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The general method of paper I of this series is applied to derive kinetic equations (KE’s), i.e. 

closed exact equations governing the time evolution of the single-particle density matrix. The 

short-memory approximation of these non-Markowian equations is formulated in such a way that 

it is valid even in strongly inhomogeneous systems. The c-number diagram expansion of the 

integral kernels of the KE’s is obtained from the general rules of paper I. It is shown that certain 

secular divergent terms cancel each other. The diagrams decay into dynamic and correlational 
parts, the latter being given by cluster functions describing the correlations of the particles in the 

local equilibrium ensemble u(t) which is formulated in terms of the single-particle density matrix 

and of the Hamiltonian. The appearance of the cluster functions is the most pronounced 

difference of our KE’s in comparison with other KE’s which are formulated in terms of the 

dynamics of isolated clusters of particles. It is argued that our KE’s may be viewed as a highly 

summed version of these latter KE’s and that the ultimate reason for this difference lies in the 

fact that in our theory the conservation of the average macroscopic energy is taken into account 

explicitly. 

1. Introduction 

The use of kinetic equations (KE’s), i.e. of closed equations governing the 
time evolution of the single-particle density matrix which is related to the 
single-particle Wigner function (or distribution function in the classical case), 
is an old and very effective method to describe irreversible processes in 
physical systems. This kind of description lies midway between the full 
many-body treatment and the description by the use of equations of motion of 
macroscopic parameters, e.g. the hydrodynamic equations. As in most 
theories of irreversible processes, at the origin of kinetic theory lies the idea’), 
that with the time evolution of the system the number of parameters needed 
to describe the system largely reduces. 

The single-particle density matrix p”’ represents a relatively large set of 

25 



26 R. DER AND R. HABERLANDT 

parameters. In fact, knowledge of p”’ . IS equivalent to the knowledge of all 
single particle quantities. Therefore, from the point of view of the many-body 
theory the derivation of KE’s is much simpler than the derivation of the 
macroscopic equations since the latter correspond to a much more reduced 
description. Once the KE’s are known, macroscopic equations can be ob- 
tained from them by well known methods’). 

However, even in the case of dilute and moderately dense gases. the 
intuitive concepts which lead to the KE’s are based on physically unsatisfying 
assumptions like the molecular chaos assumption and the more fundamental 

theories are plagued with divergencies and other difficulties. In recent theories 
of correlation and memory functions, which are closely linked with linear 
kinetic theory, these difficulties have been partially solved’). These theories, 
however. rely heavily on the linearity assumption. Thus, the problem of a 
systematic microscopic derivation of general KE’s or, in other words. of the 
generaliration of the Boltzmann equation is far from being solved”). 

In the present paper we look at this problem from the point of view of the 

methods for the microscopic treatment of irreversible processes developed in 
paper I of this series’). There. a set of integro-differential equations was 

derived which are the exact closed evolution equations of a given set P of 
parameters* of the system. These equations-also called equations of 

motion -are exactly valid for any system arbitrarily far from equilibrium. 
In I it was shown that the equations of motion simplify considerably if the 

short-memory approximation‘) (SMA) is valid. For the SMA to be valid we 
must include all parameters slowly varying in time into the set P. To derive 
kinetic equations, the relevant set of parameters to be included into P are the 
matrix elements of 11”). However, from the point of view of the SMA this 
choice is not yet complete. In fact, since the total energy of the system is a 
conserved quantity it is certainly also a slowly varying quantity and thus has 
to be included into P. too. In the SMA, this will be seen to change the nature 
of our KE’s considerably. 

Except for the parameters in P. in general there might be still other slowly 

varying parameters forming a parameter set Q. Actually. in this case the SMA 
is valid only in a \et of equations of motion involving the parameters of P and 

Q. What we do by making the SMA in our KE’s is to select from this more 
general set of equations just that subset which corresponds to the parameters 
in P. This will be correct as long as the coupling between P and Q is 
negligible. 

If the coupling is strong, the long time tails of the integral kernels in our 

KE’s do not cancel each other and long memory equations result. Apart from 
physical consequences regarding the sense of such equations this means that 
the tails have to be calculated by summing the appropriate diagrams. 

The numerous works”) concerning the ring summation to get the t “’ 

*In this paper. we use the word parameter Instead of observable as in I because an observable 
should refer to a macroscopic quantity represented by a hermitean operator whereas a parameter 
might well be represented hy a non-hermitean operator as in (2.5). 
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behaviour of correlation functions or the investigations in ref. 7 have shown 
that this is possible but have also revealed the great obstacles which will be 

encountered in following these lines. The reason, of course, is that here 
complicated macroscopic processes associated with the variables in Q are 
treated microscopically. 

These considerations quite clearly outline our point of view concerning the 
practical problem of deriving general KE’s. The description of the time 
evolution of a many-body system by KE’s is physically meaning only, if the 
coupling to the slowly varying parameters in Q is so weak that the short 
memory approximation is valid. Then, only the rapidly decaying diagrams 
contribute to the KE’s. In other cases one has to refrain from using KE’s but 
instead has to enlarge the space of parameters by including the two-particle 
density matrix p’*‘. 

This approach is inherently free of divergencies and of the need to 
calculate the long time tails of the kernels. Of course, there always remains 
the question as to the validity of the short-memory approximation. As a 
partial confirmation of this approximation, it is explicitly shown in section 5 
that in the Markowian limit those parts of the long-time tails of the integral 
kernels which result from the secular divergent diagrams cancel each other 

indeed. The proof is carried out indirectly by deriving a new version of the 
diagram expansion for the KE’s, this new version being free of the divergent 
terms mentioned above. 
identical. 

