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An approximation for the self-part of the van Hove function is derived. The self-part of the van Hove function
is calculated by MD simulation for the diffusion of methane in ZK4 and silicalite and compared with the
approximation. Fourier transform in space of the van Hove function yields the intermediate scattering function,
the decay of which is used to determine the self-diffusion coefficient. Fourier transform in time yields the
dynamic structure factor which can be compared with quasi-elastic neutron scattering results.

Introduction inverse Fourier transform with respect to both space and time
of the dynamic structure fact&Kk, w), as a generalization of

Because of the great importance of zeolites as cracking y,q gtatic case in which the differential cross-section is expressed
catalysts, there is much interest in understanding the processes;, (arms of the pair correlation functiénConversely
of molecular motion of hydrocarbons in their pores and '

channels.? For more than two decades, computer simulations 1 e . 3

have been used to get insight into the diffusive behavior in Sk, @) =§f,wf G(r, t) exp[ —i(kr — wt)}drdt (1)
zeolites (see refs 3 and 4 for a review). Diffusion coefficients

can be obtained from molecular dynamics simulations in several The intermediate scattering functiéik, t) is

ways!® The most common methods are based on the determi-
nation of the mean square displacement (MSD) and the velocity
autocorrelation function, the two being mathematically equiva-
lent. Alternatively, one can explicitly determine the propagator
of the motion which is closely related to the density autocor-
relation function known as the van Hove function. This is done
in the present paper for the diffusion of methane in zeolites
Two different crystals are investigated: the aluminium-free 1NN
member of the A-type family denoted by ZK4, and the _ , , 3,
aluminium-free form of ZSM-5, known as silicalite. Moreover, Gr.t) = NDZ Z f Or +1,(0) = r'Jo[r" — r(®] dr'D(3)
the van Hove function can be Fourier transformed to give the =
dynamic structure factor which can be compared with experi-
mental results from quasielastic neutron scattering. This is also
part of the present work.

The paper is organized as follows: After a short outline of
the theoretical basis, we derive an approximation formula for 1 3
the self-part of the van Hove function. The presentation of results Gr.H =y J (", 0)p(r + 1, (4)
from MD simulations starts with the van Hove function,

tering function is shown, and its long-wave limit is used to gytocorrelation function of the number density. If quantum
calculate self-diffusion coefficients. The dynamic structure factor effects can be neglected, all operatorscommute in eq 3,

is also shown. Finally, the radially dynamic structure factor is yje|ding
calculated and compared with the quasielastic neutron scattering
results.

F(k,t) = [ G(r, t) exp{ —ikr}d®r 2)

Together with Born’s scattering formula f&k, w), the van
Hove function for a system df molecules (whether in a zeolite
_or not doesn’t matter at this stage) reads

wherer|(t) is the center-of-mass position of molecilat time
t. One easily recognizes the number densifr, t) =
sz:l o(r — rj(t)). Settingr” =r' — r, we can rewrite eq 3 as

1 N N
G(r, t) =— o[r +r,(0) — r;(t)10 5
Theory (r,9) NEJZ; [r + 1 (0) — r;(®)] (5)

Definition of G, F, and S and Separation into Self- and  This is seen to be the probability density of finding some particle
Distinct-Parts. The van Hove functioi®(r, t) is defined as the  at timet at distance’ from the position of a particle at time 0.
For particles that can be regarded as distinguishable, it is natural
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1 N
G(r,9) =Ty Ol +1,0) ~ 0]

=

@)

1 N N
Gy(r,t) = NEZ Z Ofr +1,(0) — ry(t)]0 (8)
& £

whereGs and Gy are called theself- and distinctpart because
Gs correlates positions of the same partigle=(1) at different
times while G4 correlates positions of different particles
(G =1).Gs(r, t) gives the probability that within timea particle
moves byr, while Gy(r, t) gives the probability of finding any
different particle at distanaefrom the former position of some
particle. Hence, for a homogeneous system (fluid), the self-
part turns out to be just the propagator of the probability.

