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Abstract

The self diffusion coefficient of methane in silicalite-1 is influenced by the flexibility of the lattice unlike the self

diffusion coefficient of methane in the cation-free zeolite of type A. In the present paper, besides the influence of lattice

vibrations on this process, the influence of internal vibrations of the methane molecule and the applicability of several

spherical models of this molecule are examined. The method of moments [Chem. Phys. Lett. 198 (1992) 283] is gen-

eralized to anisotropic diffusion.
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1. Introduction

The examination of diffusion processes in zeo-

lites is a task of increasing interest because of the

great technical importance of several types of ze-
olites [2]. Additionally, this examination is of great

scientific interest too because of the very special

properties of these porous solids.

In the present paper, some aspects of the dy-

namics of molecular motion and of the coupling

between kinetic processes in zeolites will be dis-

cussed on a molecular level using molecular dy-

namical computer simulations (MD). At first, all

degrees of freedom are taken into account in-

cluding the vibrational and rotational degrees of

freedom of the diffusing guest molecules and the
lattice vibrations. The results are compared with

those of runs with rigid five centers methane

molecules and/or rigid lattice. Finally, some

spherical model potentials for the methane mole-

cules are tested; in these calculations the methane

molecules are replaced by ‘‘Lennard Jones mole-

cules’’ with the methane mass.

Discussions about the importance of the lat-
tice flexibility have been going on since 1971. In

[3], a case was examined experimentally in which

inert gas atoms could pass even the small
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windows of sodalite cages at high temperature.

An explanation cannot consider only the thermal

window size fluctuations (i.e., the lattice flexibil-

ity) because at higher temperatures the higher

kinetic energy of the diffusants enables them to

overcome more easily energy barriers even in a
rigid lattice. According to [4] the diffusion coef-

ficients of inert gases in silicon sodalite calculated

by transition-state-theory (TST) are larger by

several orders of magnitude for the flexible lattice

than for the rigid one. The comparison of results

obtained from theory in [4] with experimental

values must be viewed with great care as the

calculated quantities depend strongly upon the
choice of the potential parameters used. For ex-

ample, in [5] it could be shown that the self

diffusion coefficient found in MD simulations for

methane in the cation-free A zeolite varied by

nearly two orders of magnitude when different

sets of potential parameters from the literature

were used.

In [6], the influence of the lattice flexibility on
the diffusion of different guest molecules in various

zeolites (e.g., of methane and xenon in silicalite)

was investigated by a Langevin equation treat-

ment. The conclusion for methane in silicalite-1

was that lattice vibrations yield a negligible driving

force for this system.

In [7], it was shown that the lattice vibrations

have a remarkably small influence on the jump
rates between different adsorption sites of ben-

zene in the NaY zeolite. It was concluded that

the internal degrees of freedom of the molecule

act as a heat bath that is sufficient for thermal-

ization even for this system with high energy

barriers.

There are mainly two effects by which lattice

vibrations in MD simulations may act on the dif-
fusing particles. The first one is the steric effect and

the second one is the exchange of energy between

migrating molecules and the lattice.

As the diameter of windows and channels in

zeolites changes periodically in time due to the

lattice vibrations the height of diffusion barriers

fluctuates. We call this the steric effect of lattice

vibrations. As shown in [8,9], the histograms of the
observed window diameters are symmetric with

respect to the average values. Therefore, an in-

crease of the mobility of diffusants by larger win-

dows and an decrease by smaller windows both

appear with the same probability. However, it is

not a trivial question if this symmetry leads to a

vanishing ‘‘over-all’’ effect in all cases.

Due to the second, the energetic effect, the vi-
brating lattice acts as a heat bath for the diffusing

molecules. The relaxation of the fluctuations of the

kinetic energy of diffusing particles by energy ex-

change with the lattice is much stronger than the

relaxation caused by the mutual energy exchange

of the guest molecules [9,10].

Nevertheless, even the mutual thermalization of

the guest molecules turned out to be very effective
even at such low concentrations as I ¼ 1 in a
simple rigid model (no lattice vibrations, no in-

ternal vibrations or rotations of the adsorbed

molecules) of methane diffusing in the cation-free

zeolite LTA [11]. I is the total number of guest
molecules divided by the number of cavities in the

A–zeolite. The spatial particle density distribution,

obtained from these MD runs, agrees nearly per-
fectly with that of a Metropolis Monte Carlo

Simulation carried out for the same temperature

and the same concentration of guest molecules.