In the Markowian limit both these versions become 

2. The kinetic equations 

For simplicity of notation, we will consider in this paper a monocomponent 
fluid of structureless particles interacting via two-body forces only*. The 
Hamiltonian of the system be given in second quantized form by 

J-l = 2 l ,a,‘a, + i 2 (pIpzJ WIp3p4)ai+a;a4a3 (2.1) 

where the az(a,) are the operators for the creation (annihilation) of a particle 
having momentum pn and E, is the corresponding kinetic energy. 

Taking exchange into account explicitly, the matrix elements in (2.1) are 
given as 

(PlP21 WIPZPJ = (1 21 WI3 4) 

=+ w(q)[G(Pl+q-P,)s(Pz-q-P4) 

+ Ks(P* + 4 - P#(Pl- q - lb)], 

(2.2) 

* As should be clear from I, more complicated interactions and the internal degrees of freedom can 
be included without difficulties. 
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where 

W(q) = 1 d3r em”‘*“‘W(r) (2.3) 

is the Fourier transform of the pair-interaction potential, 6(p) is the 
Kronecker symbol c$,.~ and 

+ I for Bosons 
K= 

- 1 for Fermions. 
(2.4) 

2.1. Formal structure of the kinetic equations 

The matrix elements f(i, k; t) of the single-particle density matrix p::i are 
given by 

(klp$li) = f(i, k; t) = Tr {a;aip,,,}. 

where ptt) is the solution of the Liouville equation of the whole system. The 
operators corresponding to the f(i, k; t) are thus given by 

A 
f(i, k) = a;ai (2.5) 

The parameters f(i, k; b) are connected with the single-particle Wigner func- 
tions F(p, w, t) by the familiar relations’) 

F(p, r, t) = 
I 

d”q e(“*“‘(p + $qJp(‘)(t)lp - tq), (2.6) 

(p + tqlp(“(t)lp -44) = & 1 d3r e’-“*“‘F(p, r, t) (2.7) 

so that any equation obtained in terms of the f is easily reformulated in terms 
of the F. 

As discussed in section 1 the parameter set P also includes the total energy 
of the system, which is represented by the Hamiltonian H. For similar reasons 
we include the total number operator N, too. Thus, our representative 
ensemble takes the form 

a(t) = exp {A,,(l) + A,(t)H + h4t)N + z A,,(t)f(i, k)}. (2.8) 

As usual the parameters h(t) are determined from 

f(i. k. t) = Tr <fCi. k)cr(t)}, (2.9a) 

(H) = Tr {Ha(t)} = const., (2.9b) 

(N) = Tr {NW(t)} = const., (2.9~) 

Tr c(t) = I (2.9d) 

and thus may be regarded as functions of f(i, k; t) and (H). Since N can be 
written as a linear combination of f(a) we may always put AZ(t) = p where CL 
is the chemical potential of the system in its final equilibrium state. The 
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concrete functional connection between (H), f(t) and h(t) is obtained from 

the diagram expansion of n(t, t’) introduced below by noting that 

f(i, k ; t) = f&(t, t). Since p&‘: is a hermitean operator we find that by virtue of 
(2.9) a(t) has also to be hermitean wherefrom it follows that h,*(t) = ~$.~(t) at 
all times t. 

To simplify the notation we introduce greek indices to denote pairs of 
momenta 

a = {i, k}, P = 11, ml, . . . > 

so that 

f(L k; t) = f(a, t) = f&l; f(i, k)=f(a)=fa 

with the above choice of parameters, the exact KE’s are obtained im- 
mediately from the equations of motion in I 

f._(t) = -i@‘(t) 

-_ W(t, t’) - i c ~$(t’) 
B 

0 

(2.10) 

Introducing the Heisenberg and interaction representation of the operators f_ 

the 

jz(t) = e”/h’Htf~ e”/h’Ht, 

jA( t) = eci/r,H,r~_ e(-ilWN,I, 

CP) and the related quantity R are written here as 

0?(t) = i Tr tim(O) 

0Z’(t, t’) = -Tr @_(19)a(t’)} = Tr gh(8)Ufi)U(s, O)La(t’)), 

d2%‘(t, t’) = i Tr d_,(6)a(t’)} = Tr uA(S)L(S)U(S, O)a(t’)}, 

Q(t, t’) = Tr &(6)c+(t’)} = Tr &(6)U(6,O)a(t’)}, 

(2.11) 

(2.12) 

(2.13) 

where L = Lo + L, is the Liouvilleoperator, L(6) its interaction representation 

and 

L,(a) = eiLoaL emiLoe, 

L,(& 5’) = eiL,f e-‘L (E-C, emiL,e’ 

9=t-t’. 

