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For an arbitrary irreversible process taking place in a closed physical system equations of 
motion are derived directly from the Liouville equation without introducing any projection 
operator. These equations are of nonmarkowian nature and are exactly valid for any system 
arbitrarily far from equilibrium. Using field-theoretical techniques the integral kernels in these 
equations are expanded into a diagram perturbation series which is proved to be linked. For a 
system having short memory it is shown that the secular divergent terms cancel each other. 
Then, using the diagram language the equations of motion are obtained in a much simpler 
form. 

1. Introduction 

To predict the macroscopic behaviour of a closed physical system of N particles 

being in a nonequilibrium state at time t = 0, it is not necessary to know all the 

information contained in the density operator e(t) which is the solution of the 

Liouville equation (LE) 

(1.1) 

with a given initial density e(0). Instead, all we need are the expectation values of 

a given set of operators O,, n = 1, . . . , M defined as 

o”(t) = Tr [O,Q (t)]. (1.2) 

Thus, the many-body problem need not be solved in its entire complexity. This 

fact can be exploited to simplify the task of calculating the time dependence of the 

a,(r). One way of doing so consists in the derivation of closed exact equations of 
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motion (EM), i.e., equations where the time derivative of b,(t) is expressed as a 
functional over the d,(t) 

the functional depending explicitly on the time t. 

For the operators 0, corresponding to the macroscopic observables of the 
system such EM’s were first derived by Robertson’) and were used in several 
applications’). These equations are nonlocal memory-retaining integro-differential 
equations and are valid for any system arbitrarily far from equilibrium. In the past 
several years a great amount of work has been done to derive closed exact kinetic 
equations, i.e., EM’s for the matrix elements of the n-particle density operator 
e’“‘(t), n = 1, 2, . . . or for the corresponding distribution functions in the classical 
case”). 

A common feature of these derivations consists in the introduction of a projec- 
tion operator P. In general, P is quite complicated and causes serious difficulties 
if one tries to calculate the coefficients occurring in the EM’s from the microscopic 
point of view. To avoid this difficulty in section 2 we derive exact EM’s directly 
from the LE without introducing any projection operator. These equations are 
valid independently of the nature of the operators 0, and thus with a suitable 
choice of the 0, kinetic equations can be obtained as well. 

To derive these EM’s we introduce an operator q&t) the time dependence of 
which is given implicitly by the time dependence of the expectation values O,,(t), 

i.e., 

In other words rs(t) is an operator that depends parametrically on the functions 

d,(t). 
In the derivation of the EM’s the operator qs(t) serves two purposes. On the 

one hand qs(t) is a formal quantity which allows us to introduce the d.(t) into 
the density-operator formalism of the Liouville equation and to convert this 
markowian equation into the nonmarkowian equations of motion. On the other 
hand qs(t) has to be chosen such that, at time t = 0, it represents the given initial 
density distribution, i.e., 

%(O) = e(O), (1.5) 

otherwise qs(t) may be chosen arbitrarily. 
To chracterize qs(t) more closely we observe that from (1.5) it follows that 

&(O> = Tr [%I, 601 (l-6) 
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and since (1.6) must be valid independently of the choice of the values of B,(O), 
k = 1, . ..) M we find together with (1.4) that at all times rs(t) yields the correct 
expectation values 

&(t> = Tr (0,~~ (0) = Tr {One (0). (1.7) 

However, this is valid for the operators 0, only and shows that qs(t) may be regarded 
as a density operator in a certain restricted sense. It is obvious that r&) does not 
obey the LE. A special kind of q,(t) is the information-theoretical ensemble u(t) 
used by Robertson. 

Since the EM’s (2.7) do not contain a projection operator the calculation of 
the corresponding integral kernels simplifies considerably. In particular, in this 
paper we shall derive a linked-cluster perturbation series for the kernels. To obtain 
this expansion we use for rs(t) an exponential operator called o(t). This has the 
advantage that we may work in the occupation-number representation and that 
the field-theoretical techniques developped in the theory of thermodynamic Green 
functions4) can be applied. Using this expansion for any given system and any 
set of operators 0, the EM’s can be written as a series expansion in powers of the 
interaction and the expectation values O,(t). Renormalization and partial-summa- 
tion procedures are possible as usual in the known linked-cluster expansions of 
the many-body theory5). 

To make the derivation more lucid in section 3 Green functions are defined in 
the ensemble o(t). For these a linked-cluster expansion is obtained using the well 
known Matsubara technique6). By means of these Green functions in section 4 the 
linked-cluster expansion of the integral kernels is written down. 