Also, the spatial distribution of the kinetic energy

and the fluctuations of the one particle kinetic

energy agree well with those of a canonical en-

semble. When the mutual interaction of the guest

molecules was switched off, then this agreement
vanished. So, the mutual interaction was identified

to be the reason for the (even local) thermal

equilibration [11].

A flexible lattice has been employed in many

studies of guest molecule diffusion in zeolites, e.g.,

in [12–17] and also the flexibility of the diffusing

guest molecules is taken into account in some pa-

pers. Examples are [12,18]. Treatments of chain
hydrocarbons sometimes include even the internal

degree of freedom of an isomerization of the guest

molecules (e.g., [19]). A rigid lattice has also been

used widely. Some examples are [19–24]. The

possibility of using a rigid lattice in simulations is

of practical importance. This approximation

makes it possible to avoid the additional compu-

tation of lattice forces and the need of a smaller
time step. An even much larger saving of computer

time is possible if potential energy and forces for
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the guest–host interaction for a grid of points are

stored in tables and used by interpolating the

stored values [20]. Another possibility for simpli-

fication of the simulations is the use of empirical

analytical functions in the three-dimensional space

that reproduce the potential energy and the forces.
This was done e.g., in [25,26] for methane in the

cation-free A zeolite. Although in [25,26] the sim-

ple analytical model is used only for spherical

guest molecules the generalization is straightfor-

ward: A separate analytical potential must be used

for each sort of atoms (or united atoms) in the

guest molecules. Up to now, the use of such ana-

lytical methods is restricted to simulations in the
rigid lattice unfortunately. Such methods are not

only useful if very limited computer time is avail-

able. In general, even with the best computer fa-

cilities they open the door to new challenging

applications. It is the feeling of the authors that the

task of MD simulations should not be primarily to

reproduce known results of experiments with high

accuracy. Even to predict such results is not all
what simulations can do. Instead they should also

help to discover and understand by use of simpli-

fied models reasons for and interconnections be-

tween interesting effects.

Such a model needs to contain only those de-

tails of the real system those are important for the

effect under consideration. Which details are really

important must be checked by comparison of the
discovered effects with experimental reality. Be-

sides its practical importance, the examination of

the role of lattice and molecule vibrations in dif-

fusion processes gives insights in the diffusion

mechanisms.

In earlier examinations [8,9], it was shown that

the lattice vibrations do not effect significantly the

self diffusion of methane in a cation-free LTA ze-
olite. Earlier different findings [14,27] could be

corrected.

From the vanishing effect of lattice vibrations

on the diffusion coefficient in the cation-free ze-

olite A, it cannot be concluded that this effect is

also vanishing for methane in silicalite-1. In [15],

a small influence is found for methane in silica-

lite-1. But, the mean square displacement is ex-
amined in [15] only for a very short length of 30

ps. Demontis et al. [13,28] found for the same

system at 298 K that the diffusion coefficient of

the guest molecules is about 20% higher with a

vibrating lattice than with the rigid one. June

et al. [29] found in simulations of xenon in sili-

calite-1 at 100 K that the self diffusion coefficient

is 40% smaller with vibrating lattice than with
the rigid one. In [30], another case is mentioned

in which the diffusion coefficient decreases in

consequence of the lattice vibrations for the dif-

fusion of normal alkanes in zeolites with long

one-dimensional channels, like ZSM-12 and

Linde-type-L (LTL) zeolites.

In [31], a slightly larger diffusion coefficient

(1:33� 10�7 m2=s) was found for the rigid lattice
than for the flexible one (1:26� 10�7 m2=s) for the
diffusion of methane in AlPO4-5. A rigid five

centers methane was used and the charges of the

lattice atoms were taken into account. The authors

introduce a method for handling the lattice motion

in molecular simulations which utilize the normal

vibrational modes in a harmonic crystal approxi-

mation.

2. The model and some technical details of the

simulation runs

Silicalite-1 is a cation-free zeolite of the struc-

ture type MFI [32]. Its lattice consists of silicon

atoms and oxygen atoms. The symmetry group of
the MFI zeolites is Pnma with cell parameters

a ¼ 20:07 �AA, b ¼ 19:92 �AA and c ¼ 13:42 �AA. The
channels of silicalite-1 form a three-dimensional

network, which consists of two kinds of channels.