(2.14) 

(2.15) 

By virtue of (2.9), the nCi’ are functions of the fn and thus we may consider 
the equations (2.10) as KE’s describing the time evolution of the f_(t), these 
equations being written in the form of implicit integrodifferential equations. 
As demonstrated in I, the f(t’) on the r.h.s. of (2.10) could be removed by 
iteration but this proves inconvenient since we focus our attention on the 
SMA. 
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2.2. The short memory upproximation 

Before introducing the short-memory assumption (SMA) let us discuss the 
free-streaming terms occurring in the KE’s. As the first step we carry out the 
Lo term in 0(“). We easily find 

Tr {fr,L,,v(t)) = -Tr {a(t)Lf,} = i (E, - Ek)fr(t) = i Enfn(t). (2.16) 

Since 

Tr {fncr(t)I = Tr &p(t)1 

and 

p(t) = c(t)- dt’ 
I [ 

ie 

0 

we may rewrite the KE’s as 

F s+ $ Ed,(t)] = -i Tr {i,L,c(t)} 

- 
I 

d6[Tr cf^j,(-9)L1(6)U(6, O)L, e”~~~“c?(t - a)} 

where 

+ i Tr ~b(6)L1(-9)U(6, 0) e”+9G_(t - a)}]. (2.17) 

a(t - _9) = e-“~~)‘9u(t - 0) (2.18) 

and 

G-(t - 8)=&6(t - 6) = (-iL,,-2 f,(t - 6) af (T(t - -9) (2.19) 
I3 ” 

was introduced formally. 
To discuss c?(t - 9) we assume for the time being that 6 is a time of the 

order of the collision time which in turn is of the order of the memory time 7. 
Assuming 7 to be small as compared with the relaxation time t,,, associated 
with the dissipative processes, we find that in the interval -9 < T the time 
evolution of the system is governed mainly by free streaming, i.e. it is 
described approximately by (2.17) with the r.h.s. put equal to zero. Since 
exp [-iL,6] is the time evolution operator of free streaming we may write 
approximately 

a(? - 6) = e”@~( t), 6 < 7, (2.20) 

this approximation being the better, the weaker the interaction and thus the 
greater t,,, . 

In this approximation 6 is a quantity which in the time interval considered 
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varies on a time scale given by t,,,. however strong the inhomogeneities in the 

system might be. 
Because of this fact and because of 

we find as in I that in the interval 6 < T the second term under the intergral 
sign in (2.17) has a step-function like behaviour if the first term is s-function 
like. Therefore, for sufficiently small values of T the SMA is formulated as 

_ I d6 Tr C~^&Y)L,(IY)U(S, 0)L,(~(t - ~))RDP, (2.21) 

where RDP means that only this part of the trace is retained which decays 
rapidly with time so that its contribution may be neglected after the charac- 
teristic time T. Note that in (2.21) there appear no longer terms containing Lo. 

The Markowian limit of this equation is obtained by putting 

(T(f - IY) = 6(t) = a(l). (2.22) 

By taking the Markowian limit in this way, the memory effects due to 

free streaming are accounted for at least approximately, whereas the memory 
effects with respect to the dissipative processes are neglected. 

To assess the physical meaning of the Markowian limit (2.22) let us assume 
for the moment that the many-particle collision processes contributing to the 
RDP term in (2.21) are such that they are completed after a very short time 
6 < T so that the index RDP may be dropped. Then, we may assume that the 
Moller super wave-operator 

or 

exists’). Introducing (2.18), (2.22) into the last term of (2.21) we conclude from 

the existence of 0::’ that the lower limit of time integration may be taken to 
--oc provided the usual damping factor is introduced. Thus under the above 
assumptions the Markowian approximation reads 

i+$(~--t~) f~(~)=-iTr~=L,R:+‘a(t)} 
I 

(2.23) 
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5 + i (E; - Ed)] fn(t) = -i Tr {fJ,IL!n(+)(+(t)fl(+)+}, (2.24) 

where 

was used, a(‘) being the usual Mgller wave 
These considerations show that explicitly 

effects due to free streaming immediately 

operator”). 
taking into account the memory 
leads to the occurrence of the 

many-particle wave operator expressing the scattering properties of a selected 
number of particles. This would not obtain if we had formulated the short 
memory approximation and the Markowian limit in the usual way, i.e. in 
terms of (T instead of &. Note also that the reversible term”.‘*) on the r.h.s. of 
(2.21) is absent in (2.23), (2.24). 

2.3. Correlation functions 

For completeness let us reformulate the KE’s (2.10) in terms of non- 
equilibrium correlation functions and discuss the linear approximation. 
Using”) 

La(t) = -i 2 &3(t)jP,,a(t), j = j(O), 
B 

where the tilde denotes a kind of Kubo transformed 

Z?, = 
I 

dxc+(t)+Bc+(t))+ (2.25) 

0 

and expressing the time 

the equations (2.10) are 

derivative k(t) as 

/i,(t)fi, ff(f) 
I 

written now 
I 

+ (LU - t’)L~r&(t’)} +(j”(t -- f)fL)A,(f~)]. (2.26) 

where the non-equilibrium correlation functions (All), are defined as 

(AB), = Tr {Ah(t)}. (2.27) 

In the vicinity of the equilibrium the A,(t) are small so that we may consider 
the linear approximation of (2.26). This is obtained by replacing in (2.23, 
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(2.27) a(t) with p_, the grand canonical ensemble. In this linear ap- 
proximation the equations (2.26) are 

- I dt’ c Hh - t’dA,.A,(t’) + &(t - tr$~)~,.i,(t~)), (2.28) 
B 0 

where 

ILAt - t’) = (LO - t+@L 

is the quantum analog of the van Hove phase-space correlation function’3). 
It is interesting to note that the diagram expansion of K,.,(t - t’) and its 

time derivatives appearing in (2.28) are easily obtained from the diagram 
expansion of fl,(t - t’) by using the fact that 0, is the generating function (or 
functional in the case of an infinite system) of the above correlation functions. 

3. The diagrams 

We shall now specify the diagrams, given for the general case in I, to the 
concrete interaction and representation chosen in this paper. 