In section 5 we shall discuss some properties of this expansion. Specifically, we 
shall show that for a system having short memory the secular divergent terms 
cancel each other. Using this fact, a much simpler form of the EM’s is derived 
which is well suited for practical applications. 

2. The equations of motion 

The derivation of the equations of motion was already given inr4). Since we 
want to use the interaction representation here and since the derivation is quite 
short we shall start again from the Liouville equation (LE). 

Given a system with a hamiltonian 

H= Ho -t W, (2.1) 

the LE is 

$ g(t) = -; VW), eWJ = -2 (0 e(t), (2.2) 
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where E’(t), L(t) are the interaction and the Liouville operators in interaction 
representation, respectively. 

w(t) = ewfi)%t J,j/ e- wfi)%t) L(t) **. = (l/A) [W(t), . . .]. (2.3) 

The expectation values of the operators 0, are now given by 

o,(t) = Tr {O,(t) e(O), O&) = e”imw 0, ,-(w)w~ 

Given a density operator e(t’) at time t’ the density operator at time t can be 
obtained using the formal solution of (2.2) 

e(r) = u 0, t’) e(t’) 3 U(t,t’) = T,exp(-ijL(ii)d,@), (2.4) 

where T4 is the Wick time-ordering operator. 
The operator qs(t) introduced in section 1 is in interaction representation 

Using the initial condition (1.5) we get the formal solution of (2.2) as 

This solution is valid for t 1 0. For times t < 0 we will assume that the liouvillean 
in (2.2) and the boundary conditions at t + -co are chosen such that at t = 0 

we have just e(0) = q(0). This way, we select the retarded solution of the LE and 
thus introduce irreversibility’). 

Starting from (2.5) we use the identity 

de 
x- 

- -iL (t) U (t, 0) ~(0) = -iL (t) q(t) + iL (t) 
s ( 

dt’ u (t, t’) r(t’) 
> 

0 
(2.6) 

and carry out the time derivations using the properties of U(t, t’) and 

-$7(t) = T(&dt)) b,(t) + iL0rl(O, 

where 

6,(t) = $ O,,(t), Lo ..* = + [Ho, . ..I. 
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Multiplying both sides of (2.6) by O,(t) and taking the trace we finally get 

b,(t) = -iL?!,o’ (t) - L?:” (t, r’) - i C b,(f) _d - Lp (t, 2') ) 

m 80, (t') 
0 

(2.7) 

Qi”‘(t) = Tr {O,,(t) [L(t) + LoI r(t)), (2.8) 

Qi” (t, t’) = Tr {O,(t) [L(t) + Lo] U (t, t’) [L(f) + LoI q(f)}, (2.9) 

Qy’ (t, t’) = Tr {O,(t) [L(t) + Lo] U (t, t’) q(f)). (2.10) 

Since q(t) depends on the functions O,(t), eqs. (2.7) are a set of closed exact 
equations describing the time evolution of the expectation values. They can be 
considered as the desired equations of motion. They are memory retaining and in 
coordinate representation of nonlocal nature. Actually, the appearance of the 

time derivatives b”(t) on the r.h.s. of (2.7) is an unusual feature in an equation of 
motion. 

By iteration we can remove these derivatives from the r.h.s. To make the struc- 
ture of the equations thus obtained more obvious we introduce a formal multipli- 
cation by 

1 dt' A (t, t’) B(t’) = A * B, 
b 

where A and B are arbitrary functions. Eqs. (2.7) are written as 

6” = r, + c A,,, * &,) 
“1 

(2.11) 

where 

T,,(t) = -iQz”’ (t) - i dt’ ~‘2:” (t, t’), A,,, (t, t’) = i ~ 52:2’ (t, t'). _a 
0 aon, (0 

Iterating (2.11) we obtain 

6, =r, + CA,,*r,, + ~A,,*A,,*rp + .-., 
m m.a 

(2.12) 

from which equations of motion can be obtained in their usual form. Introducing 
a quantity Kn,,, (t, t’) by 

K n,m = 1 + A,, + CAnp*Annl + . . . . 
P 



602 R. DER AND R. HABERLANDT 

(2.12) is written more compactly as 

&) = c i dt’ K,. m (6 0 ~,n(t’>, 
IIt 0 

(2.13) 

where both K and r depend on the expectation values o;,(t). 
In section 4 the quantities 0:” shall be expanded into a diagram series. Since 

we want to work in the occupation-number representation and use the Matsubara 
technique4* “) we a t k e as an “ansatz” for q(t) the exponential operator 

a(t) = exp 
( 

-A,(t) - c J,(t) W) - -W) 
1 

7 (2.14) 
n 

where J’(f) = e’i/h) Hot J’e-‘i/h’%te Contrary to the “ansatz” (1.4) for q(t) in (2.14) 
the o,(t) do not occur explicitly. But the A(t) will depend on these b,(t). The 
relation between these quantities is given by (1.7) together with Tr a(t) = 1. 

