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Quantum statistical theory of  chemica l  reactions 
I. General  formulation and lowest-order results 

by H.-J. CZERWON 

Akademie der Wissenschaften der DDR, 
Zentralinstitut ftir physikalische Chemie, DDR-1199 Berlin-Adlershof 

and R. DER and R. HABERLANDT 

Akademie der Wissenschaften der DDR, 
Zentralinstitut f/Jr Isotopen- und Strahlenforschung, DDR-705 Leipzig 

(Received 28 ffune 1976) 

Exact rate equations for chemical reactions taking place in a closed 
homogeneous system arbitrarily far from equilibrium are derived by use of a 
recently developed method. The possibly different kinetic temperatures of 
the species are taken into account. The diagram expansion of the integral 
kernels of the rate equations is given and the renormalization of the inter- 
action carried out. In lowest order non-linear non-markovian equations 
are obtained which reduce after suitable approximations to the usual collision 
theory results. 

1. INTRODUCTION 

The microscopic derivation of rate equations for chemically reacting systems 
usually starts either from the appropriate Boltzmann equation [1-6] or from the 
linear response theory [7-9]. The theory of real-time Green functions has been 
used, too [10, 11]. In chemically reacting systems of practical interest the 
chemical degrees of freedom are often very far away from their equilibrium 
values. Although the Boltzmann equation is able to tackle such situations, 
its region of validity is restricted to the dilute gas, and the applicability of the 
linear response theory as well as of the Green function method is restricted to the 
vicinity of the equilibrium. Thus, in more dense gases or in liquids a great 
number of phenomena, like the dependence of the rate constants on the concentra- 
tions of the different species, cannot be treated by either of these methods. 

In a recent paper [12] there was derived a set of macroscopic equations of 
motion describing the time evolution of the system which may be arbitrarily far 
from equilibrium. To evaluate the integral kernels appearing in these equations 
a diagram expansion method was developed by using field-theoretical methods. 
In this first paper of an intended series we want to apply this method to derive 
rate equations for chemically reacting systems. 

In w 2 we specify the general equations of motion for the treatment of bi- 
molecular chemical reactions in a closed homogeneous system without external 
forces. 

For the sake of generality we include systems with different kinetic tempera- 
tures of the species, too. To make contact with the usual linear theory [7-9], we 
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1744 H.-J. Czerwon et al. 

rewrite these equations in terms of non-equilibrium correlation functions and 
consider then the near-equilibrium limit. 

In w 3 the rate equations corresponding to the diagram of lowest order are 
written down both in the limit of weak coupling and in the renormalized form for 
the case of strong interactions. 

2. THE EQUATIONS OF MOTION 

Let us consider a gas consisting of molecules .4, B, C, D without internal 
degrees of freedom in which a bimolecular chemical reaction of the type 

A + B ~ - C + D  (1) 
takes place. 

The hamiltonian is given in the SchrSdinger representation by 

= #x(i)ax, i+ax, i + �89 ~ (1 - �89 K) 
i, k, l, m 

I, K, L, M= A, B, C, D 

• (Ii, Kk[ WILl, Mm)al,  i+atc, k+ai,maL, z, (2) 

where aj ,  j+(aj,j) creates (annihilates) a particle of species J with momentum 
p j=mjdq j /d t ,  and 

p~ 
#x(i)  = ~mx + 8x ' ,  (3) 

~x' being the internal energy of the ground state of the molecule X. The matrix 
elements of the interaction part of the hamiltonian are given by 

(Ii,  Kk I WILl , M m ) =  J r qK', qL, qM') 

X [eL ,  , ( q L ) r  t)  + K~L ,M~I ,  K C L ,  l ( - q M ' ) r  

X dqldqg'd~lLd~M' , (4) 

with Cj, j (qj)  = ( q j  l aj, j + 10). 
In (4) the function W is chosen such that the matrix elements in (2) are 

proportional to the delta function ~(Pi+ P k -  P~- Pro) which expresses the con- 
servation of total momentum. $R,S is a Kronecker delta, being equal to 1 if R, 
S denote the same species and K= + 1 ( - 1 )  if L, M are bosons (fermions). 
Thus, for the case of elastic scattering of identical particles exchange is taken into 
account explicitly. Note, that the hamiltonian (2) includes only elastic scattering 
and reactive scattering according to (1), so that quite a number of matrix elements 
of (4) are equal to zero. 