By eq 2, Fourier transform with respect to the space of the
van Hove correlation function yields the intermediate scattering
function, whereas by eq 1, transform with respect to both time
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Figure 1. A simple model for the zeolite ZK4.

mum Q = D&? at w = 0 for iyd. The exponential decay for
long times of the Fourier components with long wavelengths,
eq 13, allows for determination of the self-diffusivity:

D

= é In Fk 1) (16)

Using eq 10, we have presumed isotropy for convenience, but
all considerations in this text can be extended to the anisotropic

and space yields the dynamic structure factor. Because of thec@S€ as well.

linearity of the Fourier transform, the same relationship holds

Diffusion of Guest Molecules in a Crystal.As the crystal

for self- and distinct-parts, separately. Here we restrict ourselvesiS N0t homogeneous on a microscopic length scale, any

to the self-part.
G, Fs, and Ss in the Hydrodynamic Limit. In statics, for

correlation in space will depend dioth positions, not only on
their difference. Hence, we must restore the homogenizing

distances of only some molecule diameters, a liquid can alreadyintégral in eq 4. Without loss of generality we restrict ourselves
be treated as a continuum. As for dynamics, the time scale needd® one-dimensional diffusion along theaxis. Denoting by

to be taken into account, td@Guppose that for the system under
consideration the diffusion equation holds, at least on the

P(xa, t; Xo) the probability density that some arbitrarily chosen
particle is at poini; at timet andwas at pointg initially, we

hydrodynamic scale, i. e., there exist some characteristic lengthhave from eq 7

| and timet such that fol < x andz <t

001, 1) _

I D.V?5(r, 1) (9)
In Fourier space this reads
k(1) _
= KA (10)
which is easily integrated to give
Bi(t) = B(0) exy{ —DK’t} (11)

Gyx t) = anP(xo + X, 1; Xg) dXg

= [P0 + X, tix)P(xo) i,

wherea is the lattice constanp(xi, t|xo) is the density of the
conditional probability of finding the particle at positioa at
timet if it was atxp at the beginning, anB(x) is the (stationary)
probability density of finding a given particle near poixt
Because it is periodic in space, the normalization is chosen to
be /5 P(X)dx = 1. The second line is simply a well-known
identity from the theory of probabilities.

On a length scale coarse compared wathhowever, the

17)

The bar indicates a hydrodynamic observable obtained from its crystal can be regarded again as a continuum. Thus, applying

microscopic equivalent by coarse-graining. The normalized
autocorrelation function is

1 _

NP (0)0= exp{ ~DKt} (12)
Following Onsagérwe can, in the hydrodynamic limit, identify
this correlation with the corresponding microscopic correlation

function, given by eq 2. Moreover, for a dilute species, one
obtaing in the limit kl < 1 andz/t < 1

FMY(k, t) = exp{ —DJt} (13)

1
G, t) = WTJ)W exp{ —r/4Dt} (14)
i oy = 10K (15)

TPt (DJA)?

In other words, we have exponential decay for long times of

eq 14 to the one-dimensional case,

1

exp[_ £
JArDg 4D

On a finer length scale the self-part of the van Hove function
for the diffusion in a crystal is approximately equal to this
hydrodynamic limitG{x, t), modulated by a functior(x)
with lattice periodicity:

Gyx, § —~ G, 9 = (18)

G(x, ) ~ GMx, (%) (19)

An Approximation Formula for [(x). Under special condi-
tions, the motion of a guest molecule in a porous crystal can be
separated into partial motions, each having a time scale of its
own. Methane molecules in an A-type zeolite, for example,
preferably reside in large cavities of radiRsind seldom switch
from one cavity to the other. This situation is sketched for one
direction in Figure 1.

Equation 17 is exact, but as the transition probability

the Fourier components with long wavelengths, a Gaussian curvep(x;, t|xo) is unknown, one would like to approximate it by

for Ggyd, and a Lorentzian curve of half width at half maxi-

guantities which are available. According to eq 17, only
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transitions with both starting and final points lying within a
permitted region contribute t&s. Hence,x, and x; can be
assumed to be within cell&, andZ;.

Now we introduce the following notationga(x;, §|Zi, t) is
the probability density of finding the particle at positignat
time t; provided that it was in cellZ; at time t, with
normalization/”,, p(x;, §|Zi, t)dx = 1. For the probability of
finding it in cell Z; at timet; given that it was irZ; at timet;,
we write p(Z;, §|Zi, t). The probability of finding the particle
in cell Z; at timet; if it was at pointx at timet; is p(Z;, %, ;).
Note thatZ is a discrete quantity, whereasis continuous.
Hence,p(X, §|Zi, t) and P(x) are probabilitydensities while
p(Z;, 41z, t) andp(Z;, §|x;, t) are probabilities. Furthermore,
as we are dealing with a stationary system, all transition
probabilities depend on the tintfferencesonly.

