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An approximation for the self-part of the van Hove function is derived. The self-part of the van Hove function
is calculated by MD simulation for the diffusion of methane in ZK4 and silicalite and compared with the
approximation. Fourier transform in space of the van Hove function yields the intermediate scattering function,
the decay of which is used to determine the self-diffusion coefficient. Fourier transform in time yields the
dynamic structure factor which can be compared with quasi-elastic neutron scattering results.

Introduction

Because of the great importance of zeolites as cracking
catalysts, there is much interest in understanding the processes
of molecular motion of hydrocarbons in their pores and
channels.1,2 For more than two decades, computer simulations
have been used to get insight into the diffusive behavior in
zeolites (see refs 3 and 4 for a review). Diffusion coefficients
can be obtained from molecular dynamics simulations in several
ways.1,5 The most common methods are based on the determi-
nation of the mean square displacement (MSD) and the velocity
autocorrelation function, the two being mathematically equiva-
lent. Alternatively, one can explicitly determine the propagator
of the motion which is closely related to the density autocor-
relation function known as the van Hove function. This is done
in the present paper for the diffusion of methane in zeolites.
Two different crystals are investigated: the aluminium-free
member of the A-type family denoted by ZK4, and the
aluminium-free form of ZSM-5, known as silicalite. Moreover,
the van Hove function can be Fourier transformed to give the
dynamic structure factor which can be compared with experi-
mental results from quasielastic neutron scattering. This is also
part of the present work.

The paper is organized as follows: After a short outline of
the theoretical basis, we derive an approximation formula for
the self-part of the van Hove function. The presentation of results
from MD simulations starts with the van Hove function,
including a test of our approximation. The intermediate scat-
tering function is shown, and its long-wave limit is used to
calculate self-diffusion coefficients. The dynamic structure factor
is also shown. Finally, the radially dynamic structure factor is
calculated and compared with the quasielastic neutron scattering
results.

Theory

Definition of G, F, and S and Separation into Self- and
Distinct-Parts. The van Hove functionG(r , t) is defined as the

inverse Fourier transform with respect to both space and time
of the dynamic structure factorS(k, ω), as a generalization of
the static case in which the differential cross-section is expressed
in terms of the pair correlation function.6 Conversely,

The intermediate scattering functionF(k, t) is

Together with Born’s scattering formula forS(k, ω), the van
Hove function for a system ofN molecules (whether in a zeolite
or not doesn’t matter at this stage) reads6

wherer j(t) is the center-of-mass position of moleculej at time
t. One easily recognizes the number densityF(r , t) )
∑j)1

N δ(r - r j(t)). Settingr ′′ ) r ′ - r , we can rewrite eq 3 as

So,G(r , t) can be interpreted as the homogenized, normalized
autocorrelation function of the number density. If quantum
effects can be neglected, all operatorsrl commute in eq 3,
yielding

This is seen to be the probability density of finding some particle
at timet at distancer from the position of a particle at time 0.
For particles that can be regarded as distinguishable, it is natural
to split the function as follows:* To whom correspondence should be addressed: Reinhold.Haberlandt@

physik.uni-leipzig.de.
† Universitat Leipzig.
‡ University of Patras.

S(k, ω) ) 1
2π ∫-∞

∞ ∫ G(r , t) exp{-i(kr - ωt)}d3r dt (1)

F(k, t) ) ∫ G(r , t) exp{-ikr }d3r (2)

G(r , t) )
1

N
〈∑

j)1

N

∑
l)1

N ∫ δ[r + r l(0) - r ′]δ[r ′ - r j(t)] d3r′〉 (3)

G(r , t) ) 1
N∫ 〈F(r ′′, 0)F(r ′′ + r , t)〉 d3r′′ (4)

G(r , t) )
1

N
〈∑

j)1

N

∑
l)1

N

δ[r + r l(0) - r j(t)]〉 (5)

G(r , t) ) Gs(r , t) + Gd(r , t) (6)
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whereGs andGd are called theself- anddistinct-part because
Gs correlates positions of the same particle (j ) l) at different
times while Gd correlates positions of different particles
(j * l). Gs (r , t) gives the probability that within timet a particle
moves byr , while Gd(r, t) gives the probability of finding any
different particle at distancer from the former position of some
particle. Hence, for a homogeneous system (fluid), the self-
part turns out to be just the propagator of the probability.

By eq 2, Fourier transform with respect to the space of the
van Hove correlation function yields the intermediate scattering
function, whereas by eq 1, transform with respect to both time
and space yields the dynamic structure factor. Because of the
linearity of the Fourier transform, the same relationship holds
for self- and distinct-parts, separately. Here we restrict ourselves
to the self-part.