We begin by choosing a concrete form for uo, the interaction free ensemble 
(2.8). We take 

co = exp {AA”- /!I(& - PA/)}, (3.1) 

where p, p are the inverse temperature and the chemical potential of the 
system in its final equilibrium state and N is the particle number operator of 
the whole system. By virtue of its special form u. is independent on time and 
commutes with Z-L Thus, the free Green functions are diagonal in the 
momentum representation and we have 

I -1 = S(i, k)go’(i) = - 6(i, k) Tr {a,a~~O}, (3.2) 
i k 

I I 
I I 
-A = 6(i, k)g:(i) = - KS(I’, k) Tr {a;aiao}. (3.3) 

k i 

In I, for the sake of generality, the Hugenholtz notation of the interaction in 
the diagrams was used. Since we deal only with one- and two-particle 
interactions here we prefer to use the usual notation by means of interaction 
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lines. Thus we have two kinds of dashed lines 

I 

r 
--- t-- 

8;. 
1 / __I____ 
‘\, 

4. ( 
(3.4) 

k 
I 
I 

? - 4 

( 2 ) tt11 

where (3.4a) corresponds to j:(8) and (3.4b) to the interaction W. Similarly, 
we have two possibilities for wavy lines occurring in the a-parts 

) 
(3.5) 

_+__* ._ 
3 

(a) (b) 

In the above notation to each Hugenholtz diagram corresponds quite a group 
of diagrams which differ from each other only in the ways the Green function 
lines are connected to the vertex points of a given interaction line. We call 
such a group of diagrams an exchange group. Since the interaction (2.2) 
contains direct as well as exchange terms all members of an exchange group 
are taken into account automatically in working with this interactionId). Thus 
only one member of an exchange group has to be considered. As a con- 
sequence the equivalent pair of lines rule (A.3) arises. 

For statistical applications this way of drawing diagrams seems to be 
especially convenient because at high temperatures exactly one diagram of 
each exchange group survives (see appendix B). 

As usual we may replace free Green functions by exact ones. Consider the 

diagram series 

I I I I 
I I , 

I I I 
I= 1 

/ 6(i, k) 

i k i k 

+ AC;’ = G'(i, k; t’), (3.6a) 
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(3.6b) + a..... 
i k 

Using (3.2) and (3.3) we find immediately 

G’(i, k; t’) = -Kf(i, k; t’), 

c’(i, k; t’) = -[S,,, + Kf(i, k; t’)], (3.7) 

where the f(i, k, t’) are the matrix elements of the single-particle density 
matrix. 

By this procedure, the summing of the a-part self-energy structures, we 

introduce the f(t’) directly into the diagram expansion. Thus, the h(t) are 

partly eliminated from the formalism and -apart from the many-particle 
a-parts -we never need to worry about the connection between the A and the 
f. This is an important simplification and is the main reason why we have 
favoured the f over the Wigner functions F. 

In the following, except for the a-parts, we will exclusively work with 
the exact Green functions. For simplicity we shall associate light lines with 
these exact Green functions. In inhomogeneous systems the line ends carry 
different momenta. No a-part self-energy structures must appear between 
dashed lines. The concrete description for the construction and evaluation of 
the diagrams is given in appendix A. 

4. Analysis of diagrams 

In this section we are going to discuss some of the pecularities of the 
expansion of the O”‘(t, t’), We intend to give qualitative criteria to assess the 
time dependence of the diagrams and to give a physical interpretation of their 
different parts. Let us begin with a simple partial summation procedure which 
leads to the introduction of cluster functions. 

4.1. C’luster functions, dynamic and quasistatic correlations 

Consider the diagram expansion of the n-particle Green function G:;’ 
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introduced in I. Obviously we may write 

(4.1) 

not drawing explicitly the exchange diagrams in the single-particle GF’s. It is 
understood that all lines not being connected to circular vertices correspond 

to exact GF’s. The circular vertex having 2m external lines denotes the 
cluster functions g, and is defined as the sum of all m-particle o-parts. The 
expansion (4.1) is analogous to the usual cluster expansion of the m-particle 

distribution function. The g, describe the correlations of m particles and have 
in the case of a short-range potential the property of being zero if the particles 
are not closely together. From reasons to be made clear below these cor- 
relations will be called quasistatic correlations. 

The cluster functions can be readily introduced into the diagrams of 
fl(t, t’), too. This is easily achieved by replacing any a-part with the cor- 
responding cluster function. This procedure corresponds to a partial sum- 
mation of the a-parts. 

Now, consider a diagram containing no cluster functions. From the con- 
struction of the diagrams (see I) it follows that this diagram was constructed 
from the first term on the r.h.s. of (4.1) this term corresponding to the vacuum 
of quasistatic correlations. We read the diagram in the direction of increasing 
time, i.e. from right to left. The diagram begins with the interaction line (B.6) 
describing the dynamical event that two particles in states 1 and 2 collide and 
go over into the new states 3 and 4, respectively. Thus, starting from the 
vacuum of correlations, a correlation between the two particles has been 
created. In the usual language of many-body theory one might also say, that 
two particle-hole states have been created. 

The correlation then propagates in time. Since all lines correspond to exact 
GFs it is taken into account that the propagation does not take place in free 
space but in a medium described by I. Thus, in the inhomogeneous case 
the momentum of the propagating particles or holes may change. As time 
moves on, new correlations are created (B.5) the correlations may change 
(B.3), (B.4) or may be destroyed (B.2). At time t all correlations are destroyed 
but for a single particle hole state, the probability of which is “measured” by 
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the leftmost vertex (3.4a). We find that the diagrams describe the creation, 

propagation and destruction of dynamical correlations. 
Now, consider a diagram containing at least one a-part or in the resummed 

form at least one circular vertex corresponding to a cluster function. Actually, 
this vertex has to be drawn to the right of all LO-vertices since the quasistatic 
correlations refer to time t’. These diagrams take into account that there are 
already correlations present before the dynamic correlations are created. 