By the Markovian character of the motion we have

Py, txg, 0) = p(x;, t1Zy, 1) P(Zy, t1Zy, 0) p(Zy, 01X, 0)
(20)

Because being at positioq implies being withinZ; at the
same time, by definition,
for all t, i. e., the last factor in eq 20 is simply 1. Now the
probability densityp(x;, t|Z;, t) for finding the particle ak; at
timet, given that it is in the right cell, is equal to the equilibrium
spatial probability density?(x), independent of time,
This is because the time intervening between intercell jumps is

very long compared to the time required for the particle to move
through a cell. By virtue of this time scale separation, for the

times of interest here, we can assume that the particle thermal-

izes (assumes its equilibrium distribution) in a cell instanta-
neously, as soon as it enters the cell.

Evidently the hopping rate for an intercell jump depends only
upon the number of cells in betwe# andZ;, n. Fora > 4R,
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Figure 2. Self-partGg(x, t) of the van Hove correlation function for
the diffusion of methane in ZK4 at,.c = 3 andT = 300 K.

The result eq 25 can be interpreted as follows: The van Hove
function for the diffusion in a periodic structure is the Gaussian
describing diffusion in a homogeneous medium of the same
diffusivity, but modulated by some structure function. This
function can be approximated by the space autocorrelation
function of the probability density of the diffusants.

The Radial van Hove Function.SinceGg(r, t) is the density
of the probability that a particle moves withinby r (in a
particular direction), the solid angle integral

ofr, 0= [T, [7 G0 Psinvdpdd (27)
yields the probability density that it moves by the distance
regardless of the direction. In case of isotro@yr, t) = G4(r,

t), resulting ingg(r, t) = 4ar? G4r, t). Consequently it makes
sense talefinethe radial van Hove function in the anisotropic
case by

igs(r, t)

47r? (28)

G(r, 1) +

No matter whetheGg(r, t) denotes this orientational average
of G4r, t) or is identical toGg(r, t) due to isotropy, the

the number of intercells is a unique step function of.the distance intermediate scattering function and the dynamic structure factor

[x1 — Xo|, otherwise it varies by 1 depending an However,

defined usings(r, t) in eq 2 and 1 are isotropic and are denoted

for large distances this becomes unimportant, and so does thé?Y Fs(k, ) and S(k, ). In the hydrodynamic limitG(r, t),

difference between the exact distance of the cells,and|x;
— Xo|. We therefore let

P(Zy, t1Zy, 0) ~ G (%, — X, 1) (23)
where again the factora follows from normalization,
2, GPx, 9dx = 1 and 1= 3, p(Z;, 1Zo) ~ [, a p(Z;,
t|Zo)dXJ

Approximation (23) along with eqs 22 and 21 yields

PO, tixo) ~ aP(x) Gy — %o, ) (24)
Inserting this into eq 17 and factorir@?yd(x, t) out of the
integral, one obtains

G(x, t) ~ GM(x, 1 (x) (25)

wherel(x) is the space autocorrelation function of the probability
P(x),

1(¥) = a [ P(x + X)P(xp) dx (26)

F4k, 1), andS(k, ) are given by eq 14, 13, and 15, respectively.
The radial van Hove function makes a comparison with results
from neutron scattering experiments possible.

Results from MD Simulation

Van Hove Function (self-part) for ZK4. We start with ZK4
at room temperatureT(= 300 K) and an average loading of
three CH molecules per unit celhoec = 3. The self-part of the
van Hove correlation functiorGg(x, 1), is shown in Figure 2.
Sections are drawn every 273 ps starting & 0 and ending
with t = 4095 ps. The singulad-peak att = 0 has been cut.
One recognizes the shape of this function of two variables,
mentioned above: an at least approximately Gaussian curve
broadening and fading away as time goes on, modulated with
the lattice periodicity. Notice that the area in tixgplane where
the function is noticeably larger than zero has a parabolic border
as is to be expected, becausé&~ t.