The intersections between the channels are some-

what similar to cavities in other types of zeolites.

The potential energy at the local maximum inside

the intersections is about )11 kJ/mol. Fig. 1 shows
the channel structure of silicalite-1. One can see

the straight channels from top to bottom (y di-
rection) in the picture. The zig-zag channels in the

x–z plane are somewhat curved but, also drawn
straight in Fig. 1 for simplicity. Their name can be

understood if one adds the periodical replica of the

unit cell.

A four-center Lennard-Jones potential for
methane has been proposed in [33]. However, as

we take into account the internal vibrations, all
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atoms must be included. Therefore we use a five-

center model with interaction sites on the four
hydrogen atoms and on the carbon atom. For the

internal degrees of freedom the harmonic valence

force model of Bougeard and co-workers [34] is

used.

For the interaction between the atoms in dif-

ferent molecules and between the atoms in the

CH4 and the lattice atoms, the MM2 Lennard-

Jones (LJ) parameters of Burkert and Allinger [35]
have been used which according to [36] yield the

best results (compared to some others) for the

thermodynamic and transport properties of

methane in zeolites. See also our comparison with

experiment in Section 3.

All runs have been done in an MD box that

consists of two unit cells containing 576 lattice

atoms totally. Often the concentration of guest

molecules in silicalite-1 is given as guest molecules

per channel intersection. Our box includes eight

intersections. If we call the number of guest mol-

ecules per intersection I , (analogously to the
number of guest molecules per cavity in the LTA

case) then we have, for example, I ¼ 1:25 for 10
methane molecules per MD box.

After an initial run of 10,000 steps for ran-

domizing the system, the temperature has been

chosen as in [9] by adjusting the total energy. This

is easily done by one single velocity scaling before

the main run starts. So, the knowledge of the

T ðEÞ dependence is sufficient to achieve any
wished temperature. The curve for the T ðEÞ de-
pendence is created from some shorter test runs

and this curve is improved after each long run,

successively.

Then, an evaluation part of the MD run of

20,000,000 steps was carried out with an time in-

crement of 0.5 fs. That means trajectories of 10 ns

have been evaluated in which the trajectories are

completely unperturbed by thermalizing algo-
rithms.

Diffusion coefficients have been evaluated using

the first four moments of the displacement as de-

scribed in [1] for the isotropic case. The extension

on anisotropic systems is given below. In [37], it is

argued that the self diffusion coefficient as derived

from the mean square displacement for guest

molecules in zeolites is only an apparent one. The
authors argue that the Einstein relation between

the self diffusion coefficient and the mean square

displacement is derived by assuming a random

walk which is not true for the migration of the

particles within restricted geometries. Instead, it is

well-known that the Einstein relation follows also

from the diffusion equation (see, e.g., [1]) and that

on a time scale that is large enough to allow the
guest molecules to move between different cavities

or channels the migration of guest molecules is

indeed a random process. On such a time scale,

both the diffusion equation and the Einstein rela-

tion are applicable [1]. A reliable tool to decide

whether this time scale has been reached is pro-

vided by the method of different moments of the

displacement [1]. The formulas for the anisotropic
case are derived in Appendix A of the present

paper. The evaluation is done for multiple time

Fig. 1. Topology of channels in the unit cell of zeolites of type

MFI, e.g., silicalite-1. The black dots show the intersections

between straight channels and zig-zag channels in the unit cell

and the grey dots show intersections of the straight channels

with zig-zag channels that are outside the unit cell.
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origins [38]. As an example, the resulting curves

are shown for I ¼ 4 and T ¼ 300 K in Fig. 2. The
kinetic state in which the diffusion equation is

valid is reached when the D values obtained from
all moments agree which each other, giving a un-

ique D value.

3. Test of the model

In order to check the used implementation and

the parameters of the model system described

above, a series of runs has been made for one

methane molecule per intersection. The measured

values given in [39] have been compared with the D
values from these MD simulations. D is the trace
of the diffusion tensor divided by 3.

The simulations have been carried out with

flexible molecules and flexible lattice. The results

are given in Fig. 3. The agreement is good taking

into account the fluctuations in the measured

values.