From these considerations qualitative conclusions concerning the time 
behaviour of the diagrams may be drawn. From a number of papers it is well 
known’5.16) that the short-ranged dynamic correlations decay after a very 
short time provided the interactions are sufficiently well behaved. Thus it 
follows, that the dynamic part of the diagrams fitting into the above picture 
represents very short-lived processes and that these diagrams give a zero 
contributions if the time difference between the first and last dashed in- 
teraction line is greater then a characteristic time which is of the order of the 

collision time. 
Contrarily to this very rapid behaviour of the dynamic correlations, the 

correlations represented by the cluster functions (or the a-parts) change only 
over a time scale which is related to the relaxational behaviour of the f(t’). 
These are the correlations contained in the local equilibrium ensemble a(t), 

whereas the dynamic correlations are created by the movement of p(t’) and 

reflect the fact that p(t’) is not equal to a(t’). 
If (I changes adiabatically slowly as compared with the characteristic 

time of the dynamic correlations then we can always assume that the latter 
are decayed and the cluster functions represent very nearly the real cor- 
relations observed in the system at time t’. It is for this reason that we call 
them quasistatic correlations. In the vicinity of the equilibrium these quasis- 
tatic correlations become the static correlations well known from the linear 
theories3.“). 

4.2. Secular divergent diagrams 

From the above rule concerning the time behaviour of diagrams there is an 

obvious and important exception caused by certain self-energy insertions. Let 
us call any part of a diagram which is removed from the rest of the diagram 
considered by cutting two equally (contrarily) directed lines a self-energy 
structure of type I (II). Thus the diagram of fig. lb contains a type II 
self-energy structure (SE II) and the diagram of fig. 3 a self-energy structure 
of type I (SE I). 

Now consider any diagram containing an SE II. From rule (A.2) we could 
associate with each of the external lines of the SE II an oscillating factor 
which would cut off the time integration associated with the leftmost dashed 
line in the SE II. Now, let us consider for the moment a homogeneous system. 
Because of the momentum conservation the oscillating factors of the two 
external lines cancel each other this leading to an unrestricted time integration 
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,a) 1d.l 

Fig. 1. The dressing procedure. In fig. la there is shown an irreducible diagram with a single line 

running from a dashed line at r, to another dashed line at rl. drawn explicitly. In fig. lb this line is 

replaced by an SE II-insertion having an arbitrary number n 2 1 of dashed and wavy lines. Note 
that the time integrations associated with the dashed lines in this insertion might well extend to 

times t > tl. 

Fig. 2. Some typical diagrams which arise if the time integrations in the SE II-insertion of fig. lb 

are split into two regions t > t, and t < t,. In the figures, these time integrations are restricted by 

the dash-dotted line. All the dashed lines of the SE II which occur to the left of this line are 

integrated from tl, onwards and those occurring to the left of it are integrated up to tt only. 

Figures 2a to 2c are explained in the text. Figure 2d is an example of a more complicated diagram 

which is also contained in fig. lb. In this diagram, the top SE II-insertion is not affected by the 

dash-dotted line. The latter insertion dresses a line in the SE I-insertion it is connected with. 

Fig. 3. The diagram of fig. la with an SE I-structure inserted. The sum of this diagram and of all 

the diagrams of fig. 2b is obtained by making the replacement (A.5’) with respect to the line 
labeled li. 

and therefore asymptotically to a factor (t ~ t’). Thus we encounter the 
secular divergencies well known in all time-dependent perturbation expan- 
sions of statistical mechanics. 

In inhomogeneous systems the SE II-diagrams are not strictly divergent 
because the momentum is not conserved. Therefore, the oscillating factors 
are preserved and the time integrations are cut off, however, for macroscopic 

times only. 
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5. Reformulation of the kinetic equations and the 
short-memory approximation 

In the preceding section we found that in the diagram expansion of the LICi) 
there occur secular divergent terms. As usual”) the sum over all of these 
divergent terms yields part of the long-time tail of the flCi). These diagrams 
therefore do not contribute to the short-memory form (2.21) of the KE’s. 
From the considerations in section 4.1 one would expect that all the other 
diagrams of nCi’(t, t’) should be taken into account in (2.21). However, if the 
parameters of the set Q introduced in section 1 play any role in the time 
evolution of the system then the macroscopic processes associated with these 
parameters might slow down the formation or decay of the dynamic cor- 
relations. In this case, the corresponding diagrams are also slowly decaying or 
even secular-divergent and have therefore to be excluded from contributing to 
(2.21). 

These considerations show that the application of the SMA allows to 
exclude from the outset a great number of diagrams from the definition of the 

integrand in (2.21). Yet there remains always the question as to the validity of 
the SMA. Partially this important question is answered in the affirmative by 
showing that those diagrams of 0(‘) which contain SE II-insertions cancel 

with certain secular divergent terms of the third term in (2.10), in the 

Markowian limit and at late times at least. 
The proof is sketched briefly as follows. We insert the diagram expansion 

of the kernels into (2.10) and then we iterate the equations. In doing so one 
has to notice that the derivative may be written as 

a a’ a= 
$(iq = a’fo+ ivf(f’) (5.1) 

where a’ acts only on the f(t’) associated with the lines of the diagrams of L?(‘) 
via the line bundle rule and X acts on the cluster functions. The essential 
point of the proof consists in showing that the terms in a’ which arise in the 
course of the iteration are very similar to the SE II diagrams of n(‘)(t, t’) with 
the t, = 0 dashed line occurring in an SE II. In the Markowian limit and at 
sufficiently late times they both become identical and cancel each other 
because of their opposite sign. 

