi-

bits the differences of molecular propagation in different

directions. This is exempli®ed by Fig. 6 showing the pro-

pagator with respect to the x-, y- and z-axis (cf. Fig. 1, top)

for methane in silicalite.

The structurization of the propagator is an immediate

consequence of the periodicity of the particle distribution in

space caused by the zeolite pore structure. It is not unex-

pected, therefore, that the propagator may be factorized in a

contribution of the type of Eq. (5) and the spatial auto-

correlation function of molecular distribution, yielding

[11±14]

P�z; t� � �4�Dt�ÿ1=2
exp�ÿz2=�4Dt��hp�z0�p�z0 � z�iz0

;

(6)

where p(z0) denotes the probability density of ®nding a

molecule with the z coordinate z0, and h. . .iz0
is the ensem-

ble average about all possible initial states z0. The quality of

this approximation is visualized by Fig. 7, which compares

the exact propagator as following directly from the simula-

tion (right-hand side) with that determined on the basis of

Eq. (6) (left-hand side [11,14]).

Figs. 5 and 6 demonstrate the decay of the Gaussian-like

curves ± modulated by the lattice periodicity ± with respect

to time. One should note the parabolic form due to hx2i, hy2i,
hz2i � t: Moreover, from the decay of the curvatures in

Fig. 6 one can see that the diffusion coef®cients in the

different directions x, y and z obey the relation Dy>Dx>Dz.

This sequence indicates that the mobility is highest in the

straight channels, moderate in the zig-zag channels and

smallest in z-direction due to the necessity of detours of

the guest molecules.

Since the relevant space scale is in the nanometer range,

among the experimental techniques only QENS provides

the potential of experimentally con®rming the theoretical

prediction of the structurized propagator. As a consequence

of the limited sensitivity, however, in contrast to PFG NMR

[2], QENS has so far not been applied to determining

propagators directly from the primary experimental data.

In general, the information about transport characteristics

have been deduced by ®tting the solutions for certain models

to the experimental data. Knowing the propagator as result-

ing from the MD simulations, one may clearly determine

theoretically the primary experimental data, which would

correspond to it. As an example, Fig. 8 shows the dynamic

structure factor S(k,!) (k ± wave vector, ! ± frequency)

which is related to the propagator (self-part of the van Hove

function) by the relation:

S�k; !� � 1

2�

Z1
ÿ1

Z
P�r; t�eÿi�krÿ!t�drdt: (7)

Fig. 9 shows the intermediate scattering function F(k,t)

[11,14]) of QENS, which is de®ned by

F�k; t� �
Z

P�r; t�eÿikrdr; Gs�r; t� � P�r; t� (8)

using the propagator of methane in cation-free zeolite LTA

as represented in Figs. 4 and 7 and [11,14]. The scattering

vector k has been chosen to be parallel to one of the

crystallographic axes.

As a remarkable feature of the intermediate scattering

function, a pronounced peak is observed at ka�2�, where a

(�1.23 nm) is the lattice constant of zeolite A.

In QENS experiments one has clearly to do with powder

samples. This leads to the formation of much less pro-

nounced maxima than exhibited in Fig. 4, and, conse-

quently, in Fig. 9. The experimental observation of such

maxima is a challenging task for QENS. In the light of the

present study, such a behaviour is to be quite generally

expected as a consequence of the structured propagator,

Fig. 3. Propagator P(r, t) (Eq. (1)) in an ideal bulk system (top) and in

ZK4 (bottom) with the same self-diffusivities (D�6�10ÿ9 m2sÿ1).
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which is caused by the heterogeneity of the distribution of

the diffusants in space.

3. Correlation rules of zeolitic diffusion

The existence of a well-de®ned network of channels

and/or pores implies that molecular displacements into

different directions are not independent of each other. A

typical example of this correlated motion has been pro-

vided by Fig. 2. The indicated diffusion path demons-

trates that in silicalite molecular displacement in

z-direction only occurs by subsequent displacements along

the channels in x- and y-direction. Under the supposition

that subsequent displacements from one channel intersec-

tion to an adjacent one are independent of each other,

i.e. that the particle `memory' is much shorter than the

diffusion time from one intersection to the next one, the

diffusivities in x-, y- and z-direction have been shown to

be related to each other by reciprocal addition [18,19],

yielding

c2

Dz

� a2

Dx

� b2

Dy

(9)

with a, b, c and Dx, Dy, Dz denoting the extensions of the unit

cell and the diffusivities in x-, y- and z-direction, respec-

Fig. 4. Two-dimensional graph of the time development of the propagator P(x, y, t) ± x, y in AÊ ; t in ps ± calculated from a trajectory (potential set A (see

Table 1, I�3, T�300 K, D�2�10ÿ9m2 sÿ1) [16].
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tively. While this simple correlation rule was found to be in

reasonable agreement with numerous MD simulations

[11,20±23], from experimental studies only the much less

de®nite conclusion could be drawn that the measurements

were not in contrast to the correlation rule [22,24]. This is a

consequence of the fact that the small size of silicalite

crystallites does not allow the independent determination

of the three diffusivities Dx, Dy and Dz with the necessary

accuracy.