4. Former investigations of methane diffusion in

silicalite

The diffusion of methane in silicalite was ex-

amined already by several authors. But, the pres-

ent paper is, to our knowledge, the first systematic

investigation that includes both lattice and meth-
ane rigid and flexible as well. Most authors have

treated methane only in spherical approximation

without internal degrees of freedom. The results in

Fig. 3 agree well with those of [20,21,40,41], where

the molecules are modeled by single Lennard Jones

centers and with [36] where atomistic potentials

are used.

The value of D found in [37] by simulations
(using commercial software) for methane in silica-

lite-1 at 300 K at infinite dilution is one order of

magnitude larger than the value measured at I ¼ 1
for the same system [39]. In [15] a value between 0.4

and 1� 10�9 m2=s is reported but, the mean square
displacement was evaluated over 30 ps only in this

work and the statistics are poor. In [42], the authors

calculate by MD simulations at 300 K a value
D ¼ 1:6� 10�8 m2=s for I ¼ 1 at 300 K. Demontis
et al. [43] report a value of 2:1� 10�8 m2=s at 300
K for infinite dilution using a spherical LJ methane

and the flexible lattice.

5. New results and discussion

5.1. The self diffusion coefficient for rigid and

flexible molecules

Figs. 4–7 show the self diffusion coefficients for

the different directions as functions of the tem-

perature at the concentration of one guest mole-

cule per intersection. Dx, Dy and Dz are

components of the diffusion tensor and D is the
average over all directions. D is also the trace of
the diffusion tensor divided by 3. The curves in

Fig. 2. The diffusion coefficients Dx, Dy and Dz from the first

four moments (see Appendix A) of the displacement. The

concentration of guest molecules is I ¼ 4 methane per inter-
section and the temperature T ¼ 300 K. Lattice and methane
molecules are flexible.

Fig. 3. Comparison of MD results with experiments [39] for

I ¼ 1.
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Figs. 4–7 show that in agreement with Demontis

et al. [13,28,43] the lattice flexibility enhances the

diffusion coefficient of methane in silicalite-1. Ad-

ditionally it can be seen that molecule flexibility

although also increasing the diffusivity slightly has
a much smaller effect. 1

In Fig. 8, the corresponding D values are dis-
played for four guest molecules per intersection.

The influence of the flexibility of lattice and mol-

ecules can be seen to have only small influence on

the diffusion coefficients at high loading. This in-

fluence turns out (see Fig. 8) to be within the range

of fluctuations of the theoretical D values obtained
from the MD simulations.

Three runs for the case with the largest fluctu-

ations have been done to get an upper limit on the

error bars that should be associated with the in-

dividual calculated values. This is the case of rigid

methane and rigid lattice at 300 K. The averaged D
values for this case and the corresponding error

bars are Dx ¼ ð1:42� 0:07Þ � 10�9 m2=s, Dy ¼
ð1:02� 0:11Þ � 10�8 m2=s and Dz ¼ ð3:84� 0:10Þ
�10�10 m2=s and the average over all directions is
D ¼ ð4:0� 0:38Þ � 10�9 m2=s.

5.2. Spectra of lattice and molecule vibrations

For more detailed understanding of the inter-

relations between lattice movements and molecule
migration, the velocity autocorrelation functions

(VACFs) of the different atoms belonging to

molecules or to the lattice have been evaluated and

their Fourier transform are obtained too. The

Fourier transforms are given in arbitrary units that

Fig. 4. The diffusion coefficient Dx in 10
�9 m2=s for I ¼ 1. ff

means lattice and molecule flexible, rf means molecule rigid and

lattice flexible, fr means molecule flexible lattice rigid, rr means

both lattice and molecule rigid.

Fig. 5. The diffusion coefficient Dy in 10
�9 m2=s for I ¼ 1. ff

means lattice and molecule flexible, rf means molecule rigid and

lattice flexible, fr means molecule flexible lattice rigid, rr means

both lattice and molecule rigid.

Fig. 6. The diffusion coefficient Dz in 10
�9 m2=s for I ¼ 1.

Fig. 7. The average diffusion coefficient D in 10�9 m2=s for
I ¼ 1.