As loading increases the diffusivity is reduced, resulting in a
narrower bell-shaped curve. The effect is hardly observable at
low loadings but it becomes quickly important aboyg. = 6,
and atn,.c = 15 the molecules are almost fixed. This is in
agreement with results from MSE°
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Figure 3. The section througlss(x, f) att = 4095 ps fome,. = 3 at
173 K lies between the curves fog.c = 6 andne.. = 9 at 300 K, but
its structuring is more pronounced.
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Figure 4. The correlation functiot(x) of the probability densityP(x)
for noec = 3 atT = 173 K andT = 300 K. At lower temperature the )
molecules are located at their favorite sites, so the fine structuring is 0 _1'50 100 50 o
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Reducing the temperature has a similar effect. As can be seerfigure 5. Comparison ofGy(x, 1) with the approximatiorG*{x, 9-

from Figure 3, the curve fonoec= 3, T= 173 K lies between () att = 4095 ps. TopiNeee = 3, T = 300 K. Middle: noce =9, T =

_ _ _ - . 300 K. Bottom:ne.c = 3, T = 173 K. The approximation is shown on
those_fornPcc— 6 aer.”OCC— 9 atT = 300 K. This implies that the left, the exact van Hove function on the right-hand side, and the
the diffusion coefficient at 173 K and three molecules per GaussiarG™{(x, §) on both sides of the plots.

unit cell must have some value between the corresporiding
at 300 K, which is also in accordance with MSD results. of the cells to get perfect agreement between the e@aand
Looking more carefully, one finds that the “shoulders” of the the approximation.
right curve are more pronounced. This is reasonable as a lower Van Hove Function (Self-Part) for Silicalite. In the three
temperature not only impedes a particle’s progress (diffusion) graphs of Figure 6 the self-part of the van Hove function in
but also reduces its local thermal motion which smears the fine silicalite is shown along the-, y-, andz-directions. Parameters
structure. (T =300 K, noecc = 3) and representation (one intersection every
The Approximation by Gzyd(x, )1 (xX). We now wish to test 273 ps) are the same as in the equivalent picture for ZK4, Figure
the approximation formula eq 25 derived above. As already 2. In comparison, fluctuations have increased. The parabolic
mentioned, the approximation should be good except for propagation in timedistance coordinates can be seen here as
very short times and distances. The space autocorrelationwell. Obviously, the curve for thg-direction fades away a bit
function, I(x), of the probability density(x) is shown in Fig- faster, and the curve for thedirection much more slowly than
ure 4 for an interval of three elementary cells. Clearly the curve the one for thex-direction. Thetz parabola is so narrow, that
is less smooth at lower temperature. Its shape follows im- wide strips occur on either side where the function is zero (and
mediately from that ofP(x), which again can be understood therefore is not drawn). All of these facts are in accord with
easily by looking at the three-dimensional dengijs maxima both intuition (highest mobility along the straigitchannels,
of P(x) stand for specific sites prefered by the methane still high mobility along the zig-zag channels in thelirection,
molecules, maxima off(x) represent transitions between such substantially lower mobility in the-direction where the particle
sites. has to make detours) and results from mean-square displace-
In Figure 5 the approximation is compared with the function ment. The dependency @& on no.c andT is the same as for
G4(x, 1) from the simulation. The agreement is excellent. At low ZK4, qualitatively, except that silicalite can adsorb much more
loading and higher temperature, both curves are practically methane molecules per unit cell.
congruent (top). For mean loadings, some discrepancies appear, It is interesting to examine how the approximation eq 25
particularly at small distances (middle). The comparison is of which was inspired by the ZK4 structure can be justified for
greatest interest at low temperature (bottom) because the finesilicalite. The space correlation functioh(s), I(y), andl(2) of
structure is most pronounced there. The only major difference the one-dimensional probability densities for the y-, and
is that forGg(x, t) the “shoulders” seen in the fine structure are zdirections are depicted in Figure 7. For the sake of brevity,
symmetric with respect to the maximum in between, while in these functions are shown over a domain equal in length to the
the approximation the one closer to the overall maximum of respective lattice constant. One must not get deceived by the
the Gauss curve is naturally larger. This is caused by the approx-periodicity: The one-dimensional densities are periodic within
imation in eq 23: Strictly speaking, as long as the final half-lattice constants, for symmetry reasons (screw axes), and
destination is within one and the same cell, the transition their space correlation functions inherit this property. As in the
probability depends on the local density, not on the distance. case of ZK4, the shape of the space correlations can be
Consequently, the Gaussian would have to be replaced by ainterpreted quite well by considering the three-dimensional
step function with stairs symmetric with respect to the centers density, particularly the sites of maximum dengify:12
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Figure 7. The correlation function§Xx), I(y), andl(2) for silicalite at
necc = 3 andT = 300 K. Note the periodicity with characteristic length
equal to one half of the lattice constants.