Fig. 5. The propagator P(x, t) (or self-part Gs(x, t) (Eq. (3)) of the van

Hove correlation function) for diffusion of methane in ZK4 at I�3 and

T�300 K, D�6�10ÿ9 m2 sÿ1.

Fig. 6. Propagator (self-part Gs of the van Hove correlation function) for

methane in silicalite in x-, y-, and z-direction at I�3 and T�300 K

(Dx�8�10ÿ9 m2 sÿ1, Dy�14�10ÿ9 m2 sÿ1, Dz�1.7�10ÿ9 m2 sÿ1).

Fig. 7. Comparison of the calculated shape of P(x, t) (right-hand side)

with the approximation (Eq. (6), left-hand side) for t�4095 ps. I�3 and

T�300 K.

Fig. 8. Dynamic structure factor Ss(k, !) for methane in ZK4 at I�3 and

T�300 K.

Fig. 9. Intermediate scattering function Fs(k, t) for methane in ZK4 at I�3

and T�300 K.
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In ®rst order approximation, particle memory may be

considered by an extension of Eq. (9) yielding [25]

c2

Dz

1� 2�nsw

n

� �
� a2

Dx

1� 4�ns
zz

nz

� �
� b2

Dy

1� 4�ns
ss

ns

� �
;

(10)

where nz and ns denote the number of steps along zig-zag

and straight channel elements, respectively. n(�nz�ns) is

the total number of steps. �ns
zz and �ns

ss stand for the

deviation of the number of step pairs carried out into the

same direction along zig-zag and straight channel elements

from the value expected in the case of no particle memory.

Analogously, �nsw denotes this difference with respect to

switches from one channel type to the other one. As to be

expected, any enhancement of the values of �ns
zz, �ns

ss and

�nsw leads to an enhancement of the attributed diffusivities,

viz. Dx, Dy and Dz.

With respect to an experimental validation of correlation

rules of zeolitic diffusion, chabazite (see Fig. 10) offers

more promising prospects than silicalite. As a mineral,

chabazite is available also with crystallites in the millimeter

range. This permits the measurement of diffusion anisotropy

by macroscopic orientation. Moreover, as a crystal of

trigonal symmetry, chabazite may be described by a diffu-

sion tensor of rotational symmetry around the z-axis, so that

only two diffusivities, Dk and D?, have to be measured.

Under the assumption that diffusion in chabazite is con-

trolled by molecular passage through the windows connect-

ing adjacent large cavities, the diffusivities parallel and

perpendicular to the axis of rotational symmetry obey the

relation [26]

Dk
D?
� 2h2

r2
� 0:8; (11)

where h and r denote the components of the separation

vector (arrow in Fig. 10) between the centres of adjacent

supercages in the direction of the symmetry axis and

perpendicular to it, respectively. For diffusion studies, the

chabazite crystallites have been applied in their nature-

given form as provided by a deposit in the Bohemian

mountains, i.e., the water contained in the crystals served

as a diffusant. The PFG NMR measurements of diffusion

anisotropy have been performed in two different ways, viz.

(i) by macroscopically orienting the crystallites and (ii) by

analysing the shape of the NMR signal attenuation in a

powder sample [26]. In both sets of measurements the

diffusion anisotropy was unanimously found to be

Dk=D? � 0:4, i.e. much more pronounced than predicted

by Eq. (11). Presently it cannot be decided whether this

difference is due to the fact that the structure of natural

chabazite crystallites may signi®cantly deviate from the

idealized homogeneous form as implied on deriving

Eq. (11) e.g. by the existence of internal defects ± or

whether the water molecules, being much smaller than

the window diameters, do not follow the basic assumption

for deriving the correlation rule. It cannot be excluded that

the water molecules leave the supercages preferentially

through a window being on the same z-level as the window

through which the cavity has been entered. In this case one

clearly expects the diffusivity D? to be enhanced in com-

parison with the correlation rule as given by Eq. (11).