1 This conclusion corrects an earlier finding on the effect of

molecular flexibility [44].
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originate from the evaluation program CO-
STRAFO published in [45]. As an example, Fig. 9

shows the VACF and the Fourier transform for

the hydrogen atoms at 300 K. The frequency

modes appearing at about 1500 and 3000 cm�1 in

the spectrum agree very well with those found for

bulk methane in infrared spectra measurements

[46] and also with the frequency spectrum from

MD data for methane in silicalite-1 published in
[15]. Although in the infrared measurements the

Fourier transform of the autocorrelation function

of the dipole moment and not a VACF is analyzed,

that agreement is not surprising because the dipole

moment changes mainly by the movements of the

light hydrogen atoms. These frequency regions

are, of course, also associated with the normal

vibrations of a gas-phase methane molecule [47].
A comparison of the atomic spectra of the four

kinds of atoms in the system in the low-frequency

region is shown in Fig. 10. It is seen that all spectra

overlap in that region. So some influence of the

lattice vibrations on diffusion, as found above, is

to be expected.

5.3. Check of the symmetry relation of K€aarger

In the paper [48] a rule about the correlations

between the components of the diffusion tensor

c2

Dz
¼ a2

Dx
þ b2

Dy
ð1Þ

has been derived by treating the migration of

particles as a sequence of uncorrelated movements.
Deviations caused by correlated moves of the

guest molecules are examined in [49] for ethane

and in [50] for some linear molecules in silicalite-1.

In [51], a quantity b is defined that is used in
several papers, e.g., [21,51] in order to examine the

validity of Eq. (1)

Fig. 8. Diffusion coefficients for I ¼ 4. ff means lattice and
molecule flexible, rf means molecule rigid and lattice flexible, fr

means lattice rigid and molecule flexible, rr means both lattice

and molecule rigid.

Fig. 9. (a) The velocity autocorrelation function of the hydro-

gen atom in the methane molecule and (b) its spectrum obtained

by Fourier transform.

Fig. 10. Comparison of the Fourier transform of the VACFs of

all atom sorts involved in the simulation.
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b ¼ c2=Dz

a2=Dx þ b2=Dy
: ð2Þ

The rule is found to be fulfilled approximately but

with some deviations [21,51] they may reach 100%

in some cases. In Table 1 the values of this quan-

tity found in the present simulations using the

MM2 potential parameters are shown.
The b values in Table 1 are never smaller than

1.0 but, in most cases they are larger. According to

Eq. (2) that means that existing correlations en-

hance the probability to remain in channels of the

same type. The diffusion in z-direction can only
occur if there is a sequence of moves through dif-

ferent channel types. b seems to increase somewhat
with increasing temperature and also with in-
creasing concentration of guest molecules. But,

because of the structure of Eq. (2) b is relatively
sensitive with respect to errors in Dz. Therefore,

conclusions drawn from Table 1 about the de-

pendence of b upon the temperature or upon the
model used, are ambiguous.

In [21] also b values that are smaller than 1.0
have been found in some cases but the majority of
results show also b values larger than 1.0. The
negative deviations from 1 are within the limits of

error. In [21], the guest molecules xenon and

methane are represented by spherical models.

In [52] b values that are smaller than 1.0 are
found but, this finding should be checked carefully

as, in a most recent paper [24], the durations of the

runs reported in [52] have been assessed to be too

small to get reliable diffusion data. This conclusion

is in agreement with our test of the b value given in
[52] for a concentration of eight methane per unit

cell in silicalite-1 at 300 K. Using the same inter-

action parameters as in that paper, we found in a
test run b ¼ 1:52, a value larger than one as it
should be expected. In [52], a value of 0.6 has been

given for this case.

5.4. Spherical averaged potentials

Finally, the degrees of freedom that are con-

nected with the rotation of the molecules are re-
moved choosing spherical averaged potentials for

the methane–methane and the methane–silicalite-1

interactions. In Fig. 11, the interaction energy of a

methane molecule with another methane, a lattice

oxygen and a lattice silicon are shown as a func-

tion of the center of mass distances. These poten-

tials have been obtained from a run with 32

methane molecules, that means I ¼ 4. The run was
done with a rigid lattice and rigid molecules at a

temperature of 300 K. We will explain the evalu-

ation procedure for the example of the methane–

methane interaction. The distances between 0 �AA
and about 10 �AA are of interest. This interval is
divided into small subintervals of 0.1 �AA. An aver-
age value of the interaction potential is calculated

for each subinterval. For example, the interval
between 2.5 and 2.6 �AA can be considered. When-