The hamiltonian (2) has to be considered as a model hamiltonian, since the 
connection with the quantum-mechanical potential surface is not immediately 
obvious. This connection would have to be established in a more fundamental 
theory which starts from the atoms as 'elementary particles' if the Born- 
Oppenheimer approximation is valid. Into this theory the molecules enter as 
bound states of the atoms and as usual [13, 14] these are considered as new 
elementary particles. The operator W in (2) describes the interaction between 

H= E Hox+ W 
X= A, B, C, D 

X=A,  B, C, D 
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Quantum statistics of chemical reactions 1745 

just  these new elementary particles and is thus valid as long as the macroscopic 
behaviour of the system is determined by binary collisions only. 

2.1. Derivation o[ the equations of motion 
To apply the method of [12, 15], as a first step we have to choose the relevant 

set F of observables of the system. As discussed in more detail in [16], for the 
short-memory approximation to be strictly valid we have to include into F all 
operators, the expectation values of which are slowly varying with time. In the 
present case these are the number  operators N x of the different species and the 
hamiltonian H. As shown in [17-19], under  certain conditions the different 
species X in a chemically reacting system might have different kinetic tempera- 
tures T x which relax slowly to the mean value of the temperature. For this 
reason we shall include into F the operators of the kinetic energy Hox of the 
species X. 

From these considerations we obtain the following form of the representative 
ensemble a(t) introduced in [12, 15] : 

a(t) = exp { - ho(t ) - fl(t)[H- E tzx(t)Nx] - E Aflx(t)Hox}, (5) 
X X 

w h e r e  

z Nx,= ax,+ax, 

The  lagrangian parameters ;~o(t),/~(t),/~x(t), Afix(t) are determined from 

( N x )  l - Nx(t) = Tr  [Nxa(t)], ] 

I <H) t = H(t)  = Tr  [Ha(t)] = const., 
(7) f 

<Hox>, - Hox(t) = Tr  [Hoxa(t)], [ 

I Tr  a(t) = 1, 

where O(t) = Tr  [Op(t)], and p(t) is the solution of the Liouville equation. 
As usual, we choose the initial condition 

a(O)=p(O). (8) 

The condition (8) implies that at t=0 the system is in a state of restricted 
equilibrium, fl(0) being the reciprocal temperature of the system and /Zx(0 ) 
the chemical potential of species X. In the limit of vanishing interaction, Afix 
is the deviation of the reciprocal kinetic temperature from ~. 

The exact closed integro-differential equations governing the time evolution 
of the Nx(t) and Hox(t) are written here as 

,[  O~(t) ~ =-~d O~(t)=<O~(O))t+-dt'! (O~( t - t ' ) ) r  

- t')) 1 (9) -- Em Ora(t') ~ <On(t t'J' 
where < . . . ) , =  Tr  [...a(t)]. 
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1746 H.-J. Czerwon et al. 

{On(t)} is the set of the operators Na(t), . . . ,  No(t ) ; 
the Heisenberg representation, and 

O(t) = ~ [H, O(t)] = iLO(t). 

Hoa(t), . . . ,  HoD(t) in 

(10) 

It can easily be shown that the first term on the right-hand side of (9) vanishes for 
a homogeneous system. To compare with expressions in the literature obtained 
for the vicinity of the equilibrium [7, 9], we rewrite (9) in terms of non- 
equilibrium correlation functions. 

Using the relation [15] 
1 

La(t) = E ~ dz e"[LO~]a t-" ~ ( t ) ,  (11) 
n 0 

we obtain 

where 

Le(t) = - i Y~ a.(t)()., ta(t), (12) 
n 

1 

Or= I dz (r(t)" O~(t) -~, (13) 
o 

and O=iLO. 
{%(t)} is the set of lagrangian parameters fl(t)tz_~(t ), . . . ,  /3(t)/~D(t) ; --A]3~(t), 
. . . .  - A / 3 D ( t ) .  