Although conceptually simple the detailed proof is rather involved and will 
not be given here. 

Instead we shall explicitly construct a modified version of the general KE’s 
in which the terms in a’ and the SE II-diagrams of n(l) are missing altogether. 
In the Markowian limit the relevant diagrams in the two forms of the KE’s 
become identical and thus the existence of this new version of the KE’s may 
be regarded as an indirect proof of the cancellation procedure alluded to 
above. In addition, the new version of the KE’s is somewhat more compact 
and allows a more detailed comparison with other existing theories’8.‘9.20). 

To get the new formulation we reverse the way which led us to our 
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diagrammatical KE’s. We diagrammatically express the rate of change of f(t) 
in terms of the initial conditions first and then remove the initial conditions by 
partial summation and by applying our partial integration procedure in- 

troduced in I. 

The first step is easily achieved. We introduce 

L(& to) = 0,(1, &l) = (L(t - t”)), (5.2) 

where f_(t, to) is the single-particle density matrix if at time tc we had 
a(&) = p(t,). In particular we have f,(t, 0) = f_(t). The diagram expansion of 
faf,(t, to) is given by the sum of all the &(t, tO) diagrams. Note that in these 
diagrams all cluster functions depend on fm(tO). Analogously as in ref. 18 the 
initial conditions given by the f(&J are partially removed by summing the SE 

II insertions. 
Consider an irreducible diagram, i.e. a diagram having no self-energy 

insertions at all. Now let us dress with SE II insertions an arbitrary line of this 
diagram connecting two dashed lines. The diagrams arising from this pro- 
cedure are depicted in fig. 1. In fig. 2 some typical diagrams are shown which 
arise from the diagram of fig. lb if one splits at the time t,, the time 
integrations associated with the dashed lines in the insertion. Note that all of 

the diagram parts in the figures may contain an arbitrary number of wavy 
lines. 

From the diagram rules we find that in fig. 2a the insertion contributes the 
factor 

(5.3) 

where the box contains any diagram structure having at least one dashed or 
wavy line and the sum means that all of these diagrams are summed over. 
From (5.3) and (5.2) it follows that the sum of the diagrams of figs. la and 2a 

is given by the diagram of fig. la alone provided in the line bundle rule we 
replace the Green function associated with this line according to the rule 
(A.5’) in appendix A. 

Similar considerations show that the diagrams of fig. 2b together with the 
diagrams obtained by dressing the line considered with SE I-insertions (see 
fig. 3) are taken into account by retaining only the diagrams of fig. 3 provided 
the replacement (A.5’) is made in the line labeled k. 

There appear some anomalous diagrams which result from the diagrams of 
fig. 2c. 

In these diagrams the dash-dotted line is understood to cut through the SE 
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I-insertion in such a way that the dashed interaction lines the external lines of 
the insertion are connected with always occur on different sides of the 

dash-dotted line. Such an insertion we shall call in the following a time 
restricted self-energy insertion (TRSE). 

Carrying out the same dressing procedure with all the lines of a given 
irreducible diagram and with all the lines of the diagrams thus generated (like 
those in figs. 4 and 5) we finally find that fl,(t, t’) is given by the sum over all 

(a) (61 

Fig. 4. Some of the diagrams containing TRSE insertions. (a) results directly from fig. lb whereas 

(b) results from fig. 2c. The sum of both these diagrams are accounted for by retaining (a) only 

and making in the line labeled k the replacement (A.5’). 

Fig. 5. Another diagram resulting from the diagram of fig. 2c if the time integrations in the SE II 

are restricted further. 

those diagrams which do not contain any SE II and which are evaluated by 
using rule (AS’). These diagrams may contain SE I-insertions, TRSE-in- 
sertions, TRSE-insertions into TRSE-insertions and so on. A special example 

is drawn in fig. 5. Considered as a function o*:er the f(t), this new diagram 
series is an other functional expression than the diagram series of n(t, t’) 
described earlier. To make this difference explicit we denote this new series 
by fi or @. Of course, the values of both functionals agree if (and only if) 

the f(t) are inserted as arguments. 
Using the new diagram expansion and (5.2) we may write 

fact) = fut, 0) = c,(t) + R(t), (5.4a) 

jh( t) = @‘(t, 0) = CP’( C) + D?(t), (5.4b) 

the Cm, 0, and Cz), DL*’ denoting the sum of all the diagrams with and without 

cluster functions (or a-parts), respectively. Note that the Cab, Cb” no longer 
contain the initial conditions whereas the Da, Dlf’ depend on the f(O) via the 
cluster functions. 

To remove the dependence on the initial conditions completely we apply 
the partial integration procedure of I to each of the diagrams of D,(t), D?(t) 
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obtaining 

[~+~“l~‘(‘)=-iTr~,L,~(t)l 

_ &“(t, t’) + c {p(t’) & @(t, ty]. (5.5) 
P P 

0 

As proposed above in (5.5) there are missing all terms containing the 
derivatives a’ and all those diagrams which contain SE II insertions in which 
the leftmost dashed line is unrestricted with respect to time integrations. 

The short-memory approximation of these equations is formulated as 

(5.6) 

which agrees in the Markowian limit with (2.21). 

A detailed discussion of the different forms of KE’s shall be attempted in 
section 6. 