In section 3 it will be shown how from the diagram expansion of the correspond- 
ing Green functions the explicit calculation of the relations between the &(t) and 
the b,(t) can be carried through. If the operator X in (2.14) were equal to zero 
(2.14) would be the usual form of an information-theoretical ensemble*) as used, 
e.g., by Robertson’, ‘). H owever, in some applications this form of a(t) is not very 
convenient to reproduce the correct physical initial condition (1.5). To have more 
freedom in the choice of the initial conditions the operator X was introduced. 

For the derivation of the diagram series of Qf’ (t, t’) two kinds of perturbation 
expansions will be necessary. On the one hand we expand the exponential operator 
U (t, t’). Since we used the interaction representation this expansion is immediately 
obtained as a series in powers of the interaction strength. On the other hand we 
shall use the perturbation expansion of the exponential operator a(t). This one is 
obtained by using a kind of interaction representation with respect to imaginary 
time. In order to be able to combine both of these perturbation series and to write 
down the diagram expansion of 52:’ (t, t’) as a first step we shall define Green 
functions in the exponential ensemble o(t) and expand them into a diagram series. 

3. Green functions in an exponential ensemble 

As discussed above, two kinds of interaction representation are used in this 
paper. To avoid confusing time factors we shall define the Green functions (GF) 
in the Schrodinger representation. Then, only the interaction representation with 
respect to imaginary time [see (3.9) below] is used in this section. As shall be seen 
in section 4 we can introduce these GF’s without difficulty into the expansion of 
U (t, t’) which is written in interaction representation with respect to real time. 
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In Schrodinger representation (2.14) becomes 

(3.1) 

0$,(t) depends on time t only implicitly via the A(t) and therefore in the GF’s the 
time ? is treated simply as a parameter. In analogy with the usual definition of 
thermodynamic GF’s we define generalized many-particle GF’s in the ensemble 

(3.1) by 

G,(lz,,...,m~,,(m + l)~,+,,...,~~,) 

(3.2) 

T, is the Wick time-ordering operatoP) acting on the imaginary times ti . The 2, a” 
are the Heisenberg operators with respect to times ri and are related to the Schrii- 
dinger reaction and annihilation operators a+, a by 

Z(t) = useTTa+u~T, c?(t) = ucrTau:T. (3.3) 

For convenience, we assume the basis to be chosen so as to diagonalize the 
unperturbed hamiltonian H,,, i.e., Ho = c &,a,‘a,. The fictitious time-dependent 
“temperature” T = T(t) is introduced for formal reasons to obtain closest formal 
agreement with the usual formalism of temperature-dependent Green functions4). 
For the same purpose we introduce a generalized hamiltonian &‘(t) by 

s?(t) = T(r) 
( 
c A,(t) 0, + X 

1 
+ ,u(t) fi, (3.4) 

n 

where fi is the particle-number operator of the system and in the same way as 
T(t) the “chemical potential” ,,Y = p(t) is introduced as a formal quantity. Using 
this definition, a&t) may be written as 

us(t) = exp [(J2 + ,ufi - X)/T], l2 = s(t) = -A,(t) T(t). (3.5) 

Using (3.5), we see from (3.2) and (3.3) that the definition (3.2) agrees formally 
with the usual definition of temperature-dependent GF’s in a grand-canonical 
ensemble having hamiltonian 2. Thus, all the properties of the temperature- 
dependent Green functions are preserved. 

In particular the generalized single-particle GF G, (It,, 2tz) depends on the 
“time” difference t = t1 - t2 only and fulfils the symmetry relation 

G,(l,2;z) = TG, (1,Z;r + $) for rirzs t < 0, (3.6) 
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which is of great importance for the diagram expansion. To introduce perturbation 
theory, we split the “hamiltonian” X into a unperturbed hamiltonian e,(f) and 
a generalized interaction XI(t) 

W) = &o(t) + %‘(t) = x,,(t) + c k(t) Q,. (3.7) 

X0(t) has to be a single-particle operator but may otherwise be chosen conveniently. 
After having chosen X,,(t), (3.7) defines, together with (3.4), the I,(t) and the 
operators Q,, . 