From this and a( t )= ~ ~n(t)On, ta(t) we obtain the equations of motion 
n 

0 n ( t ) = -  E i dt'[(On(t-t')~)m,t')t'am(t') 
m 0 

+(On(t--t')(~m,t'>t'dm(t')] + i dt' (On(t-t')ITIt,>t,fi(t'). (14) 
0 

As discussed in more detail in [12] the equations of motion (9) and (14) simplify 
considerably if the short-memory approximation is valid. Similarly as in [16] 
this approximation is formulated as 

t 

On(t)= - ~ dt' (O .L  1 exp [ - i L ( t - t ' ) ] L 1 ) r  aD, (15) 
0 

where 

1 
LI . . . .  ~ [W, ...]. (16) 

RD means that in the trace that part is retained that is rapidly decaying with 
time. In the following we shall assume the validity of the short-memory ap- 
proximation. Therefore equation (15) forms the starting-point for the diagram 
expansion given below. Our diagram expansion is however not restricted to the 
simplified equation (15) only, but could instead also be used for the treatment of 
the general equation (9). 

The  rules for constructing and using the diagrams are given in the Appendix. 
It proves useful to sum in all of the diagrams the wavy-line self-energy insertions, 
this leading to the  introduction of heavy lines which correspond to exact Green 
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Quantum statistics of chemical reactions 1747 

functions. For the lines connecting dashed interaction lines this means 

I I 

i p , X  I 

[ .~ I = > + ~ > + , - .  

= - Tr  [ap, x a , . x  + a(t)]  = G [ ( O ,  X) .  

Analogously we have 

(17) 

i I 

I' ~,• ', = - K Tr  [%,x + a.,xa(t)]=Gt<(p, X). (18) 

Note, that the expansion (18) together with (2) and (6) allows the calculation of 
the traces (7) and thus establishes the connection between the {~n(t)) and the 
expectation values {On(t)). To calculate fl(t) we must take into account the two- 
particle Green function which is given by the corresponding diagram expansion 
[20]. 

In the following we shall always assume that the above summation has been 
carried out, so that all propagator lines connecting two dashed lines correspond 
to exact Green functions. 

2.2. Linear theory 
To get the expressions of the linear theory we introduce the chemical 

affinity [21] 
A( t )=  E Vx#x(t), (19) 

x 

where Vx is the stoichiometrie coefficient of species X. In our ease we have 

- v a =  - vB= r e =  v o =  1 (20) 

Introducing the formal operator AN, 

A N =  N x  -- ( N x ) ~  (21) 
V X  

the expectation value of which is the progress variable r [21], the ensemble 
~(t) is written as 

a( t )=exp { -  A o ( t ) - f l ( t ) [ H - A ( t ) A N -  E t ~ x N x ] -  ~ Af lx( t )Hox} .  (22)  
X X 

In (21) (.- .)o means Tr  [...%], where 

exp fl( ~ t ~ x N x -  H) 
X 

% = Tr  exp fl( 2~ izxNx - H) 
X 

(23) 

is the well-known grand canonical density operator. Here, fl is the reciprocal 
temperature of the system and fix the chemical potential of the species X in 
equilibrium. 

M . P .  5 Y 
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1748 H.-J. Czerwon et al. 

Now we introduce the new set of operators 

JR.} = {AN, Hoa  . . . .  , HoD } 

and the corresponding lagrangian parameters 

{~,(t)} = {fi(t)A(t), - Aria(t ), ..., - A/~D(t)}. 