6. Conclusions 

In the preceding sections we obtained a set of exact closed equations 
describing the time evolution of the single-particle density matrix. This was 
achieved by applying the general method developed in I to the concrete set of 
parameters given in section 2. The diagram expansion of the relevant integral 
kernels has been discussed in detail. 

Some interesting properties of this expansion should be noted. As in the 
theory of equilibrium and non-equilibrium Green functions’y.Z”.2’), the diagram 
expansion is a c-number expansion. This results from the fact that the 
diagrams are written down in terms of the interaction part of the Hamiltonian 
and not of the Liouvillean. The diagrams have great similarity with the usual 
many body diagrams for the calculation of the expectation value of a 
one-body operator starting from a correlated ground state. The most 
pronounced difference is contained in the line bundle rule. However, from the 
rules given in appendices A, B it should be obvious that at least in the 
Maxwell-Boltzmcnn limit the qualitative behaviour becomes the same as that 
of the usual many body diagrams. Thus it is felt that all the techniques known 
from the many body theory in equilibrium or at T = 0 may be carried over 
with minor modifications. Thus, it will be shown in a later paper that the 
renormalization of the interaction is easily achieved by summing the two- 
particle ladder diagrams. 

The most interesting feature of our diagram expansion consists however in 
the appearance of the cluster functions in the short-memory form (2.21), (5.6) 
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of the KE’s. To discuss this point further let us consider the KE’s (5.4b) first. 
Since D:*‘(t) contains the effect of the initial correlations we may neglect 

D:‘(t) after a very short time provided we make the usual assumption of the 
rapid decay of the initial correlations. This should be valid for sufficiently well 
behaved potentials, in not too dense systems at IeasP). Then, at sufficiently 

late times 

.j=(t) = c:‘(t). (6.1) 

are a set of closed KE’s describing the time evolution of the system in a very 
good approximation. As should be clear from the diagram rules, in the 
Maxwell-Boltzmann limit the diagram expansion of C?(t) can be regrouped to 
become an expansion in powers of the density (see also ref. 22). The 
coefficients of such a virial expansion are given by the dynamics of isolated 
clusters of particles and are well known to diverge with increasing time2’). 
The sum of all slowly decaying and divergent terms yields the long-time tail of 
c:*‘(t). 

Now compare (5.6) with (6.1) and let us assume for the following discus- 
sions the validity of the SMA and the rapid decay of the initial correlations. 
Then, for sufficiently late times both the equations (5.6) and (6.1) describe the 
time evolution of the f(t) correctly. Yet they have in common only the rapidly 
decaying diagrams not containing cluster functions. From the above con- 
siderations and from the fact that each cluster function contains arbitrarily 
high powers of the density it follows, that each cluster function diagram 
contributing in (5.6) corresponds to the effect of a whole subset of slowly 
decaying or divergent diagrams of (6.1) or of parts of the contributions of 
such diagrams*. 

These considerations also show that in dense systems where the con- 
tribution of the cluster function diagrams is large, the long time tail and thus 
the long memory behaviour in (6.1) is very important. 

To explore this fact further we note that (6.1) would be the exact KE’s if 
we had included the Hamiltonian H into the parameter set Q instead of into 
P. Then, H is missing in (2.8) and thus there are no diagrams containing 
cluster functions in the KE’s, this yielding also D(t) = 0 in (6.1). From the 
point of view of section 1 we may therefore conclude that the ultimate reason 
for the difference between the two equations (5.6) and (6.1) lies in the fact, 
that in the former equations the conservation of total macroscopic energy 
(2.9b) is taken into account explicitely whereas it is ignored in the latter. This 
should be expected from physical reasons since isolated clusters of particle 
cannot “know” about the macroscopic energy of the system, at least if (in 
classical language) the total potential energy is comparable with or greater 
than the total kinetic energy. 

Of course, the above conclusions hinge on the very probable but as yet 

*There is of course the possibility. that the contribution of one diagram of C”‘(t) is 

represented by several cluster function diagrams of (5.6). 
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unproven validity of the SMA. It is therefore very satisfying that the cluster 
function diagram of lowest order contributing to (5.6) yields an Enskog-like 
equation which reduces in the appropriate limits to the intuitive Enskog 
equationz.24). This will form the subject of a later paper. The Enskog equation 
is well known to describe the behaviour of rather dense gases and is a good 
approximation even in simple liquids”). At this level of approximation the 
above general considerations agree completely with the usual reasoningz6.“) 

that the Enskog equation represents a highly summed version of those 
generalized Boltzmann equations which are formulated in terms of isolated 
clusters of particles. 

From the computational point of view the evaluation of the diagrams splits 
in the problem of the correlations and the problem of dynamics. This is very 
desirable since the evaluation of the cluster functions is essentially a problem 
of equilibrium statistics. 

It is often argued**) that even if the dynamics of the problem is dealt with 
approximately, the relaxation of the system is described reasonably good 
provided the cluster functions are calculated correctly. Hopefully, this will be 
the case in our expansion (S.6), too. 
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Appendix A 

The diagram rules 

In the following the diagram rules for the diagrams of C!(t, t’) shall be 
given. Except for rule (A.5) which is to be read together with (A.5’) the rules 
are the same for the diagrams of fi(t, t’) introduced in section 5. The diagrams 
of &?(‘I or fiCi’ may be obtained either by simple time derivatives or by directly 

starting from the explicit expressions (2.13) for the CP’. In either way one 
finds that the diagrams of n(‘) are the same as those of 0 except for the fact 
that the leftmost dashed interaction line carries time 6 = t - t’. Moreover, in 
the a”) diagrams the rightmost interaction line carries time t, = 0. 