As usual we introduce a o,(t) by 

o,(t) = exp We(t) + dt) fi - ~o,(WV))~ Tr q,(t) = 1 (3.8) 

and proceed to the interaction representation with respect to imaginary time z. 
In this representation the creation and annihilation operators become 

C?(t) = o.OrTa+o’oT, a(r) = f$=C.7&=. (3.9) 

Using these operators free single-particle GF’s are defined as 

Gz”’ (l-c,, 2tJ = GI”’ (1, 2; z1 - t2) = -Tr (T, [aI C2(r2)] o,(t)}. (3.10) 

To give an explicit expression for Gi”’ we have to introduce a basis b:, bk that 
diagonalizes %‘. , i.e., 

200) = C r,(t) b,+b,. 
P 

Expanding the operators a:, ok into the b:, b,,, 

a+ = C c$+)(i) b;, ak = ~%(k)b,, 
D D 

we find in the usual way4), 

Gz”’ (1, 2; T) = --c a,(l) &r)(2) exp (-[%(t) 
P 

where 

I 

7% 0) 3 t < 0, +l 
R,(t) = It= 

1 + WI,(t), Z > 0, -1 

and 

n,(t) = {exp [rl,(t) - PWI - x1-l. 

(3. II) 

(3.12) 

- ,401 z> M), (3.13) 

bosom, 
for (3.14) 

fermions, 

(3.15) 
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The S matrix relating am and aO(t) by e-‘(*-lrN) = e-r(Zo-pN) S,(z), is 

S,(z) = T,, exp -ix1 (t, z’) dr’), 

where 

Using these operators, the Green function (3.2) may be written as 

G,(lt,, . ..) nr,) = - Tr {T, [ol(rl) ... &(r,) S, U/T)1 e4)) 
Tr LS (l/T) M>l ’ 

(3.16) 

(3.17) 

(3.18) 

which differs from the corresponding expression of a thermodynamic GF only in 
the parametric time dependence of the quantities S, (l/T) and so(t). Thus (3.18) 
is given by a linked-cluster diagram expansion. In the following, the diagram rules 
will be given in Hugenholtz notationg). In this notation, the vertex corresponding 
to an arbitrary operator A is given by a dot with n lines entering and m lines 
leaving, 12 and m being the numbers of creation and annihilation operators oc- 
curring in the definition of A, respectively. We will call these vertices a-vertices 
and mark them by a wavy line. 

This way of drawing diagrams is especially suited for our case, since we do not 
want to restrict ourselves to including into X1(t) one- and two-particle operators 
only. As an example a two-particle operator 0”) is represented by the vertex 

corresponding to 

in the usual representation4). 

3.1. Diagram rules 

(i) An arbitrary diagram of kth order occurring in the expansion of G, of (3.18) 
is obtained by drawing n endpoints and k vertex points. These points are connected 
by directed lines in an arbitrary manner. It should be observed, however, that the 
number of lines entering and leaving a given vertex point depends on the nature 
of the corresponding operator as described above. Only a single line enters or 
leaves each endpoint depending on whether the corresponding operator is 5 or a, 
respectively. The endpoints are labelled by the quantum numbers occurring in the 
argument of G, in (3.18) and all the line ends entering or leaving a vertex point by 
quantum numbers 01, ,!l, . . . Each vertex point is labelled by a time zi. 
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(ii) With each vertex is associated a matrix element of the operator V = C’ n,(t) 
x Q. + X where c’ means, that the sum includes only these operators Q. which 
are described by the vertex considered. The detailed prescription for the associ- 
ation of the matrix elements to the vertex depends on the concrete type of the 
interaction and will not be specified here. 

(iii) With each line connecting two points i, k there is associated a free single- 
particle Green function 

a 
t 
‘i 

P 
l = G:“(a, ,8;q - z,J, 
'k 

(3.20) 

where Gjo’ (LX, /I, t) is given by (3.13). 
(iv) Summations and integrations are carried out over all quantum numbers 

6 B, * * * and all times ti. 
(v) The resulting expression is multiplied by the usual sign factor obtained from 

the topological structure of the diagram. 
The definition (3.1) of the GF’s allows us to introduce the frequencies u)~ instead 

of the imaginary “times” zi for, as stated above, the symmetry relation (3.6) is 
valid. It should be noted that all the renormalization and partial summation 
procedures known from the Matsubara technique are applicable in our case, too. 
Especially we could replace all the light lines representing Gi?’ by heavy ones 
representing exact single-particle GF’s. 