Using the linearized form of ~ [15] we obtain the linearized version of (14) : 

t 

~ ( t ) =  - ~ ~ dt '  {Knm(t - t ' )~m( t ' )+Knm'( t - t ' )~m( t ' ) } ,  
m 0 

with 

and 
K , m ( t - t ' ) =  <R, exp [ - i L ( t - t ' ) ] R m > o  

(24) 

(25) 

(26) K n m ' ( t - t ' )  = (R  n exp [ - i L ( t -  t' )]Rm)0,~ 

where the Kubo transform/~ is now defined with respect to %. 
Except for the term involving K '  the equations of motion (24) are exactly the 

expressions one would obtain from the linear response theory. Putting Aflx  = 0 
in (24) the linear rate equation of Yamamoto [7] results. In the Kubo theory the 
non-mechanical perturbation is considered as a fictive external force which acts 
independently of the response of the system. In (24) or in (14) this response is 
taken into account by the second term in (24), which depends on the rate of change 
of the relaxation and thus represents a kind of feedback effect. 

It is instructive to rewrite equation (24) in terms of the memory function. 
For this, the relation between the {A'n(t)} and the {~n(t)} is needed. Using the 
matrix notation of Robertson [15] we can write the linear approximation as 

A/~(t) = R -  (R)0 = (RP)o~(t) .  (27) 

By Laplace transforming (24) and using the convolution theorem and the relation 
(27) we can solve (24) for A/~ and obtain after retransformation 

t 

A/~(t)= ~ dt'  M ( t - t ' ) A R ( t ' ) ,  (28) 
0 

where M ( t - t ' )  is given by its Laplace transform: 

h~r(z) = - [1 + g ' ( z ) (RR)o -X]  -1 R ( z ) ( R R ) o  -1. (29) 

By means of the projection operator P 

P B  = J~Cro(R/{>o -1 Tr  {RB}, (30) 

the memory function can also be written as 

M (t  - t') = ( R  exp [ - i(t - t')( 1 - P)L]R>o(RR>o -x. (31 ) 

Th is  is the well-known expression for the memory function [22], and as a result 
we find that in the vicinity of the equilibrium the relaxation of the system is 
governed by the memory function and not by the correlation function, as is 
implied by the Kubo theory. 
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Quantum statistics of chemical reactions 1749 

3. DIAGRAMS OF LOWEST ORDER 

3.1. Weak-coupling approximation 
Let us now study the diagrams of lowest order contributing to (15). For the 

sake of simplicity we begin with the case of weak interaction and later on re- 
normalize the interaction. 

NxlHox 

I t-t'[ ,o 
I I I 

Figure 1. The diagram of lowest order leading to the expressions (32) and (33). Note 
that we always draw just a single diagram from each exchange group. A second 
diagram is obtained by reversing the direction of all of the arrows. 

The most simple diagram contributing to (14) is given in figure 1, since the 
corresponding Hartree-Fock terms are secular divergent and thus cancel with 
certain expressions in the third term of the r ight-hand side of (9) [16]. Taking 

into account that  only reactive collisions can contribute to /V~ we obtain the 
following equations of motion : 

t 

~ a ( t ) = - I  at' ~. ~aa, Bb, Cc, Da(t,t') 
0 a , b , c , d  

2 i d t '  E 
~ 2  0 a, b, c, d 

I(Aa, Bb I WICc, Dd)[ 2 

X COS (h-l[O~A(a) -~ @B(b)- @c(C)- ~D(d)](t-  t')}{na(a , t')nB(b , t') 

• [1 + K(nc(c , t')+nD(d , t'))]--ne(c , t')nD(d , t') 

x [1 +K(n~.(a, t')+nB(b , t'))]}, 

• ~A(t) = ~B(t) = - ~v(t)  = , -  ~D(t), 

(32) 

Zqoz(t) = i ' P l  i ~ - at • ~ ~i i ,  Xx, yu, gz(t, t')+~,'N,(t). 
0 i, x, y ,  z I 

X ,  Y ,  Z 

(33) 

The  n x ( X  , t) are connected with the expectation values of Nx, i via the relation 

n (i, t)--- x) .  (34) 

The  system of equations of motion for 2VA(t), . . . ,  2VD(t) ; HoA(t ) . . . .  , HoD(t ) 
describes in a closed form the variation of the number  densities by reactive 
scattering and implicitly the relaxation to the equilibrium temperature by elastic 
and reactive scattering between the particles. In the Boltzmann limit the terms 
containing ~ in (32) and (33) have to be neglected. In this limit the momentum 