Additionally, there occur diagrams having a single-particle LO-vertex cor- 
responding to the L,,-terms in Q(l), C!(‘). Since these diagrams are easily 
obtained from the diagrams of fi by simply introducing L,, vertices and since 
these diagrams should be dropped in the short-memory approximation we do 
not consider them any further. All the remarks made above carry over 
immediately to the fiii’l’ diagrams. 

The diagram rules read in detail 
(A.l) Label the line ends with indices i, k, 1, . . . corresponding to momenta pi, 
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pk, PI, * . . and the interaction lines with momenta qr, q., ql,. . . . Label the 
leftmost dashed line with a time 19 = t - t’ all the other dashed lines with 

times ti, i = 1, 2, . . . and all the wavy lines with imaginary times T,, i = 1, 

. . . . 
ti.2) With each dashed interaction line i of the kind (3.4b) associate a factor 

- (i/h)(l 21 W(&)l3 4) = - (i/fi) exp [(i/h)(E, + l z - Ed - l &](l 21 WI3 4) 

the latter matrix element being given by (2.2) and l i = p:/2m. For the i.k 

vertex include a factor exp [-(i/h)(ei - Ek)aQ]. 
(A.3) Include a factor of t for each equivalent pair of lines, i.e. for each 
equally directed pair of two lines which connects any two interaction lines. 
(A.4) Associate a step function 0(t, - tt) with each line connecting two dashed 
lines i, k the dashed line i being situated to the left of k. 

(AS) For each bundle of lines running from a given dashed line to the left 
include a factor which is given as 

fi G’(i), i,; t’) fi G’(kt, k2; t’) - Dl G’(i,, L; t’) fil G’(k,, k2; f) 
f=:, Ir=, 

i iz 
if the bundle consists of m lines I- directed to the right and n lines 

- 2 directed to the left. We have m, n = 0, 1, 2 and m + n 2 1. The % 

explicit expressions for G’, G’ are given in (3.6), (3.7). 
(A.5’) In working with fi diagrams one has to replace G(i, k; t’) by 
e(i”‘xri--rk)rkG(i, k; tk + t’) if ti > tk and by eci/nX*i-s~)‘r~G(i, k; fi + t’) if ti < fk. 

(A.6) Associate with any interaction line of the kind (3Sb) according to (2.2) a 
factor -(i/h){1 2)W(3 4) and with the vertex (3.5a) a factor 

&(t’) + [6(i, k)(A,(t’) + AZ(~)) + P - CL)]. 
(A.7) With each line being connected with at least one wavy line associate a 
free Cireen function 

P 
---+- = G”“(p, Ti - Tk) = -Tr {T~[a,(7i)a~(Tk)]~~}. 
7, rx 

Note that the LO-vertices have imaginary time 7i = 0. 
(A.8) Integrate all real times ti from 0 to t - t’ all imaginary times from 0 to 
h,(t) and sum over all momenta. The resulting expression is multiplied by 
(- I),+’ where L is the number of closed fermion loops. 

Appendix B 

Explicit expressions for line bundles and the Maxwell-Boltzmann limit 

For the practical work with the diagrams it is convenient to have the explicit 
expressions for the different kinds of line bundles. Since in many practical 
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applications it is justified to take the Maxwell-Boltzmann limit, we will 
consider the corresponding expressions in this limit, too. The formulas shall 
be given for O-diagrams. In the case of d diagrams we have to make the 

replacements implied by rule (A.5’) in all places where an f(t’) occurs. 

Introducing for notational purposes the two-particle operators &‘(t’) and 
R(t’) with matrix elements 

(1 2@‘(t’)(3 4) = f(1, 3; t’)f(2,4; t’), 

(12(R(t’)(34)=6(1,3)6(2,4)+~[6(1,3)f(2,4;t’)+6(2,4)f(1,3;t’)] (B.l) 

the detailed expressions read 

4 

\ 

;; 
7’ I 

It1 

= (i/h){1 21 W(h)13 4). 

= -(i/fi)(l 21R(t’) W(tJ3 4) 

03.2) 

(B.3) 

= _(iK/h)[S(2,2’)f(4’, 4; t’) 
(B.4) 

- N4.4’1fC2.2’ ; t’)]( 1 2’) W(tJ3 4’), 

= K(i/h)[( I 21R(f) W(t,)13 4’)f(4’, 4; t’) 

- K6(4, 4’)(1 21@‘(t’)W(t,)13 4’) 
(B.5) 

L, 

1 I’ 3 
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‘-4 
,-H 

3 

= -(i/ti)(l 2([R(t’) W(t,)*(t7 

-@(t’) W(t,)R(t’)ll3 4) 

03.6) 

In using these rules one has to observe that reversing all the arrow 
directions in any one of the above diagram elements corresponds to taking the 
complex conjugate of the corresponding expression and that exchanging lines 
between vertex points corresponds to a relabeling of the matrix elements. 

To get the Maxwell-Boltzmann limit of an arbitrary diagram put in the 
above expressions R = 1 and neglect the term containing @‘(t’) in (B.5). 
This is easily verified by noting that in this limit the diagrams must not depend 
on K and that each closed loop contributes a factor K. Exchange interactions 
and the factors f from rule (A.3) have to be neglected, too. Thus, in every line 
bundle where an even number n = 0, 2 of new closed loops begins, in the 
Maxwell-Boltzmann limit all terms proportional to K have to be neglected and 
in any line bundle where one new closed loop begins only the terms in K 

survive. 
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