Again, as in the case of thermodynamic GF’s, we see from the definition (3.2), 
that the expectation value of any operator 0, can be obtained from the correspond- 
ing N-particle GF by letting -cl -+ 0 in the argument of the GF preserving, how- 
ever, the correct time order. As follows from the above rule (ii) in the diagrams 
occurring in the expansions of this GF, the n,(t) appear simply as multiplying 
factors. Thus, the relation between the n,(t) and the a,,(t) can be obtained from 
the diagram series. 

This property is especially important in the case of a system being in the vicinity 
of equilibrium. Then we could think of an expansion of our GF’s about equili- 
brium. This is achieved by observing that in most cases the hamiltonian H of the 
system can be written as a linear combination of the operators 0, l), i.e., 

H = xn /3,,0,, and we can write 

o,(t) = exp {[(L? + +‘V - H)/T] - c AA,, (t) 0, + X} . (3.21) 

Using (2.1) we see immediately that the “interaction” 3E0, (t, z) (3.17) is now 
given by 

Zp, (t, t) = W(z) - T c AA, (t) O,(t) + X, (3.22) 

the All,, (t) being small near equilibrium. By grouping together all the diagrams 
containing the same number n (n > 0) of factors &I, (r) we obtain an expansion 
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of the GF’s in powers of the small parameters d/l,, (t) characterizing the deviation 
from equilibrium. It should be noted, that in this case T has the usual meaning 
of the temperature of the system in equilibrium and ,u is its chemical potential. 

Let us introduce the notion of a o-part for later use. Any completely linked 
diagram occurring in the expansion of the n-particle GF will be called an n-particle 
o-part. As an example the diagram 

(3.23) 

occurring in the expansion of the four-particle GF consists of a one-particle and 
a two-particle a-part and a single line representing a free GF. 

4. Diagram expansion of the integral kernels 

We are now able to derive the diagram expansion of the integral kernels Qk*‘, 
Q il), Qi2’ occurring in the equations of motion (2.7). To unify treatment we 
introduce a new quantity 

Q, (i, t’) = Tr [O,(t) U (t, t’) a(t’)]. (4.1) 

Using the properties of U (t, t’) we easily find the formal relations 

QZ”‘(t> = i $- Qn, (t, t’))t=t,, 

Lp <t: t’) = $ 5 Q, (t, t’) = - $ L?, (t, I’), (4.2) 

52:’ (t, t’) = i $ Q, (t, t’) = -i -& 9, (t, t’), 

where the partial derivative 8/X means that we must not differentiate the a,(t’). 
The second equality signs in (4.2) are easily proved using for U (t, t’) the re- 
presentation* 

u(~, t,) = eiLOf e-iL(t-t’) ,-iLot’ 

* This form of u(r, t’) is proved by inserting it into the differential equation obtained from 
the expression (2.4) of U. 
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and the cyclic invariance of the trace. Because of (4.2) only the diagram expansion 
of a,, (t, t’) has to be known. Instead of (2.4) we will use the explicit series for 

u 0, t’) 

U(t, t’) = 1 +nil(-i)n_I..._idt, .a. dt, 

x 8 (t - tl) L(t,) 8 (fl - t2) L(2,) **- L(t,) 8 (t, - t’), (4.3) 

8 (ti -- tk) being the Heaviside step function. Inserting the nth-order term into 
(4.1) we have to evaluate a trace of the kind 

Tr [on&J Ut,) -a+ L(t,) W>l. (4.4) 

Because of the commutators contained in the definition of L (4.4) actually consists 
of a sum of terms with different arrangements of the corresponding operators 
W(tf) with respect to o(t’). In this sum, there is exactly one term which is obtained 
from (4.4) by replacing all the L(tJ by W(ti)p i.e., 

Tr [R(td W(t,) ... W(h) o(t’)l, 

which is by virtue of the cyclic invariance of the trace equal to 

Tr [O, (to - t’) W (tl - t’) -.. W (t, - t’) a,(f)], (4.5) 

B, being the Schrbdinger representation of a. 
This term shall be considered first. The operators W and 0, are written ex- 

plicitly as 

W(ti - t’) = C (il 1.a) W(ti - t’) Ii, *a.) ~2: ... a,,, (4.6) 
il... i, 

0, (t - t’) = C (j, ‘*‘I 0” (t - t’) lj,” *“) Qi “’ Uj,, 

j,...jm 
(4.7) 

where the time dependence has been included into the matrix elements. This is 
easy to do since in the basis chosen Ho is diagonal, i.e., 

e”‘“‘NO’ lj, . ..) = e”/fi”“.lt+“~” lj, . ..)+ (4.8) 