5Y2 
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1750 H.-J. Czerwon et al. 

distribution function is a generalized Maxwell-Boltzmann distribution function. 
Using (5) and (7) we find in the thermodynamic limit 

nx(i, t) = Cx(t)Ax3(t) exp { [ -  fl(t) - Afix(t)]~x(i)},  (35) 

where Cx(t) is the concentration of the species-X and Ax(t ) the ' thermal de 
Broglie wavelength ' : 

h 
Ax(t ) = 

~/(2~rmx[fi(t) + Afix(t)]-l)" 

Using the ansatz for the matrix elements (4) given in [10], it is easy to show that 
the expression (32) is for the isothermal case and in Maxwell-Boltzmann limit 
identical to the corresponding expression derived in [10], if the backward 
reaction and the internal energy are dropped. 

3.2. Renormalization of the interaction 
To carry out the renormalization of the interaction in the above expressions 

we have to sum as usual the appropriate two-particle ladders. This is achieved 
automatically by using the diagram elements given in the Appendix. For the 
case of a monocomponent fluid the relevant expressions P, F2 (~ ~,  ~/', d have 
been given in [23]. These expressions are  easily reformulated for the present 
case as follows. The time development operator in two-particle space ~ is 
obtained from 

I , i  I j  j I,i I,i I 

= 3i, i, 3k, k. + ', + 
r 

- ) l w  

KTk K ,k' K,k K,k' 

I,i Iji t 

i = 
I 

1 
I _  

K,k ~ 

+ ... (36) 

=3~i, 3k,~. + 
n = l  

t > t n - i  

I dtt. . .  I dtn 
t <  t <  

• (Ii ,  Kk[~CY(tt)...~tP(t,)]Ii', K k ' )  

= (Ii ,  KklO~(t >, t<)ll i  ', Kk ' ) ,  

where t>(t <) is the earlier (hter) of the times of the vertices, the propagator 
lines running to the left (right) are connected with. The two-particle operator 
~f'(ti) is given by 

i Hotr ~/'(ti)=P(t')W(ti)=P(t') exp ( ~ Hoti) W exp ( - ~  
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Quantum statistics of chemical reactions 1751 

where P(t') is defined by its matrix elements 

(Ii, Kk IP(t')ILl, Mm) = 31,L31, Z3K, U3k, m[1 + K(ni(i , t') + nK(k, t'))]. (37) 

In terms of these quantities the operators ~//', ~ are in the same way as in [23] 
given by 

i 
~/'(tl, t2)= W(tl)~(t I --t2)-~ W(tl)~ll(tl, t2)gF(t2), (38) 

d ( t l ,  t2)= J#(t 1, t2)F2(~ (39) 
where 

(Ii, KklF2(~ M m ) =  31,L~i, 13K,U~k, rani(i, t')nK(k , t'). (40) 

Figure 2. 

NXl~oX 

[ - o 
i 

The renormalized diagram corresponding to the diagram in figure 1. 

Observing rule (A 10) the renormalized diagram contributing in lowest order to 
(9), (15) is the one given in figure 2. The corresponding algebraic expression is 
easily obtained by use of the diagram rules given in the Appendix. Since in 
almost all chemical reactions the temperature is sufficiently high, so that the 
particles obey the Boltzmann statistics, we will restrict ourself to this case. Then, 
the rate equations read 

1 
i d~ ~, (Aa, BblW(va)~ll(u a, 0)lCc , Dd) 1 V A t )  = o,b,c, 

x <Cc, Dd[ W]Aa', Bb')<Aa', Bb'l~ll(v a, 0)+]Aa, Bb) 

• (41) 

where o#+ is the" hermitian conjugate of q/ and c.e. means the corresponding 
complex conjugate expression. To get (41) the relation 

0 
/ "~(~' tl) dtl= W(~q)~//( o, 0) (42) 
0 

was used. Similarly we obtain 

--" Pl'i~ ( Ii, Xxl W(t~ )~ 0)1Yy, Zz)  H ~  oi d# y.~z.i',x' 2me 
X,Y,Z 

x (Yy ,  zz]Wlli', Xx' ) ( I i ' ,  Xx'lqz(~, 0)+1Ii, Xx)  

x [nz(i' , t- t~)nx(x'  , t -  v q) - n r ( y ,  t -  va)nz(Z, t - v~)] 

+c.c. +d~ ' ~z(t). (43) 
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1752 H.-J. Czerwon et al. 