4. Single-file diffusion in zeolites

If the zeolite pore system consists of an array of parallel

channels, like, e.g. AlPO4-5 or �ÿ1, for suf®ciently large

molecules their mutual passage is excluded. Molecular

transport under such conditions has been termed single-®le

diffusion [27±29]. After decades of mainly theoretical

consideration [30±33], with the advent of zeolites with a

one-dimensional pore system eventually also the experi-

mental observation of the consequence of this type of spatial

con®nement has become possible. In particular it could be

shown by extensive PFG NMR studies [34±37] that for

suf®ciently large single-®le systems the molecular mean

square displacements increase with the square root of the

observation time,

hz�t�2i � 2F
��
t
p
; (12)

rather than with the observation time itself, as it would be

the case for normal diffusion. The parameter F, which has

been introduced in analogy to the self-diffusivity in the

Einstein equation of normal diffusion, is termed the mobi-

lity factor of single-®le diffusion [28]. Eq. (12) may be

considered as a special version of the more general relation

[38]

hz�t�2i � hjs�t�ji� (13)

with hjs�t�ji denoting the mean displacement of a single

particle, if it were alone in the single-®le system, and with �
denoting the mean free distance between adjacent mole-

cules. A particle, alone in the system, is clearly subjected to
Fig. 10. Schematic representation of two adjacent large cavities of

chabazite.
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normal diffusion. Hence one would have

hjs�t�ji �
�������������
4Dt=�

p
(14)

and combination with Eq. (13) reproduces Eq. (12) with F

resulting as a function of the single-particle diffusivity D

and the free distance �:

F � �
����
D

�

r
: (15)

In turn, by inverting Eq. (15), one may thus determine the

diffusivity of a particle if it were alone in the single-®le

system. It is remarkable that these diffusivities were found

to be several orders of magnitude larger than the largest so

far observed diffusivities in zeolites [36]. This behaviour

may be rationalized intuitively by the fact that the straight

channel serves as a guide for molecular propagation ensur-

ing that the molecular momentum (and hence the originally

chosen direction of migration) is maintained much longer

than it would be the case in multi-dimensional pore net-

works.

The validity of Eq. (12) may be corrupted very soon by

the in¯uence of the crystallite boundaries [39]. In particular

it turns out that under the condition of fast particle exchange

at the ends of the single-®le system molecular displacement

is subjected to an additional transport mechanism which

follows the time dependence of ordinary diffusion

hz2�t�i � 2Deff t; (16)

where Deff is related to the diffusivity D of an isolated

particle in the ®le by the relation

Deff � D
1ÿ �
�N

; (17)

with N and � denoting, respectively, the site number and the

site occupancy.

From a practical point of view ± in particular in regard of

their relevance for catalysis [40±44] ± it is the rate of

exchange between the intracrystalline space and the sur-

roundings rather than the intracrystalline mobility, which

deserves particular interest on considering single-®le sys-

tems. Equating Eq. (16) (with Eq. (17)) and Eq. (12) (with

Eqs. (13) and (14)) one ®nds that the time dependence of

molecular displacement is very soon controlled by Eq. (15)

so that the assumption might be justi®ed that the overall

exchange behaviour is controlled by an effective diffusivity

given by Eq. (17). With the well-known relation

�intra � L2=12D (18)

for the time of tracer exchange by one-dimensional diffu-

sion between a system of length L and the environment, by

insertion of Eq. (17) one would thus obtain

�intra � L3

12Dl

�

1ÿ � ; (19)

where l denotes the site separation. In particular, the tracer

exchange time would thus be expected to scale with the third

power of the ®le length. This result is in contrast to previous

Monte±Carlo simulations [45], where for ®le lengths

between 25 and 75 the tracer exchange time was found

to scale with the power of 3.3±3.4 of the ®le length rather

than with 3. Recently in [46] it has been shown, however,

that with further increased ®le lengths eventually the

expected scaling exponent 3 is in fact attained.