Taking the matrix elements out of the trace, we have to evaluate traces of the kind 

Tr [ai1 .a. amno (t')] . (4.9) 

Using the operators introduced in (3.3) this trace may, apart from a sign, ,be 
written as 
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provided the imaginary times zi are chosen such that always (ti( < E with E suffi- 
ciently small and that T, restores the same time ordering as in (4.9). Then, (4.10) 
is nothing but a many-particle GF of the kind introduced in section 2, and is given 
by a linked-cluster diagram series. We introduce this series into (4.5) and consider 
one term from the expansion thus obtained. This term consists of a GF diagram 
multiplied by a number of matrix elements. 

Fig. la. Diagram of lowest order contributing to .f2:‘) (I, t’) for the case that 0, is a one-particle 
and Wa two-particle operator. It contains no o-part. Its time dependence is o-function like and 

thus the diagram contributes to the integral kernel in (5.4). 

fQ e 
It 

I I 4s + 

Fig. lb. The diagrams corresponding to the Hugenholtz diagram in fig. la. In these diagrams 
the two-particle interaction is drawn in the usual way. The association with the matrix elements 

is now as described in ref. 4. 

Fig. 2a. A typical diagram occurring in the expansion of 9, (t, t’). The diagram contains both 
LO-vertices and o-parts. 

Fig. 2b. The diagram of fig. 2a with the o-parts drawn separately. From (4.17) it follows that 
the contribution of this diagram is equal to zero. 
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Now we associate with each of these matrix elements a vertex point which is 

labelled by a dashed line .- - - -X and carries a time ti, i = 0, 1, . . . , n. These 
vertices will be called LO-vertices because they represent both the operator L and 
the operator 0,. We introduce a time ordering in the drawing plane by agreeing 
that all the LO-vertices are arranged from left to right in such a way, that the 
vertex i occurs to the left (right) of the vertex k, if ti < tk (ti > tk). The arrangement 
of the G’,?’ lines and c-parts with respect to the LO-vertices is arbitrary. 

As the next step we connect the free ends of the GF diagram with the corre- 
sponding vertex points. Thus we obtain a new diagram containing both LO- 

vertices and o-parts and having no free ends. The explicit description for the con- 
struction of these diagrams is given in rule (i) below. Some examples may be found 
in figs. 1 and 2. 

From the time ordering introduced above it follows immediately that for any 

given line i .-..-.-__k connecting two LO-vertices we have always ti >rk (zi < t,J 

if this line is directed to the right (left). Since the zi were introduced only to repro- 
duce the correct time ordering we may now let E --, 0. Thus, with every directed 
line connecting two LO-vertices a factor is associated in the following way: 

T T 

ii k 1 = Gi?' (i, k; O+) = g> (i, k, t’), (4.11) 

T 
‘i = Gi?' (k, i; O-) = g< (k, i, t’), (4.12) 

where Gz?’ was defined in (3.13). For a line connected with only one vertex point 
we find by the usual reasoning4) 

il x---. 0 ‘2 
= g< (il, i2, t’). (4.13) 

Having established the diagram expansion of (4.5) we now proceed to carry 
out the commutators contained in (4.4). Replacing kV(t,) with L(t,) in (4.5) we 
have to consider, instead of (4.5), the expression 

Tr [O,(kJ WI) ... WJ df>l - Tr W(tA O&> ..a W,> WI 

= Tl - T2, 

where the cyclic invariance of the trace was used. All the diagrams representing 
T2 are obtained from those of T, by simply “pulling” the kV(t,) vertex across the 
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O,(r,) vertex. As an examp!e consider the two diagrams 

il 

* 
0” la) 

i2 
k2 -62 . 
. * 

kl 

il 
ItO 

(b) 
” 

=s (4.14) 

where we suppose diagram (a) to be one of the diagrams occurring in the expansion 

of Tl . Then the second diagram is the corresponding diagram occurring in T2. 
Applying (4.11) and (4.12) we write the contribution of diagram (a) in (4.14) as 

k’ (4 , b, 0 ... f W, , kt , 01 R, (4.15) 

where R contains all the remaining factors. Using (4.11) (4.12) again we find for 

the sum (4.14) the expression 

s = k’(ir, iz, t’)...g<k, k,, t’)-g<(ir, iz, t’)...g’(kz, k,, t’)] R. (4.16) 

This sum is immediately obtained from diagram (a) if we agree to associate the 

bundle of lines running from the fI vertex to the left (i.e. to the t, vertex) with the 

first factor of the r.h.s, of (4.16). By repeating this way of arguing with all the 

LO-vertices we find that we obtain the trace (4.4) by summing all diagrams 

belonging to (4.5) provided in these diagrams we do not associate lines with 

factors g’, g’ but instead consider the line bundles and associate these with the 

factors introduced in (4.16). By a line bundle belonging to an LO-vertex j we 

understand the set of all lines connecting the LO-vertex j with LO-vertices to its 

left. The lines belonging to u-parts are not included into the bundles. 