Gs, Fs, and Ss in the Hydrodynamic Limit. In statics, for
distances of only some molecule diameters, a liquid can already
be treated as a continuum. As for dynamics, the time scale needs
to be taken into account, too.7 Suppose that for the system under
consideration the diffusion equation holds, at least on the
hydrodynamic scale, i. e., there exist some characteristic length
l and timeτ such that forl , x andτ , t

In Fourier space this reads

which is easily integrated to give

The bar indicates a hydrodynamic observable obtained from its
microscopic equivalent by coarse-graining. The normalized
autocorrelation function is

Following Onsager8 we can, in the hydrodynamic limit, identify
this correlation with the corresponding microscopic correlation
function, given by eq 2. Moreover, for a dilute species, one
obtains7 in the limit kl , 1 andτ/t , 1

In other words, we have exponential decay for long times of
the Fourier components with long wavelengths, a Gaussian curve
for Gs

hyd, and a Lorentzian curve of half width at half maxi-

mum Ω ) Dsk2 at ω ) 0 for Ss
hyd. The exponential decay for

long times of the Fourier components with long wavelengths,
eq 13, allows for determination of the self-diffusivity:

Using eq 10, we have presumed isotropy for convenience, but
all considerations in this text can be extended to the anisotropic
case as well.

Diffusion of Guest Molecules in a Crystal.As the crystal
is not homogeneous on a microscopic length scale, any
correlation in space will depend onbothpositions, not only on
their difference. Hence, we must restore the homogenizing
integral in eq 4. Without loss of generality we restrict ourselves
to one-dimensional diffusion along thex-axis. Denoting by
P(x1, t; x0) the probability density that some arbitrarily chosen
particle is at pointx1 at timet andwas at pointx0 initially, we
have from eq 7

wherea is the lattice constant,p(x1, t|x0) is the density of the
conditional probability of finding the particle at positionx1 at
time t if it was atx0 at the beginning, andP(x) is the (stationary)
probability density of finding a given particle near pointx.
Because it is periodic in space, the normalization is chosen to
be ∫0

a P(x)dx ) 1. The second line is simply a well-known
identity from the theory of probabilities.

On a length scale coarse compared witha, however, the
crystal can be regarded again as a continuum. Thus, applying
eq 14 to the one-dimensional case,

On a finer length scale the self-part of the van Hove function
for the diffusion in a crystal is approximately equal to this
hydrodynamic limitGs

hyd(x, t), modulated by a functionI(x)
with lattice periodicity:

An Approximation Formula for I (x). Under special condi-
tions, the motion of a guest molecule in a porous crystal can be
separated into partial motions, each having a time scale of its
own. Methane molecules in an A-type zeolite, for example,
preferably reside in large cavities of radiusRand seldom switch
from one cavity to the other. This situation is sketched for one
direction in Figure 1.

Equation 17 is exact, but as the transition probability
p(xl, t|x0) is unknown, one would like to approximate it by
quantities which are available. According to eq 17, only

G(r , t) )
1

N
〈∑

j)1

N

δ[r + r j(0) - r j(t)]〉 (7)

Gd(r , t) )
1

N
〈∑

j)1

N

∑
l)1

N

δ[r + r l(0) - r j(t)]〉 (8)

∂Fj(r , t)
∂t

) Ds∇2Fj(r , t) (9)

∂Fjk(t)

∂t
) -Dsk

2Fjk(t) (10)

Fjk(t) ) Fjk(0) exp{-Dsk
2t} (11)

1
N

〈Fjk(t)Fj-k(0)〉 ) exp{-Dsk
2t} (12)

Fs
hyd(k, t) ) exp{-Dsk

2t} (13)

Gs
hyd(r, t) ) 1

(4πDst)
3/2

exp{-r2/4Dst} (14)

Ss
hyd(k, ω) ) 1

π
Dsk

2

ω2 + (Dsk
2)2

(15)

Figure 1. A simple model for the zeolite ZK4.

Ds ) - 1

k2t
ln Fs

hyd(k, t) (16)

Gs(x, t) ) ∫0

a
P(x0 + x, t; x0) dx0

) ∫0

a
p(x0 + x, t|x0)P(x0) dx0 (17)

Gs(x, t) f Gs
hyd(x, t) ) 1

x4πDst
exp[- x2

4Dst] (18)

Gs(x, t) ≈ Gs
hyd(x, t)I(x) (19)
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transitions with both starting and final points lying within a
permitted region contribute toGs. Hence,x0 and x1 can be
assumed to be within cells·0 and·1.