Table 1

The symmetry factor b as defined in Eq. (2)

b for I ¼ 1 b for I ¼ 4 T (K)

rr 1.00 1.34

rf 1.16 1.40 200

ff 1.32 1.30

rr 1.28 1.43

rf 1.43 1.46 300

ff 1.12 1.37

rr 1.40 1.36

rf 1.43 1.35 400

ff 1.38 1.36

rr 1.41 1.41

rf 1.25 1.50 500

ff 1.53 1.42

Fig. 11. Effective spherical potentials obtained by the proce-

dure described in Section 5. M–M means methane–methane

potential, M–O means methane–oxygen and M–Si means

methane–silicon potential.
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ever, during the run two CH4 molecules are found

to have a center of mass distance between 2.5 and

2.6 �AA then the sum of all mutual potential energies
between the atoms of these two molecules is cal-

culated and stored. The average of these values

stored throughout the whole run for the interval
between 2.5 and 2.6 �AA is taken to obtain an ef-
fective potential value assigned to the methane–

methane distance of 2.55 �AA. Lennard-Jones
parameters r and e are taken from the resulting
curves identifying r with the distance where the
interaction potential is zero and identifying e with
the minimum of the interaction potential. The

values of the LJ parameters are given in Table 2
named SA MM2 (that means spherically averaged

MM2 potential). Three MD runs for I ¼ 4 guest

molecules per intersection and at T ¼ 300 K as
before but now using these spherical interaction

potentials have been carried out. The results are

Dx ¼ 3:19� 0:08� 10�9 m2=s, Dy ¼ 8:88� 0:28�
10�9 m2=s, Dz ¼ 0:67� 0:02� 10�9 m2=s and D ¼
4:25� 0:09� 10�9 m2=s. D means the arithmetic
mean over all directions, i.e., one-third of the trace

of the diffusion tensor. These diffusion coefficients

from SA MM2 are compared in Table 3 with

values that result if other spherical potentials from

the literature are used. In order to improve the

statistics two independent runs, each of them with

an evaluation part of two million steps have been

carried out. The values given in Table 3 are the
mean of two runs.

An LJ parameter set has been derived by Smit

[53] from adsorption data. The corresponding

parameters and resulting D values are given in
Table 2. In order to reduce the number of pa-

rameters that must be adjusted the silicon–meth-

ane interaction has been neglected as this is also

done in many other simulations in the literature,
e.g., [13,14,16,17]. This approximation has been

examined and justified in [54]. A set of spherical LJ

parameters is also proposed in this paper. Unfor-

tunately, the LJ parameters for the CH4–CH4 in-

teraction are not given explicitly in [54]. Therefore,

we have calculated them from the polarizability

and the susceptibility given in [54] using the

Kirkwood–M€uuller formula [55].
In [5], several LJ parameters found in the lit-

erature for the interaction of methane with the

lattice oxygen are compared and gathered together

into two parameter sets, called set A and set B in

[5]. These parameter sets have also been included

in the present examination. In order to see the

influence of the CH4–CH4 interaction the r pa-
rameter of this interaction has been changed in the
runs named set A� and set B�.

For the test runs with spherical guest molecules

the time step could be chosen to be 5 fs. Therefore,

runs of 2 millions steps covered the same total time

period of the trajectories as the 20 million time

steps for the full MM2 model. Of course, addi-

tionally the computational effort per time step was

also smaller.
If the * potentials (that are only fictitious po-

tentials for test purposes) are excluded, then

Table 2

Lennard-Jones parameters r in �AA and e in kJ/mol for several
spherical averaged model potentials

Sorts r (�AA) e (kJ/mol)

CH4–Si 3.75 1.13

CH4–CH4 3.44 1.84 SA MM2

CH4–O 3.37 0.63

CH4–Si 0.0 0.0

CH4–CH4 3.73 1.23 B. Smit

CH4–O 3.694 0.7549

CH4–Si 0.0 0.0

CH4–CH4 3.56 0.912 Ermoshin/Engel

CH4–O 2.985 1.62

CH4–Si 2.14 0.29

CH4–CH4 3.817 1.232 Set A

CH4–O 3.14 1.5

CH4–Si 2.14 0.29

CH4–CH4 3.817 1.232 Set B

CH4–O 3.46 0.81

CH4–Si 2.14 0.29

CH4–CH4 3.5 1.232 Set A�

CH4–O 3.14 1.5

CH4–Si 2.14 0.29

CH4–CH4 3.5 1.232 Set B�

CH4–O 3.46 0.81

SA MM2 means spherical averaged MM2 as described in

the text. B. Smit means the parameter set derived in [53] from

adsorption data (heat of adsorption and Henry coefficient).