By the same arguments it is seen, that any diagram of the following 

equal to zero 

El A 

Ofl7< 
to 4----l 

or 

form is 

(4.17) 
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where the box labelled by A contains at least one LO-vertex which is connected 
by Gz?’ lines with LO-vertices only to its right. This fact considerably reduces 
the number of diagrams and especially proves the cancellation of unlinked dia- 
grams. 

Having established the kind of diagrams representing the expressions (4.4) we 
see that Q” (t, t’) is given by the sum over all these diagrams having n (n 2 1) 
LO-vertices and an arbitrary number m (m 2 0) of o-parts. The time integration 
contained in (4.3) can be correctly carried through by associating with two sub- 
sequent LO-vertices i, k (i = 0, 1, . ..; k = 1, 2, . . .) a f3 function 8 (ti - tk) and 
with the rightmost LO-vertex j a &function 13 (tj - t’). Then the integration has 
to be carried out over all times ti (i = 1, . . . , n) from - 00 to co. 
’ In the representation of the diagrams derived till now, diagrams differing only 

in the relative time ordering of the LO-vertices have to be considered as topolog- 
ically different. This leads to a tremendous increase in the number of different 
diagrams with increasing number of LO-vertices. As usual, this difficulty can be 
avoided by using the generalized time-ordering procedurelO* ll). Then the 8 func- 
tions occurring in (4.3) have to be associated with the lines connecting the LO- 
vertices rather than with the intervals between the LO-vertices. Additionally, a 
0 function 8 (ti - r’) has to be associated with each LO-vertex i which is not 
connected with LO-vertices to its right. In this formulation all those diagrams are 
topologically equivalent which may be obtained from each other by deformations 
without changing the direction of a line connecting two LO-vertices. To conclude 
this section the diagram rules will be stated in a concise manner. 

4.1. Diagram rules 

(i) The most general diagram occurring in the expansion of Sz, (t, t’) is obtained 
by the following procedure. Draw n 2 2 LO-vertex points and m 2 0 a-parts. 
Connect the LO-vertices with each other by directed lines or by o-parts. No dis- 
connected diagrams or diagrams having free ends must appear. Label the LO- 
vertices from left to right with times tl (i = 0, 1 , . . .) where to = t and associate 
each end of a line entering or leaving an LO-vertex point with an index LX, 0, . . . 

(ii) Associate matrix elements of 0, (to - t’) with the LO-vertex with time to, 
and matrix elements of W (ti - t’) with the LO-vertices with time ti, i = 1, 2, . . . 
The indices of the matrix elements depend on the indices of the lines entering or 
leaving the vertex. The detailed prescription depends on the type of the interaction 
and will not be given here. 

(iii) Now erase the o-parts from the diagram and associate each o-part with a 
factor as described in rules (ii), (iii), (iv) in section 3 (i.e., without the sign factor). 

In the following the diagrams are considered without the a-parts. 
(iv) Associate a factor with each line independently of the direction of the line: 

0-0 = 8 (ti - tk). 
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(v) With each LO-vertex j connected with LO-vertices only to its left a 8 function 

0 (tj - t’) has to be associated. 

(vi) With each bundle of n 2 1 lines connecting a given LO-vertex with LO 

vertices to its left 

associate a factor 

1s’ (4, i2, j’) . I. g’ (j, , j2, 0 g’ (k,, k, , f) ... gc (I,, I1 , 0 

- g< (il , i2, I’) -.. f (j, ,j,, t’) 8’ (k2, k, , 1’) e-e g’ (Z2, I, , t’)]. 

(vii) Integrate over all times ti, i = 1, 2, . . . from -co to + co and sum over all 

indices 01, B, . . . 

(viii) The resulting expression is multiplied by a factor (-i/h)“- ‘.( - 1)’ where N 

is the number of LO-vertices and L is the number of closed fermion loops in the 

diagram. These loops have to be counted before removing the o-parts. 

5. Discussion 

In the preceding section, it was shown how for any given system and any set of 

operators 0, the diagram expansion of the functions Q, (t, t’) of (4.1) can be 

written down. 