Now we introduce the following notations:p(xj, tj|·i, ti) is
the probability density of finding the particle at positionxj at
time tj provided that it was in cell·i at time ti, with
normalization∫-∞

∞ p(xj, tj|·i, ti)dxj ) 1. For the probability of
finding it in cell ·j at time tj given that it was in·i at time ti,
we write p(·i, tj|·i, ti). The probability of finding the particle
in cell ·j at timetj if it was at pointxi at timeti is p(·j, tj|xi, ti).
Note that· is a discrete quantity, whereasx is continuous.
Hence,p(xj, tj|·i, ti) and P(x) are probabilitydensities,while
p(·j, tj|·i, ti) andp(·j, tj|xi, ti) are probabilities. Furthermore,
as we are dealing with a stationary system, all transition
probabilities depend on the timedifferencesonly.

By the Markovian character of the motion we have

Because being at positionxj implies being within·j at the
same time, by definition,

for all t, i. e., the last factor in eq 20 is simply 1. Now the
probability densityp(xj, t|·j, t) for finding the particle atxj at
time t, given that it is in the right cell, is equal to the equilibrium
spatial probability densityP(xj), independent of time,

This is because the time intervening between intercell jumps is
very long compared to the time required for the particle to move
through a cell. By virtue of this time scale separation, for the
times of interest here, we can assume that the particle thermal-
izes (assumes its equilibrium distribution) in a cell instanta-
neously, as soon as it enters the cell.

Evidently the hopping rate for an intercell jump depends only
upon the number of cells in between·0 and·1, n. Fora > 4R,
the number of intercells is a unique step function of.the distance
|x1 - x0|, otherwise it varies by 1 depending onx0. However,
for large distances this becomes unimportant, and so does the
difference between the exact distance of the cells,na, and |x1

- x0|. We therefore let

where again the factora follows from normalization,
∫-∞

∞ Gs
hyd(x, t)dx ) 1 and 1) ∑j p(·j, t|·0) ≈ ∫-∞

∞ a-1p(·j,
t|·0)dxj.

Approximation (23) along with eqs 22 and 21 yields

Inserting this into eq 17 and factoringGs
hyd(x, t) out of the

integral, one obtains

whereI(x) is the space autocorrelation function of the probability
P(x),

The result eq 25 can be interpreted as follows: The van Hove
function for the diffusion in a periodic structure is the Gaussian
describing diffusion in a homogeneous medium of the same
diffusivity, but modulated by some structure function. This
function can be approximated by the space autocorrelation
function of the probability density of the diffusants.

The Radial van Hove Function.SinceGs(r , t) is the density
of the probability that a particle moves withint by r (in a
particular direction), the solid angle integral

yields the probability density that it moves by the distancer,
regardless of the direction. In case of isotropy,Gs(r , t) ) Gs(r,
t), resulting ings(r, t) ) 4πr2 Gs(r, t). Consequently it makes
sense todefinethe radial van Hove function in the anisotropic
case by

No matter whetherGs(r, t) denotes this orientational average
of Gs(r , t) or is identical to Gs(r , t) due to isotropy, the
intermediate scattering function and the dynamic structure factor
defined usingGs(r, t) in eq 2 and 1 are isotropic and are denoted
by Fs(k, t) and Ss(k, ω). In the hydrodynamic limit,Gs(r, t),
Fs(k, t), andSs(k, ω) are given by eq 14, 13, and 15, respectively.
The radial van Hove function makes a comparison with results
from neutron scattering experiments possible.

Results from MD Simulation

Van Hove Function (self-part) for ZK4. We start with ZK4
at room temperature (T ) 300 K) and an average loading of
three CH4 molecules per unit cell,nocc ) 3. The self-part of the
van Hove correlation function,Gs(x, t), is shown in Figure 2.
Sections are drawn every 273 ps starting att ) 0 and ending
with t ) 4095 ps. The singularδ-peak att ) 0 has been cut.
One recognizes the shape of this function of two variables,
mentioned above: an at least approximately Gaussian curve
broadening and fading away as time goes on, modulated with
the lattice periodicity. Notice that the area in thetx-plane where
the function is noticeably larger than zero has a parabolic border
as is to be expected, because〈x2〉 ∼ t.