5. Influence of different input parameters on the
evaluated diffusivity

To evaluate the desired quantities ± here diffusivities ±

correctly, one has to choose all input parameters (model,

structural data, intermolecular potentials) as appropriate as

possible [47,48]. In the following we will give an estimate of

the in¯uence of the uncertainty of some of these input data

on the evaluated diffusivities. Our conclusions are based

on a thorough inspection of a large series of molecular

dynamical (MD) simulations [11±17,22,23,47±54,62±64,

67±70]:

5.1. Intermolecular potential

One of the most important tasks is the determination of a

suitable intermolecular potential. Due to the lack of quan-

tum chemical considerations in such complex cases [55,56],

in general up to now one uses Lennard±Jones (12,6) poten-

tials

U � 4�
�

r

� �12

ÿ �

r

� �6
� �

; (20)

with � denoting the minimum value of the potential energy

and � de®ned by U(�)�0 for the short-range interaction

[51±54,57,58]. Quantum chemistry and the Car±Parinello

method are most likely to provide more insights in the near

future. A comparison with more recent experimental data

[59] is very valuable too. Preliminary quantum chemical

estimations [60] give values of � between set A and set B in

agreement with [59] justifying the phenomenological poten-

tials.

While only slightly changing the size of the �-parameter

(set A into set B) the evaluated diffusivities change drama-

tically (including not only the absolute values but also the

concentration dependence), the change of the �-parameter

has essentially no in¯uence.

It can be seen in Table 2 ± where the values of D for

simulations with and without interactions between methane

and silicon are compared ± that the in¯uence of the silicon

atoms on the diffusion is very small. Therefore most authors

do in fact neglect this interaction to save computer time.

5.2. Vibrating lattice model

Contrary to the initial results of Suffritti and Demontis ±

where for the ®xed and rigid lattices slightly different

structure parameter are used [53,54] ± the in¯uence of
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lattice vibrations on diffusion coef®cients in cation-free

zeolite LTA is not very large for both parameter sets under

consideration [15,62]. This is shown in Fig. 11 for different

� (left) and different temperatures (right) [12,63,64].

5.3. Influence of cations on D

The dynamics even of small neutral molecules with

saturated bindings is strongly in¯uenced by the presence

of exchangeable cations [67,69]. This is investigated for the

NaCaA zeolite with 4 Na� and 4 Ca2� ions. The unexpected

[65] strong effect can clearly be seen in Fig. 12 and has been

con®rmed experimentally, meanwhile [66]. The MD results

(set A) [69] are in satisfactory agreement with experimental

results from PFG-NMR measurements [61].

In comparison with the cation-free LTA, the self-diffu-

sivity in the cation containing zeolite decreases up to two

orders of magnitude (see Fig. 12). It should be noted that the

computational effort is much larger in this case than in the

simulations for the cation-free form since much longer

trajectories (up to 5±10 ns) are necessary to evaluate such

small diffusivities. Additionally, the calculation of the

forces resulting from the polarization energy is very

time-consuming although the full Ewald sum can be

replaced by a corrected r space part of this sum [62,67,69].

6. Conclusion

Methods of statistical physics and molecular dynamical

(MD) simulations have proved to be a helpful tool in

understanding diffusion phenomena under nanoporous con-

®nement. Among the information provided by these tech-

niques, the propagator and its ®ne-structure deserve

particular recognition. The con®rmation of these predictions

is a challenging task of further experimental studies.

7. Nomenclature

hAi ensemble or time average,

hA(t)B(0)i time correlation function

a, b, c extensions of the unit cell

D (self-) diffusion coefficient

Dx, Dy, Dz diffusivities in x-, y- and z-direction

Table 2

Influence of the silicon atoms on the diffusion coefficient D

(10ÿ10 m2 sÿ1) at different temperatures T (K) and for different values

of the number of methane molecules per large cavity I in ZK4

I T With Si Without Si

1 200 76 80

6 200 43 44

1 300 107 111

3 300 98 102

6 300 78 75

1 500 140 137

6 500 123 119

Fig. 11. Comparison of D with rigid and vibrating lattice in dependences

on � for two loadings (top) and in dependence on the temperature

(bottom).

Fig. 12. Comparison of the diffusivity of methane in NaCaA and cation-

free LTA as resulting from MD simulations with NMR experiments.
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Dk, D? diffusivities parallel and perpendicular to the

axis of rotational symmetry

F k; t� � intermediate scattering function

Gs(r, t) self-part of the van Hove auto-correlation

function G(r,t)

nz and ns number of steps along zig-zag and straight

channel elements, respectively

P(r,t|r0,0) (conditional) probability density that a mole-

cule, initially at position r0, will have got to

position r at time t

P(r,t) averaged propagator

p(r0) the probability density of finding a molecule

at position r0

r molecular displacements during the time

interval t

S(k, !) dynamic structure factor, (k ± wave vector, !
± frequency)

U(r) Lennard±Jones (12,6) potential

� minimum value of the potential

� defined by U(�)�0
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