Because of the properties of the GF’s introduced in section 2 the Q, (t, t’) are 

obtained as a power-series expansion in the parameters Ai( By the same proce- 

dure as described in section 2 the 52, can also be written down as a power-series 

expansion in terms of the dili (t’) characterizing the deviation from equilibrium. 

Since at least near equilibrium the dAi (t’) have the physical meaning of the 

thermodynamic conjugates of the 6,(t) l* *) this form of the EM’s may be inter- 

preted as generalized Onsager relations. If desired the d/l, (t’) or the A,(t’) can be 

eliminated by using the GF technique of section 2 to establish the relation between 

these quantities and the O,(t). In several important applications the elimination 

of the Ai is achieved much more easily by summing certain a-parts in the diagrams 

up to infinite order. 
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A serious problem encountered in all the expansions using time-dependent 

perturbation theory in nonequilibrium statistical mechanics consists in the 

occurrence of secular divergencies’l’ l2 ). These show up in the diagram expansion 

of the functions -0, (t, t’), too. However, provided the memory of the system is 

short as compared with the relaxation time tR of the o’,(t) we are able to show, 

that the divergent terms cancel each other approximately and with vanishing 

memory even exactly. 

The assumption of a short memory means that there exists a time t, such that 

the integrand in (2.13) contributes nothing for times t’ < t - t,,, . Then, we may 

replace in (2.13) the lower limit of integration by tl where 

[ 

0, t - tm, 
t, = 

t < t,, t > t,. 

The same replacement may be made in (2.7). 

To study the time dependence of Qr’ we derive an integral equation 

-i.W’ (f, t’) = -iL?~’ (t) 

52~” (t, t”) - i C bnl(tN) ____ !2:2’ (t, t”) _’ 
m ao, (t”) 

using the same method as in section 2. Apart from the lower limit of the time 

integration t’ the r.h.s. of (5.1) has the same form as the r.h.s. of (2.7). Thus, for 

t > t,,, we may replace the t’ in (5.1) by t, obtaining 

-iQr’ (t, t’) = -iL?jt2’ (t, t - t,) = 6,(t), t - t’ > t,. (5.2) 

For t = t’ we find from (5.1) or directly from (2.10) 

Qi2) (t, t’) = Lp(t), t = t’. (5.3) 

From (5.2) and (5.3) we see that in the time interval from t’ = t - t, to t’ = t 

J2L2’ (t, t’) changes from Q?‘(t) to O:(t) and for t, --t 0 ~2:~’ becomes discon- 

tinuous at t’ = t. The time dependence of Gil’ is obtained from (4.2) as 

Qk” (t, t’) = i $ Gk2) (I, t’). 

This means that for t, 4 t,, Sz~” (t, t’) has a S-function like behaviour for 

t - t’ < t, and a long-time tail given by 8,(t) for t - t’ > t,. Doing a similar 

analysis as Prigogine13) in his investigation of the diagram expansion of the 
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Fourier coefficients of e(t) we find that the S-function like behaviour of L?(r) (t, r’) 

is due to the diagrams having no secular divergencies, whereas the long-time tail 

is caused by the secular-divergent diagrams. Since the nondivergent diagrams are 

zero for t -- t’ > t,,, we may write, using (4.1), and the finiteness of d,(t) and 

Q:2’ (t, t’), 

ii,(t) = -i_C$O’ (t) 

- jdt’ Tr {R(t) K(t) + LoI u(t, t’) [L(t’) + LoI @‘)INSD, (5.4) 

where NSD means that only diagrams having no secular divergencies have to be 

taken into account. (5.4) is exactly valid if t,,, + 0 and holds to good approximation 

as long as t,,, -% tR which is the case for most systems of interest. The EM’s (5.4) 

are much easier than the original equations (2.7) and are valid for any system 

arbitrarily far from equilibrium provided the memory is not too long, 

As a first application of the formalism described we have derived EM’s for a 

harmonic oscillator in a bath, a generalized Boltzmann equation and rate equations 

of chemical reactions. To obtain these equations only the renormalized diagram 

of lowest order occurring in (5.4) was taken into account. The renormalization 

was achieved as usual by summing the two-particle ladders. These lowest-order 

results yield EM’s in a nonlocal and memory-retaining form which reduce to the 

familiar equations if these effects are neglected. Proceeding to higher orders, the 

above sketched cancellation of secular divergencies occurring in (2.12) is explicitly 

observed. The applications of this formalism shall be the subject of forthcoming 

papers. 
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