As loading increases the diffusivity is reduced, resulting in a
narrower bell-shaped curve. The effect is hardly observable at
low loadings but it becomes quickly important abovenocc ) 6,
and atnocc ) 15 the molecules are almost fixed. This is in
agreement with results from MSD.9,10

Figure 2. Self-partGs(x, t) of the van Hove correlation function for
the diffusion of methane in ZK4 atnocc ) 3 andT ) 300 K.

gs(r, t) Z ∫
ϑ)0

π ∫æ)0

2π
Gs(r , t) r2 sinϑ dæ dϑ (27)

Gs(r, t) Z
1

4πr2
gs(r, t) (28)

p(x1, t|x0, 0) ) p(xl, t|·1, t) p(·1, t|·0, 0) p(·0, 0|x0, 0)
(20)

p(·j, t|xj, t) ) 1 (21)

p(x1, t|·1, t) ) P(x1) (22)

p(·1, t|·0, 0) ≈ aGs
hyd(x1 - x0, t) (23)

p(xi, t|x0) ≈ aP(x1) Gs
hyd(x1 - x0, t) (24)

Gs(x, t) ≈ Gs
hyd(x, t)I(x) (25)

I(x) ) a∫0

a
P(x0 + x)P(x0) dx0 (26)
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Reducing the temperature has a similar effect. As can be seen
from Figure 3, the curve fornocc ) 3, T ) 173 K lies between
those fornocc ) 6 andnocc ) 9 atT ) 300 K. This implies that
the diffusion coefficient at 173 K and three molecules per
unit cell must have some value between the correspondingDs

at 300 K, which is also in accordance with MSD results.
Looking more carefully, one finds that the “shoulders” of the
right curve are more pronounced. This is reasonable as a lower
temperature not only impedes a particle’s progress (diffusion)
but also reduces its local thermal motion which smears the fine
structure.

The Approximation by Gs
hyd(x, t)I (x). We now wish to test

the approximation formula eq 25 derived above. As already
mentioned, the approximation should be good except for
very short times and distances. The space autocorrelation
function, I(x), of the probability densityP(x) is shown in Fig-
ure 4 for an interval of three elementary cells. Clearly the curve
is less smooth at lower temperature. Its shape follows im-
mediately from that ofP(x), which again can be understood
easily by looking at the three-dimensional density.9 As maxima
of P(x) stand for specific sites prefered by the methane
molecules, maxima ofI(x) represent transitions between such
sites.

In Figure 5 the approximation is compared with the function
Gs(x, t) from the simulation. The agreement is excellent. At low
loading and higher temperature, both curves are practically
congruent (top). For mean loadings, some discrepancies appear,
particularly at small distances (middle). The comparison is of
greatest interest at low temperature (bottom) because the fine
structure is most pronounced there. The only major difference
is that forGs(x, t) the “shoulders” seen in the fine structure are
symmetric with respect to the maximum in between, while in
the approximation the one closer to the overall maximum of
the Gauss curve is naturally larger. This is caused by the approx-
imation in eq 23: Strictly speaking, as long as the final
destination is within one and the same cell, the transition
probability depends on the local density, not on the distance.
Consequently, the Gaussian would have to be replaced by a
step function with stairs symmetric with respect to the centers

of the cells to get perfect agreement between the exactGs and
the approximation.

Van Hove Function (Self-Part) for Silicalite. In the three
graphs of Figure 6 the self-part of the van Hove function in
silicalite is shown along thex-, y-, andz-directions. Parameters
(T ) 300 K,nocc ) 3) and representation (one intersection every
273 ps) are the same as in the equivalent picture for ZK4, Figure
2. In comparison, fluctuations have increased. The parabolic
propagation in time-distance coordinates can be seen here as
well. Obviously, the curve for they-direction fades away a bit
faster, and the curve for thez-direction much more slowly than
the one for thex-direction. Thetz parabola is so narrow, that
wide strips occur on either side where the function is zero (and
therefore is not drawn). All of these facts are in accord with
both intuition (highest mobility along the straighty-channels,
still high mobility along the zig-zag channels in thex-direction,
substantially lower mobility in thez-direction where the particle
has to make detours) and results from mean-square displace-
ment. The dependency ofGs on nocc andT is the same as for
ZK4, qualitatively, except that silicalite can adsorb much more
methane molecules per unit cell.

It is interesting to examine how the approximation eq 25
which was inspired by the ZK4 structure can be justified for
silicalite. The space correlation functionsI(x), I(y), andI(z) of
the one-dimensional probability densities for thex-, y-, and
z-directions are depicted in Figure 7. For the sake of brevity,
these functions are shown over a domain equal in length to the
respective lattice constant. One must not get deceived by the
periodicity: The one-dimensional densities are periodic within
half-lattice constants, for symmetry reasons (screw axes), and
their space correlation functions inherit this property. As in the
case of ZK4, the shape of the space correlations can be
interpreted quite well by considering the three-dimensional
density, particularly the sites of maximum density.9,11,12

Figure 3. The section throughGs(x, t) at t ) 4095 ps fornocc ) 3 at
173 K lies between the curves fornocc ) 6 andnocc ) 9 at 300 K, but
its structuring is more pronounced.

Figure 4. The correlation functionI(x) of the probability densityP(x)
for nocc ) 3 at T ) 173 K andT ) 300 K. At lower temperature the
molecules are located at their favorite sites, so the fine structuring is
more pronounced.