On the basis of the simulation data, the detailed shape of thegigyre 9. Self-partFy(k, 1) of the scattering function for methane in
van Hove correlation function cannot be resolved. So we choosezk4 at n... = 3 andT = 300 K.
a different way of representation for the comparison with the
approximation. Unlike for ZK4 (cf. Figure 5), the original of the spectral components decay quickly, the shorter the
function and its approximation are plotted on top of each other wavelength the faster the decay. Few lines remain, for instance
in Figure 8. The points foGs lie on the approximating curve  the line at zero, and so arises a discrete spectrum.
for the most part. In theg-direction, discrepancies occur only The major lines can be interpreted very easily. To this end
for very smally. In thex- andz-directions, differences are also  we look at the spectrum at a lower temperature, where the fine
obtained for larger distances (around 100 or 504, respectively), structure is sharper, Figure 10. By far the strongest line is the
but the approximation improves as distance grows. This one atk = 0: the Fourier transform of the Gaussian hydrody-
confirms that formula 25 is not restricted to ZK4 but holds more namic limit. Next follows the line around 0.5, which is
generally for systems where a rapid motion of particles within just 27 times the reciprocal lattice constant of ZK# £ 12.3
restricted regions adds to a slow motion between such regions.A). Consequently, this line represents the periodic modulation.

The Intermediate Scattering Function for ZK4. Figure 9 Also the line near 2.55 A can be interpreted. It originates in
shows the self-parfEg(k, t) of the scattering function obtained the side maxima (or shoulders)Bf(x, t) because of the detailed
by Fourier transform of the functio®«(x, t) shown in Figure distribution of the molecules to specific sites. That's why it
2. At the beginning we have a white spectrum, iFg(k, 0) = almost vanishes at 300 K where the shoulders are very weak,
const,which is the transform of the initial-peakGg(x, 0). Most cf. Figures 4 and 5, indicating a rather smooth distribution within
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TABLE 1: Range of Values ofx, t, k, and @ for which G, 12l y
Fs, and S; were determined k= 2Ak k =2Ak
AQ Qrax 05 Y R .
quantityQ ZK4 silicalite ZK4 silicalite 0 1000 2000 3000 4°0t0in gs 1000 2000 3000 4000
xin A 0.615 0.996 315 510
i 2 A-1
It(||r?plg A 1.998 1.0 1.232 511 4095315 Figgre 11. Decay _of th_e first three compopentslﬁ(k, t) for different_
in pst 7.67x 10-% 3.142 g(glsn ZK4 in logarithmic scale. Note the different scales of the vertical
2 For noee = 15, Xmax is half, Ak twice this value®? For z-direction,
Zmaxis half, Ak, twice this value Using symmetryF(k, —t) = F(K, ). b In F(k, 0) — In F(k, t) 31)

S
the cells. As @x, t) is a periodic function (except for the slow Kt

Gaussian damping), its spectrum should contain components . . .
only at multiples of Z/a (except for small wave numbers). This The values foDs obtaln_ed th'.s way from the expc_mentlal decay
is confirmed. of F¢K, f) are summarized in Table 2 along with those from

From eq 13, the long-wave componentd=gk, t), i.e., those NLSD,[ ?m b:ﬁcketls). The a?regtrnedn;fls QOOdd As. tpe m?tlon ?r\]/?r
with small k, are expected to decay in time exponentially, short 'ength scales 1s not quite difiusive, deviations from this

linearity occur at largek.

The Intermediate Scattering Function for Silicalite. Be-
cause the development in time of the intermediate scattering
function is the same for silicalite as for ZK4, we just glance at
First, the region of validity of this approximation has to be the sections throughs for t = 4095 ps, Figure 12. What has
determined. The part of the hydrodynamic limit in eq 13 been said about periodicity remains valid, except that we are