Ermoshin/Engel means the spherical model potential derived in

[54]. Set A and set B means that the LJ parameters, named in

this way in [5] have been used. In set A� and set B� the

CH4–CH4 r has been changed.
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among the examined spherical potentials the

spherically averaged MM2 (SA MM2) potential

yields the best agreement in D with the values
obtained from simulations that employed the full

MM2 potential this value being 6% higher than

that which resulted from full MM2 potential. It

should be emphasized that the parameter set de-

rived in [53] from thermodynamic data reproduces

very good thermodynamic properties of the system

but not D as can be seen in Table 3. Of course this
potential was not designed to yield diffusion data
but, it is interesting to see another example of the

well-known fact, that potential models, that yield

one property of the system well, may fail to re-

produce other properties.

The average potential energy per guest molecule

hUi is also given in Table 3. In [54], the heat of
adsorption H ¼ hUli � RT is given to be 20.1 kJ/
mol. hUli is the average potential energy per guest
molecule with respect to the zeolite lattice and

RT ¼ 2:5 kJ/mol at 300 K. As the runs reported in
Table 3 are not carried out at infinite dilution of

guest molecules the CH4–CH4 interaction is not

negligible and a direct comparison is not possible.

Of course, it would be possible to find a pa-

rameter set that reproduces all three components

of the diffusion tensor and its trace (i.e., four D
values) in agreement with the results obtained for

the MM2 potential. At high dilution the CH4–CH4
interaction plays no role. Therefore, there would

remain four parameters (two LJ parameters for the

CH4–Si and two for the CH4–O interaction). This

is exactly the number of D values which can be
used for the fit. But, according to our feeling, such

a simply mathematical fit in the four-dimensional

space is rather ambiguous. Moreover, the single

components of the diffusion tensor are difficult to
measure [56] so, that hardly accurate values can be

obtained from experiments. It is therefore unclear

whether the MM2 potential yields the relative

weight of the single components of the diffusion

tensor correctly. The comparison in Table 3 nev-

ertheless indicates which commonly used spherical

parameters give D correctly and it shows how
parameter variations influence not only the trace
of the diffusion tensor but also the relative weight

of its components.

6. Conclusions

The examinations show that there is an influ-

ence of the lattice and molecule vibrations on the
self diffusion coefficient of methane in silicalite-1 at

least for low concentrations of guest molecules.

The influence of the lattice vibrations turns out to

be much stronger than the influence of molecule

vibrations. Both kinds of flexibility enhance the

self diffusivity. As mentioned in [9] there are two

effects by which lattice and molecule flexibility can

influence diffusion. The additional degrees of
freedom act as a heat bath (energetic effect) and

the geometrical shapes of bottlenecks, potential

thresholds and, may be, the molecule change pe-

riodically (geometric effect). As there are no tight

bottlenecks for methane molecules diffusing within

the channels of silicalite-1 the geometric effect

should not be very important. So it appears to be

Table 3

Comparison of diffusion coefficients for spherical averaged model potentials with those obtained from the full MM2

Parameter set Dx Dy Dz D b hUi (kJ/mol)

SA MM2 3.19 8.88 0.67 4.25 1.58 )21.6
B. Smit 0.90 5.80 0.30 2.15 1.17 )14.6
Ermoshin/Engel 3.06 4.35 0.60 2.67 1.35 )15.6
Set A 2.11 4.89 0.41 2.47 1.63 )17.6
Set B 1.38 7.46 0.40 3.05 1.32 )13.2
Set A� 3.01 5.24 0.57 2.94 1.50 )17.5
Set B� 3.31 8.32 0.67 4.10 1.60 )13.0

Full MM2 1.42 10.2 0.38 4.00 1.47 )22.6

D values are in 10�9 m2=s. Additionally the average potential energy per guest molecule hUi is given.
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likely that the heat bath effect supports the cross-

ing of potential thresholds. Further investigations

should clarify if the geometrical change of the

threshold is also important. As the force constants

of the molecule vibrations are much larger than

those of the lattice vibrations the molecule is ra-
ther stiff in comparison to the lattice. A possible

contribution of geometrical effects can therefore

mainly be expected from lattice deformations. At

high loadings the influence of the lattice vibrations

and molecule vibrations as well is small. It can be

seen in Fig. 8 to be within the range of fluctua-

tions. The mutual thermalization of guest mole-

cules is sufficient even without lattice or molecule
vibrations in this case.