Figure 5. Comparison ofGs(x, t) with the approximationGs
hyd(x, t)-

I(x) at t ) 4095 ps. Top:nocc ) 3, T ) 300 K. Middle: nocc ) 9, T )
300 K. Bottom:nocc ) 3, T ) 173 K. The approximation is shown on
the left, the exact van Hove function on the right-hand side, and the
GaussianGs

hyd(x, t) on both sides of the plots.
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On the basis of the simulation data, the detailed shape of the
van Hove correlation function cannot be resolved. So we choose
a different way of representation for the comparison with the
approximation. Unlike for ZK4 (cf. Figure 5), the original
function and its approximation are plotted on top of each other
in Figure 8. The points forGs lie on the approximating curve
for the most part. In they-direction, discrepancies occur only
for very smally. In thex- andz-directions, differences are also
obtained for larger distances (around 100 or 50Å, respectively),
but the approximation improves as distance grows. This
confirms that formula 25 is not restricted to ZK4 but holds more
generally for systems where a rapid motion of particles within
restricted regions adds to a slow motion between such regions.

The Intermediate Scattering Function for ZK4. Figure 9
shows the self-partFs(k, t) of the scattering function obtained
by Fourier transform of the functionGs(x, t) shown in Figure
2. At the beginning we have a white spectrum, i.e.,Fs(k, 0) )
const,which is the transform of the initialδ-peakGs(x, 0). Most

of the spectral components decay quickly, the shorter the
wavelength the faster the decay. Few lines remain, for instance
the line at zero, and so arises a discrete spectrum.

The major lines can be interpreted very easily. To this end
we look at the spectrum at a lower temperature, where the fine
structure is sharper, Figure 10. By far the strongest line is the
one atk ) 0: the Fourier transform of the Gaussian hydrody-
namic limit. Next follows the line around 0.5 Å-1, which is
just 2π times the reciprocal lattice constant of ZK4 (a ) 12.3
Å). Consequently, this line represents the periodic modulation.
Also the line near 2.55 Å-l can be interpreted. It originates in
the side maxima (or shoulders) ofGs(x, t) because of the detailed
distribution of the molecules to specific sites. That’s why it
almost vanishes at 300 K where the shoulders are very weak,
cf. Figures 4 and 5, indicating a rather smooth distribution within

Figure 6. Self-partGs of the van Hove correlation function for the
diffusion of methane in silicalite inx-, y-, andz-directions atnocc ) 3
andT ) 300 K.

Figure 7. The correlation functionsI(x), I(y), andI(z) for silicalite at
nocc ) 3 andT ) 300 K. Note the periodicity with characteristic length
equal to one half of the lattice constants.

Figure 8. Comparison ofGs with the approximationGs
hydI in silicalite

at t ) 4095 ps fornocc ) 3, T ) 300 K. From top to bottom:x-, y-,
andz-direction.

Figure 9. Self-partFs(k, t) of the scattering function for methane in
ZK4 at nocc ) 3 andT ) 300 K.
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the cells. As Gs(x, t) is a periodic function (except for the slow
Gaussian damping), its spectrum should contain components
only at multiples of 2π/a (except for small wave numbers). This
is confirmed.

From eq 13, the long-wave components ofFs(k, t), i.e., those
with small k, are expected to decay in time exponentially,

First, the region of validity of this approximation has to be
determined. The part of the hydrodynamic limit in eq 13
regarding space has to be related toa and meansk , 2πa-1 ∼
0.8 Å-1. For a lower bound of time we use the so-called Einstein
relation

to find t g a2/2Ds. For Ds ≈ 10-8 m2/s this finally yieldst g
72 ps. As our data start only at 100 ps, we are not further
restricted in time, at least for loadings up tonocc ) 9.

Experimental or simulation data are always discrete and
bounded. Because of the reciprocal character of the Fourier
transform, this limits the resolution ofk andω. The minimum
and maximum lengths and times registered,∆x, xmax and ∆t,
tmax, respectively, and the corresponding maximum and mini-
mum wave numbers and frequencies,kmax, ∆k andωmax, ∆ω,
are listed in Table 1, both for ZK4 and silicalite.

The first three components available of the intermediate
scattering function, i.e.,Fs(k, t) at k ) 0, k ) ∆k, andk ) 2∆k,
are depicted in logarithmic scale in Figure 11. All curves start
at the same initial value. The zero components are constant in
time. The second line (k ) ∆k) is a falling straight line for all
loadings while the third one deviates soon for low loadings (nocc

) 9 and even morenocc ) 3). Furthermore, the third line has
four times the slope of the second. This is true even in the upper
pictures as long as the third line is straight. Thus the slope grows
quadratically withk, as predicted by eq 29. Resolving for the
diffusion coefficient yields

The values forDs obtained this way from the exponential decay
of Fs(k, t) are summarized in Table 2 along with those from
MSD (in brackets). The agreement is good. As the motion over
short length scales is not quite diffusive, deviations from this
linearity occur at largerk.