F(k, 1) ~ exp{ —D Kt} (29)

regarding space has to be relateciiand mean& < 2za* ~ dealing now with half-lattice constants in silicalite, @2, b/2,
0.8 A-1. For a lower bound of time we use the so-called Einstein andc/2. This is a consequence of the symmetry of the crystal,
relation more precisely of its screw axisAgain the zerd line is the
largest contribution to the spectra. Next come the linds=at
Or (t) — r(to)|2D: 6D(t — t,) (30) 4r/a, 4rlb, or 4x/c, respectively, representing the modulation

by the lattice. For the-direction, there is no other component
of significance, the curvé(z) in Figure 7 has indeed almost
72 ps. As our data start only at 100 ps, we are not further cosinusoidal Shape_-_ In contrast, the side maxima(xjfand
restricted in time, at least for loadings uprg. = 9. I(y) lead to an a.1dd|.t|onal line &t =8r/a ahd 8r/b.
Experimental or simulation data are always discrete and ASWas done in Figure 11 for ZK4, the first three components
bounded. Because of the reciprocal character of the Fourier®f the spectrum for silicalite are depicted in Figure 13 for the
transform, this limits the resolution &fandw. The minimum x-, y-, and z-directions and fomecc = 3 (top) andnoee = 12

to find t = a%/2Ds. For Ds &~ 108 m?s this finally yieldst >

and maximum lengths and times registerad, xmax and At, (bottom). Again, deviations occur in the third component at low
tmax respectively, and the corresponding maximum and mini- loading. The values for.the s'elf-d|ffu5|V|ty dgtermlned from the
mum wave numbers and frequenci&sa, Ak and wmas Aw, decay with eq 31 are listed in Table 3. Satisfactory agreement
are listed in Table 1, both for ZK4 and silicalite. with those obtained from MSD (in brackets) is observed.

The first three components available of the intermediate  The Dynamic Structure Factor for ZK4. The self-part of
scattering function, i.eF4(k, t) at k= 0, k = Ak, andk = 2Ak, the dynamic structure factor in ZK4 is shown in Figure 14 for

are depicted in logarithmic scale in Figure 11. All curves start Nocc = 3 andT = 300 K. Only a small part of the possible area
at the same initial value. The zero components are constant inis depicted, becaus&(k, ) is negligible outside. Recall that
time. The second linek(= AK) is a falling straight line for all this function is the Fourier transform with respect to time of
loadings while the third one deviates soon for low loadings.( the intermediate scattering function in Figure 9. Hence, we find
= 9 and even morey = 3). Furthermore, the third line has the line spectrum for long times from Figure 10aat= 0. All

four times the slope of the second. This is true even in the uppercomponents vanish for higher frequencies, those having wave
pictures as long as the third line is straight. Thus the slope growsnhumbers smaller than ca. 0.1 Afirst.

quadratically withk, as predicted by eq 29. Resolving for the According to eq 155(k, w), as a function ofw at fixed k,
diffusion coefficient yields becomes a Lorentz curve of half width at half maximum
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TABLE 2: Dsin ZK4 from the Decay of the _ TABLE 3: D DY, and DZin Silicalite from the Decay of the
Long-Wavelength Components of the Scattering Function Long-wavelength Components of the Scattering Function
and from MSD, in Parenthese$ and from MSD, in Parentheses
Ds (in 10°° m?/s) Noe Kk DliN10°ms DYin10°m?s DZin 10°°m?s
Moce from Ak 2AK 3Ak MSD 3 Ak 851(7.89)  15.60(16.35  1.78(L.70)
3 8.17 (9.46) 6 Ak 5.94 (6.09) 8.53 (8.65) 1.38(1.37)
6 7.14 (7.19) 2Ak 5.42 7.85 1.48
9 3.87 4.75 (3.56) 9 Ak 4.72 (4.69) 6.42 (5.65) 0.92 (0.99)
12 1.39 1.30 1.20 (1.42) 2Ak  4.47 6.36 0.91
15 012 011 0.10 (0.12) 12 Ak 3.26 (3.08) 4.74 (4.52) 0.66 (0.68)
a 2Ak 3.17 4.86 0.66
For Ak see Table 1. 15 Ak 1.63 (1.66) 4.03 (4.17) 0.43 (0.49)
e e 2Ak  1.63 3.98 0.42
1f ] 1F ]
0 (1) Fi(ka,t) | og ) Fy(ky,t) | aFor Ak andtmax See Table 1.
06 | {06} ]
e @ % @ ® @ ] L Salk.)
0 - A D —— O S — 2000
0 05 1 15 5 3 0 65 1 15 5 3
ko o A-F kym AT o0
0; | Fi(ks,t) | (1) : Gauss curve oll
06 (1) A (2) : modulation with
0.4 ] af2,b/2, c/2 o
0.2 L (2) 1 (3) : side maxima
0 R (4) : small correction
0 05 1 L 15 2_25 3 _
z M w 1n ps 5 ___»-6—5’/ 1 1.2: in A_..]

