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We propose a new simple method to derive exact equations of motion for non-equilibrium processes which does
not need projection operators. The connection with the formalism of Robertson is established.

In several papers it is shown that exact solutions of the Liouville equation can be constructed ifi such a manner
that their time dependence is entirely determined by the expectation values (F,, ()}, of a set of observables F,, (k)
characterising the macroscopic state of the system at time ¢ [1, 2]. Here we propose another method to derive ex-
act equations of motion for the <F,,(x)), which does not need projection operators.

As a starting point we use the formal solution of the Liouville equation

p(t) = U(t, 0)p(0) (1)
where U(t, t') is the usual time development operator

% U@, tY=—iL(® U@, t), (% U(t, ) =iU(@, L) ?)
and L is the Liouville operator L(#)...= n L HG), .

We introduce a formal operator n(¢) fulfilling the following two conditions:
(i) n(?) depends on time only implicitly through the set of <F,,(k));,i.e., n(t) = n{(Fn('))t} :
(ii) At time ¢ =0 7 has to represent the desired initial density distribution, i.e., p(0) = 1(0).

Otherwise n(t) can be chosen arbitrarily.
Now we use the identity

¢
dﬁ—,(’) = SIL() U, 0n(0) = ~iL(On() +iL() [ar L%, U, t')n(t')] ©)

0

and carry out the time derivation by means of (2) and

n(t) E [a3 SUZEi%

where ¢ > =(d/dD)( ).
Multlplymg both sides of (3) by F,, (K) and taking the trace we finally get

n(e)F, k), )

F (kP; = =i Te {F, (LB} - f d¢' Tr {F, () L) U, ) L))}
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F, (kD
Since n(t) depends on the (F,(k));, (5) can be considered as the desired exact equations of motion. If wanted,
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the time derivative on the r.h.s. can be eliminated by iteration or by formally considering (5) to be a system of
linear Volterra equations of the second kind for the (F,,(k)); as the unknown functions.

As a special case 1(¢) can be taken to be the information-theoretical ensemble o(#) used e.g. by Robertson.
Then, from (5) we can obtain Robertson’s equations of motion {2, eq. (29)]. This is achieved by observing that
his time development operator T(z, ¢') obeys the following integral equation

¢
TG, Y=U@,t) +i f dt" UG, ¢HYPEYLENT(", 1) (6)
5
where P(¢) is the projection operator.

Since (5) does not contain any projection operator we can calculate the kernels — choosing n(¢) as an infor-
mation-theoretical ensemble — by use of Wick’s theorem and perturbation theory. Thus we obtained a diagram
expansion of these kernels, consisting of linked diagrams only.

As a first application we have derived a kinetic equation for the matrix elements of the single-particle density

operator of an inhomogeneous gas interacting via two-body forces. In the momentum representation the matrix
elements of p(1)(¢) are given by

oV @Dlpy) =T [a} a, p(] = f(py,py: 1)
1 p1 P2 1

where a (a ) creates (anmhllates) a particle having momentum p. Thus the convenient observables of the system

are g1ven by the products ap ap, and the ensemble n(?) by

}

lkp “pi

(1) = exp {2\ () — Z) A

the \;; being parameters which are eliminated afterwards by summing certain self energy structures in the dia-
gram expansion.
From the renormalized diagram of lowest order the following kinetic equation is obtained

)
2 f(pspyst)=—
ar’ 12 2m sop7

t
L (ot )Afdt'pz (D, ps V(K (2, ) p3p,Xpg 7 V(YK (', DIpyps)
) s

+p, ps|K(t, Y V() D30 pgp, |K(2, O V(DIpypsY — (P pglV(DK(2,1) V(t")p3p Xpgp | K(2,1)pypg)
~{p D5 K(t, )p3p Y pgp (VYK (', OV (D)lpyps) * f(P3, 063 1) Py P75 1) (7

where m is the mass of one particle, V(¢) the interaction and K (¢, ¢') is the time development operator describing
the scattering of two particles in free space. Both operators are written in interaction representation.

Because of the time integration (7) is a non-Markowian equation. After introducing Wigner functions one ob-
serves that this equation is also non-local. Neglecting the memory effects and the nonlocalities the classical
Boltzmann equation is obtained from (7) by taking the limit 2 - 0.

As further applications we derived rate equations for chemical reactions and equations of motion for an oscil-
lator in a bath. It should be mentioned that in the applications considered so far higher order terms containing
secular divergencies cancel each other exactly or at least in a good approximation. This seems to be a general
property of this expansion. More detailed information concerning the diagram expansion and its application will
be given elsewhere.

We are indebted to Professor Vojta, Dresden, and Dr. Kossakowski, Torun, for valuable discussions.
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