The Intermediate Scattering Function for Silicalite. Be-
cause the development in time of the intermediate scattering
function is the same for silicalite as for ZK4, we just glance at
the sections throughFs for t ) 4095 ps, Figure 12. What has
been said about periodicity remains valid, except that we are
dealing now with half-lattice constants in silicalite, i.e.,a/2, b/2,
andc/2. This is a consequence of the symmetry of the crystal,
more precisely of its screw axis.9 Again the zerok line is the
largest contribution to the spectra. Next come the lines atk )
4π/a, 4π/b, or 4π/c, respectively, representing the modulation
by the lattice. For thez-direction, there is no other component
of significance, the curveI(z) in Figure 7 has indeed almost
cosinusoidal shape. In contrast, the side maxima ofI(x) and
I(y) lead to an additional line atk )8π/a and 8π/b.

As was done in Figure 11 for ZK4, the first three components
of the spectrum for silicalite are depicted in Figure 13 for the
x-, y-, and z-directions and fornocc ) 3 (top) andnocc ) 12
(bottom). Again, deviations occur in the third component at low
loading. The values for the self-diffusivity determined from the
decay with eq 31 are listed in Table 3. Satisfactory agreement
with those obtained from MSD (in brackets) is observed.

The Dynamic Structure Factor for ZK4. The self-part of
the dynamic structure factor in ZK4 is shown in Figure 14 for
nocc ) 3 andT ) 300 K. Only a small part of the possible area
is depicted, becauseSs(k, ω) is negligible outside. Recall that
this function is the Fourier transform with respect to time of
the intermediate scattering function in Figure 9. Hence, we find
the line spectrum for long times from Figure 10 atω ) 0. All
components vanish for higher frequencies, those having wave
numbers smaller than ca. 0.1 Å-1 first.

According to eq 15, Ss(k, ω), as a function ofω at fixed k,
becomes a Lorentz curve of half width at half maximum

Figure 10. Intersection throughFs(k, t) at t ) 4095 ps. ZK4,
T ) 173 K.

TABLE 1: Range of Values of x, t, k, and ω for which Gs,
Fs, and Ss were determined

∆Q Qmax

quantityQ ZK4 silicalite ZK4 silicalite

x in Å 0.615 0.996 315a 510b

k in 10-2 Å-1 1.995a 1.232b 511 315
t in ps 1.0 4095
ω in ps-1 7.67× 10-4c 3.142

a For nocc ) 15, xmax is half, ∆k twice this value.b For z-direction,
zmax is half,∆kz twice this value.c Using symmetryF(k, -t) ) F(k, t).

Fs(k, t) ∼ exp{-Dsk
2t} (29)

〈|r (t) - r (t0)|2〉 ) 6D(t - t0) (30)

Figure 11. Decay of the first three components ofFs(k, t) for different
nocc in ZK4 in logarithmic scale. Note the different scales of the vertical
axes.

Ds )
ln Fs(k, 0) - ln Fs(k, t)

k2t
(31)
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in the hydrodynamic limit. In our attempt to prove this rule for
the diffusion of methane in ZK4 or silicalite we are limited by
the resolution. For the shape of the curve to be visible, the
smallest frequency interval resolved must be below the half
width, i.e.,

Now, in ZK4, Ds is merely about 10-8 m2/s even at low
loadings, which together with∆ω from Table 1, meansk .
2.8 × 10-2 Å-1. But from the decay of the intermediate
scattering function we have seen that the long-wave regime
reaches only out to a few∆k, not even to 0.1 Å-1. So the exact
shape of the curve becomes visible only near the border of the

region where eq 15 is valid. In Figure 15, the points of the first
three lines withk > 0 are depicted along with the ideal
Lorentzian curves forDs ) 9.5 × 10-9 m2/s from MSD.
Agreement is excellent, particularly for the second curve which
seems to offer the best compromise between the upper bound
(the hydrodynamic limit) and the lower bound (resolution).