Effective spherical potentials were introduced

for the methane–methane and the methane–lattice

interaction by averaging over the orientations that

appeared throughout the MD run. Evaluation of

the diffusion coefficients using that model yields a

rough approximation for the trace of the diffusion

tensor, i.e., the over all directions averaged diffu-
sion coefficient but bad approximations for the

single components of the diffusion tensor particu-

larly for the x-direction.
Other spherical potential models have been

tested too. They show even less satisfactory results.

Even a potential shown in [53] to reproduce ad-

sorption data well does not yield good results for

D. This latter finding is in agreement with the well-
known fact that fitted potentials that reproduce

nicely one property of a given system can fail to

reproduce other properties. From the results it

may be concluded that spherical potential models

cannot reproduce all components of the diffusion

tensor with fair accuracy.
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Appendix A. The moments of the displacement and

the anisotropic diffusion tensor

The propagator for the x component is

Pxðx; tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
4pDxt

p exp
�x2

4Dxt

� �
;Z 1

�1
dxPxðx; tÞ ¼ 1: ðA:1Þ

Similar formulas are valid for the y and z direction.
If Dx ¼ Dy ¼ Dz ¼ D, then the spherical sym-

metric propagator can be defined as

Pð~rr; tÞ ¼ Pxðx; tÞPyðy; tÞPzðz; tÞ

¼ ð4pDtÞ�3=2 exp �r2

4Dt

� �
: ðA:2Þ

The moments of displacement yield in this

case [1]:

hj~rr �~rr0ji ¼ 4
ffiffiffiffiffi
Dt
p

r
;

hð~rr �~rr0Þ2i ¼ 6Dt;

hjð~rr �~rr0Þ3ji ¼
32ðDtÞ3=2ffiffiffi

p
p ;

hð~rr �~rr0Þ4i ¼ 60ðDtÞ2;
and D can be obtained from each one of these
moments. The first moment yields

D ¼ p
16

d

dt
hj~rr �~rr0ji2

and the second moment yields

D ¼ 1
6

d

dt
hð~rr �~rr0Þ2i

and so on.

In the case of anisotropy, one can assume again

that the three components of the probability dis-

tribution (propagator) are uncorrelated and hence

Pð~rr; tÞ ¼ Pxðx; tÞPyðy; tÞPzðz; tÞ

¼ ð4ptÞ�3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxDyDz

p exp

�
� x2

4Dxt
� y2

4Dyt
� z2

4Dzt

�
:

ðA:3Þ
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As r2 ¼ x2 þ y2 þ z2 is a sum of three contributions
with each summand only depending on one vari-

able, it is easy to show thatZ 1

�1

Z 1

�1

Z 1

�1
P ð~rr; tÞr2 dxdy dz

¼ 2Dxt þ 2Dyt þ 2Dzt: ðA:4Þ

In analogy to the spherical symmetrical case a

general D can be defined byZ 1

�1

Z 1

�1

Z 1

�1
P ð~rr; tÞr2 dxdy dz ¼ 6Dt: ðA:5Þ

Because of Eq. (A.4), this D is connected with Dx,

Dy and Dz by

D ¼ Dx þ Dy þ Dz

3
: ðA:6Þ

Unfortunately, such a simple procedure is not

possible for the other moments as they do not

consist of a sum of contributions that depend only

upon one coordinate. But, the moments can be
evaluated for each component. The first moment

yields

Dx ¼
d

dt
phjx� x0ji2

4
:

The second moment yields

Dx ¼
d

dt
hðx� x0Þ2i
2

:

The third moment yields

Dx ¼
d

dt

p jðx� x0Þj3
D E2	 
1=3

4
:

The fourth moment yields

Dx ¼
d

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðx� x0Þ4i
12

s
:
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