Figure 12. Intersections throughks att = 4095 ps for silicalite, the
spectra of the curves shown in Figure 8. The most important lines can __ .
be interpreted very easily, noticing that the modulation is with half the Figure 14. Self-part S(k, w) of the dynamic structure factor for

lattice periods. methane in ZK4 atyec = 3 andT = 300 K.
z-direction y-direction z-direction 8000 |
10 10 10 !
1 1
\ L S a———— 6000 H Ss(k’w) B
01} 01} 4 - ; . .
n=23 n=3 n=3 :} ideal Lorentzian ..
0.01 0.01 0.1 !
0 4085 0 4085 0 4095 4000 |} .
10 10 10 |
1 e — 1 1 __ 2000 | | )
n=12 n=12 n=12 AN k= Ak
0.1 0.1 - 0.1 0 [t
0 405 0  ¢ipps 4095 0 4095 \b\}\_‘“w ] k = 2Ak
Figure 13. The first three components &§(k, t) with k=0, k = Ak, e k = 3Ak
andk = 2Ak for the three principal directions in silicalite B§cc = 3 e S
and 12 in logarithmic representation. 0 0.004 0.008 0.012
: -1
w n ps
Q =DJ (32)

Figure 15. The Lorentz curve predicted f&(k, w) (at fixedk) in the
in the hydrodynamic limit. In our attempt to prove this rule for hydrodynamic limit (broken line) and the result from MD (points) for
the diffusion of methane in ZK4 or silicalite we are limited by k= Ak, 2Ak, and 3\k in ZKa4.
the resolution. For the shape of the curve to be visible, the

smallest frequency interval resolved must be below the half region where eq 15 is valid. In Figure 15, the points of the first
width, i.e., three lines withk > 0 are depicted along with the ideal

Lorentzian curves foDs = 9.5 x 10°° m%s from MSD.
Aw < Dskz (33) Agreement is excellent, particularly for the second curve which
seems to offer the best compromise between the upper bound
Now, in ZK4, Ds is merely about 18 m?/s even at low (the hydrodynamic limit) and the lower bound (resolution).
loadings, which together withw from Table 1, mean& > The Dynamic Structure Factor for Silicalite. The three
2.8 x 102 A-1 But from the decay of the intermediate pictures in Figure 16 show the self-parts of the dynamic structure
scattering function we have seen that the long-wave regime factors for thex-, y-, and z-direction, S(k, w), S(ky, w), and
reaches only out to a fewk, not even to 0.1 AL, So the exact S(kz, w). As for ZK4, we have the same line spectrum at small
shape of the curve becomes visible only near the border of thefrequencies as results in the limit of long times fa(k, 1),
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Figure 16. Self-partS; of the structure factor ix-, y-, andz-directions
for methane in silicalite at,.c = 3 andT = 300 K. For the resolution
in k, see Table 1.

| | |
I Se(kz,w) o ||} Selky,w) s |1l Se(kz,w) <
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\ ks =240k ‘ "ky = 2Ak y .
e ks =30k |t ky, =30k || ‘e k. =44k

0 0.002
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0.004

Figure 17. The Lorentz curves predicted f& (at fixed k) in the
hydrodynamic limit (broken lines) and the results from MD (points)
for Ak, 2Ak, and 3k (x- andy-direction) or 2k, 4Ak (z-direction).
Silicalite, Ak = 1.23 x 102 A1,

Fs(ky, 1), andFy(k;, t), cf. Figure 12. For higher frequencies the
components vanish quickly.

In Figure 17, the computed small S is compared to the
Lorentzian predicted by eq 15 in the hydrodynamic limit.
Because of the slow propagation in thdirection the resolution
we could use in this direction is only half as fine. Therefore, in
Figure 17 the components witt AR and 4Ak are shown for
S(k;, w) instead of those withAk, 2Ak, and k. For

Gaub et al.
0'05 ey -
gs(r,t)  silicalite —
0.04 isotropic -

0.03

0.02

0.01

3000
t in ps

Figure 18. g4r, t) according to eq 27 for methane in silicalitergtc
= 3, T =300 K, compared with the isotropic case (broken lines).
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Figure 19. Self-part of the radial dynamic structure fac&k, o) in
silicalite atneec = 3 andT = 300 K.

constructing the Lorentz curves the, self-diffusion coefficients
from MSD were usedD; = 8 x 107° m?s, D} = 14 x 107°
m?/s, andD? = 1.7 x 10-° m%s. The agreement is not as good
as in the case of ZK4, but still acceptable.