The Dynamic Structure Factor for Silicalite. The three
pictures in Figure 16 show the self-parts of the dynamic structure
factors for thex-, y-, andz-direction,Ss(k, ω), Ss(ky, ω), and
Ss(kz, ω). As for ZK4, we have the same line spectrum at small
frequencies as results in the limit of long times forFs(kx, t),

TABLE 2: Ds in ZK4 from the Decay of the
Long-Wavelength Components of the Scattering Function
and from MSD, in Parenthesesa

Ds (in 10-9 m2/s)

nocc from ∆k 2∆k 3∆k MSD

3 8.17 (9.46)
6 7.14 (7.19)
9 3.87 4.75 (3.56)

12 1.39 1.30 1.20 (1.42)
15 0.12 0.11 0.10 (0.12)

a For ∆k see Table 1.

Figure 12. Intersections throughFs at t ) 4095 ps for silicalite, the
spectra of the curves shown in Figure 8. The most important lines can
be interpreted very easily, noticing that the modulation is with half the
lattice periods.

Figure 13. The first three components ofFs(k, t) with k ) 0, k ) ∆k,
andk ) 2∆k for the three principal directions in silicalite atnocc ) 3
and 12 in logarithmic representation.

Ω ) Dsk
2 (32)

∆ω , Dsk
2 (33)

TABLE 3: Ds
x, Ds

y, and Ds
z in Silicalite from the Decay of the

Long-wavelength Components of the Scattering Function
and from MSD, in Parenthesesa

nocc k Ds
x in 10-9 m2/s Ds

y in 10-9 m2/s Ds
z in 10-9 m2/s

3 ∆k 8.51 (7.89) 15.60 (16.35) 1.78 (1.70)
6 ∆k 5.94 (6.09) 8.53 (8.65) 1.38 (1.37)

2∆k 5.42 7.85 1.48
9 ∆k 4.72 (4.69) 6.42 (5.65) 0.92 (0.99)

2∆k 4.47 6.36 0.91
12 ∆k 3.26 (3.08) 4.74 (4.52) 0.66 (0.68)

2∆k 3.17 4.86 0.66
15 ∆k 1.63 (1.66) 4.03 (4.17) 0.43 (0.49)

2∆k 1.63 3.98 0.42

a For ∆k and tmax see Table 1.

Figure 14. Self-part Ss(k, ω) of the dynamic structure factor for
methane in ZK4 atnocc ) 3 andT ) 300 K.

Figure 15. The Lorentz curve predicted forSs(k, ω) (at fixedk) in the
hydrodynamic limit (broken line) and the result from MD (points) for
k ) ∆k, 2∆k, and 3∆k in ZK4.
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Fs(ky, t), andFs(kz, t), cf. Figure 12. For higher frequencies the
components vanish quickly.

In Figure 17, the computed smallk Ss is compared to the
Lorentzian predicted by eq 15 in the hydrodynamic limit.
Because of the slow propagation in thez-direction the resolution
we could use in this direction is only half as fine. Therefore, in
Figure 17 the components with 2∆k and 4∆k are shown for
Ss(kz, ω) instead of those with∆k, 2∆k, and 3∆k. For

constructing the Lorentz curves the, self-diffusion coefficients
from MSD were used,Ds

x ) 8 × 10-9 m2/s, Ds
y ) 14 × 10-9

m2/s, andDs
z ) 1.7× 10-9 m2/s. The agreement is not as good

as in the case of ZK4, but still acceptable.
The Radial van Hove Function for Silicalite. Obviously,

the self-part of the radial van Hove function,Gs(r, t), starts with
Gs(r, 0) ) δ(r) and then decays in the same way asGs(r , t), the
maximum always remaining atr ) 0. The maximum of
gs(r, t), in contrast, moves towards larger radii because of the
weighting with 4πr2. In the hydrodynamic limit, the dependence
of the distances at which these maxima occur on time is
described by the parabolar2 ) 4Dst. Figure 18 showsgs(r, t)
for methane in silicalite along with the solid angle integral of
the ideal Gaussian from eq 14, calculated withDs ) 8.6× 10-9

m2/s from the mean square displacement. No major differences
are observed.

As the radial van Hove functionGs(r, t), unlike Gs(r, t),
averages. over different directions, it does not reveal the
periodicity and symmetry of the crystal and it soon loses any
fine structure. This implies that no line spectrum is to be
expected for the radial intermediate scattering functionFs(k, t)
for long times. The same is true for the dynamic structure factor
at low frequencies. This is confirmed in Figure 19: The curve
Ss(k, 0) (right border) decays smoothly. As the range ofk is
from k ) 5∆k to 30∆k (which means 0.061 to 0.370 Å-1), the
hydrodynamic limit is valid in the backmost part of the graph
and the shape ofSs(k, ω) ought to be Lorentzian with half width
at half maximumΩ ) Dsk2. One can see that the width grows

Figure 16. Self-partSs of the structure factor inx-, y-, andz-directions
for methane in silicalite atnocc ) 3 andT ) 300 K. For the resolution
in kz see Table 1.