The Radial van Hove Function for Silicalite. Obviously,
the self-part of the radial van Hove functidBg(r, t), starts with
G(r, 0) = d(r) and then decays in the same way&#, t), the
maximum always remaining at = 0. The maximum of
gs(r, t), in contrast, moves towards larger radii because of the
weighting with 4zr2. In the hydrodynamic limit, the dependence
of the distances at which these maxima occur on time is
described by the parabotd = 4D4. Figure 18 shows(r, t)
for methane in silicalite along with the solid angle integral of
the ideal Gaussian from eq 14, calculated vidth= 8.6 x 10~°
m?/s from the mean square displacement. No major differences
are observed.

As the radial van Hove functio®G«(r, t), unlike G(r, t),
averages. over different directions, it does not reveal the
periodicity and symmetry of the crystal and it soon loses any
fine structure. This implies that no line spectrum is to be
expected for the radial intermediate scattering funckg(, t)
for long times. The same is true for the dynamic structure factor
at low frequencies. This is confirmed in Figure 19: The curve
S(k, 0) (right border) decays smoothly. As the rangekds
from k = 5Ak to 30Ak (which means 0.061 to 0.3707A), the
hydrodynamic limit is valid in the backmost part of the graph
and the shape @&k, w) ought to be Lorentzian with half width
at half maximum@ = Dg?. One can see that the width grows
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0.05 s ‘ . . k2~ 0.17 A2, This doesn’t contradict the experimental results
; MD . because the neutron scattering gives only four to five points
0.04 - formula. MD . ] per temperature and loading, too few to determine the shape of
; , : . .
formula, exp. ... the curve. It does contradict eq 34, however. It is possible that
003 r 1 the limits of validity of the jump model on which this equation
B is based have been reached. One might question the reliability
Y 0.02 | i oo ® g ] of the extrapolation used in the comparison presented here,
2‘ which is far from being unique. Further simulations and
= 0.01 ] experiments under identical conditions could rule out that source
G of error. It should be noted, however, that a value ef 48 ps
0 0 o 02 03 04 05 06 would not be consistent with a monotonic variation of jump

k2 in A-2 time on temperature.

Figure 20. The half width at half maximun® of S(k, w) as function Summary
of k? together with the curve fitted according to eq 34. The corre-

sponding curve based on extrapolated experimental data, cf. ref 14. From MD simulation data, we have calculated the self-parts

of the van Hove function, the intermediate scattering function,

TABLE 4: Experimental Results from Ref 14 and Their and the dynamic structure factor for the diffusion of methane
Extrapolation to Our Conditions?® in ZK4 and silicalite. Values for the self-diffusivities obtained
T=200K T=250K T=300K from the decay of the intermediate scattering function at long
Dox 10° Dex 10° Dox 10° wavelengths are in gc_)od agreement with tho;e from _MSD
Noce 7(pS) (MZS)  reee 7(pS) (MAs) w(ps) (mZs) known from previous simulations and the experimental litera-
ture. A new approximation is developed for systems where
2 65 2.8 15 36 5.0 . . . .
4 50 25 28 30 59 motion occurs by infrequent passages between confined regions
3 57 2.7 3 29 6.0 20 9.3 in which rapid motion takes place. The approximation is based

on the separation of time scales, and it is proved to be reasonable
for the self-part of the van Hove function in both ZK-4 and
silicalite. For silicalite, the radial dynamic structure factor has
also been determined. While for smilthe dependence of the
line width of the dynamic structure factor upon the wave number
k is the same as obtained from quasielastic neutron scattering,
there is a significant difference for larde the reason being

still unknown.

@ The values extracted from our simulation analyis at 3 molecules
per unit cell and 300 K are = 48 ps andDs = 8.6 x 10™° m?s.

in fact up to the middle region ok studied but stagnates
thereafter. The shape of the curve remains Lorentzian, even for
the frontmost curves which are far from the hydrodynamic limit.
According to ref 13 a jump model, where the width of a jump
follows a normal distribution and the rate of jumps follows a

Poisson distribution with meanr%, leads to a Lorentzian Acknowledgment. Stimulating discussions with Dr. Herve
dynamic structure factor of half width at half maximum Jobic are gratefully acknowledged. This work was supported
1 by the DFG, Sonderforschungsbereich 294.
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