Figure 17. The Lorentz curves predicted forSs (at fixed k) in the
hydrodynamic limit (broken lines) and the results from MD (points)
for ∆k, 2∆k, and 3∆k (x- andy-direction) or 2∆k, 4∆k (z-direction).
Silicalite, ∆k ) 1.23× 10-2 Å-1.

Figure 18. gs(r, t) according to eq 27 for methane in silicalite atnocc

) 3, T ) 300 K, compared with the isotropic case (broken lines).

Figure 19. Self-part of the radial dynamic structure factorSs(k, ω) in
silicalite atnocc ) 3 andT ) 300 K.
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in fact up to the middle region ofk studied but stagnates
thereafter. The shape of the curve remains Lorentzian, even for
the frontmost curves which are far from the hydrodynamic limit.

According to ref 13 a jump model, where the width of a jump
follows a normal distribution and the rate of jumps follows a
Poisson distribution with meanτ-1, leads to a Lorentzian
dynamic structure factor of half width at half maximum

For smallk, one recoversΩ ) Dsk2, whereas fork f ∞ the
value 1/τ is reached asymptotically. Widths obtained from
quasielastic neutron scattering obey this law quite well.14 The
course of our computedSs(k, ω) curve just discussed exhibits a
similar behavior. Figure 20 shows the dependence on the square
of the wave number of the half widths of Lorentzian fits to
Ss(k, ω). A fit based on eq 34 is drawn through the data.Ds )
8.6× 10-9 m2/s was obtained again from the MSD, soτ is the
only fit parameter, assuming the valueτ ) 48 ps.

Comparison with the experimental measurements of ref 14
is hampered by the fact that conditions are different in the
experiment, namelynocc ) 2, 4 at 200 K and 1.5, 2.8 at 250 K.
The experimental results under these circumstances and their
interpolation or extrapolation to our conditions ofnocc ) 3, 300
K are summarized in Table 4.

From a comparison between extrapolated experimental mea-
surements and the results from our analysis of simulated
Ss(k, ω), we conclude that the diffusion coefficients are in very
good agreement, while the jump time constantsτ differ. As a
consequence, while at small wave numbers almost the same
straight lineΩ ) Dsk2 is approximated, the experimental limit
for k f ∞ is about two and a half times the value from
simulations. Furthermore, the curve from MD clearly approaches
the horizontalτ-1 from aboVe, following a maximum around

k2 ≈ 0.17 Å-2. This doesn’t contradict the experimental results
because the neutron scattering gives only four to five points
per temperature and loading, too few to determine the shape of
the curve. It does contradict eq 34, however. It is possible that
the limits of validity of the jump model on which this equation
is based have been reached. One might question the reliability
of the extrapolation used in the comparison presented here,
which is far from being unique. Further simulations and
experiments under identical conditions could rule out that source
of error. It should be noted, however, that a value ofτ ) 48 ps
would not be consistent with a monotonic variation of jump
time on temperature.

Summary

From MD simulation data, we have calculated the self-parts
of the van Hove function, the intermediate scattering function,
and the dynamic structure factor for the diffusion of methane
in ZK4 and silicalite. Values for the self-diffusivities obtained
from the decay of the intermediate scattering function at long
wavelengths are in good agreement with those from MSD
known from previous simulations and the experimental litera-
ture. A new approximation is developed for systems where
motion occurs by infrequent passages between confined regions
in which rapid motion takes place. The approximation is based
on the separation of time scales, and it is proved to be reasonable
for the self-part of the van Hove function in both ZK-4 and
silicalite. For silicalite, the radial dynamic structure factor has
also been determined. While for smallk the dependence of the
line width of the dynamic structure factor upon the wave number
k is the same as obtained from quasielastic neutron scattering,
there is a significant difference for largek, the reason being
still unknown.
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Figure 20. The half width at half maximumΩ of Ss(k, ω) as function
of k2 together with the curve fitted according to eq 34. The corre-
sponding curve based on extrapolated experimental data, cf. ref 14.

TABLE 4: Experimental Results from Ref 14 and Their
Extrapolation to Our Conditions a

T ) 200 K T ) 250 K T ) 300 K

nocc τ (ps)
Ds× 109

(m2/s) nocc τ (ps)
Ds× 109

(m2/s) τ (ps)
Ds× 109

(m2/s)

2 65 2.8 1.5 36 5.0
4 50 2.5 2.8 30 5.9
3 57 2.7 3 29 6.0 20 9.3

a The values extracted from our simulation analyis at 3 molecules
per unit cell and 300 K areτ ) 48 ps andDs ) 8.6 × 10-9 m2/s.

Ω ) 1
τ
(1 - exp{-Dsk

2τ}) (34)
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