As in the weak-coupling limit the above equations are non-markovian and thus 
contain the effects due to the finite duration of the collisions. Thus the rate 
constants are time dependent, i.e., the usual rate equations read now 

e.4(t) = - i dt'[kl(t, t')ca(t')cB(t')--kb(t, t')cc(t')cD(t')], (44) 
o 

where because of (35) the kl, k b depend on t' and t. To get the usual collision 
theory expression for k/, k b we have to take the markovian limit of (44). This is 
justified if the variation of the cx(t ) and H--o~(t) is slow as compared with the 
duration of a collision. Furthermore, we have to put A/3(t)=0 in (35). Then, 

(h~ /3(t)~ a/2 
nx(i, t)=Cx(t ) \ 2-~-~mx ] exp [-fl(t)gx(i)]=Cx(t)lx(i ,  t). (45) 

In this limit k b is given as 

1 
i dt~ E <Aa, BblW(a)o~(a,  0)ICe, Dd> kb=~ o a,b,c,a 

x (Cc, Dd[Wrql(~, 0)+[Aa, Bb>fc(c , t)fD(d, t )+c .c .  (46) 

Wr being the reactive part of W. Since [24] 

lim Wrql(t, 0)+= W r ~ ( - ) = ( W ~ ( + ) ) * =  T*, (47) 
t - +  oC3 

where ~ is the Moiler wave operator and T the usual T-matrix describing two- 
particle scattering, and since the limit (47) is reached after some average collision 
times, we may consider the corresponding matrix elements as constant factors in 
(46). After introducing the usual damping factor we may replace the upper limit 
of integration in (46) by oo. Thus, we have to consider the expression 

o0 

S exp (-et)W(t)ql( t ,  O) dt= - i + i e  j exp ( -e t ]q / ( t ,  0) dt 
0 0 

= - i(1 - ~(-)+). 
Using 

s IE> = (I + G(-)(E)T*(E))IE>, 

where ]E> is a free two-particle state and 

1 
G(-)(E) = 

E -  i~-  H o' 
we obtain 

2~r 
kb = -~- a, b,~c, a I <Aa, Bbl T~.CD ICe, Dd> [ 2 re(c, t)fD(a, t) 

• 3[gA(a ) + gB(b) - Be(C) - gD(d)]. (48) 

The analogous expression for k! is obtained by similar manipulations. Because 
of the time dependence of re, f9, these expressions depend on time t. This is a 
consequence of the fact that we consider a closed system and that the ground- 
state energies of the different species are different. The usual collision theory 
expressions are obtained by replacing fl(t) in (45) with its equilibrium value/3. 
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4. CONCLUDING REMARKS 

The equations of motion (32), (33) and the renormalized versions (41) and 
(43) were obtained as lowest-order results of the general equation of motion (9), 
(15). None of the usual assumptions!ike molecular chaos, factorization of Green 
functions [10, 11], or synchronization [25] were necessary. Since the equations 
are non-markovian they contain the memory effects due to the finite duration of 
collisions. However, the equations are valid only in dilute systems. 

To treat dense systems we must take into account diagrams of higher order. 
As in the case of general kinetic equations of one-component fluids [16] these 
diagrams contain two-body dynamics combined with the pair-correlation function. 
Thus, equations are obtained which are closely related to the Enskog dense gas 
theory [26]. This theory is well known to describe the behaviour of dense 
gases and approximately even of liquids [27]. In a following paper of the 
authors these ideas shall be applied to chemical reacting systems. 

The authors are indebted to Dr. W. Stiller for helpful discussions. 

APPENDIX 

The Diagram Rules 

For the case of general kinetic equations the diagram rules for two-particle 
interactions were given in [16] both in their original and in the renormalized 
form. The rules applicable to chemical reactions are obtained by some obvious 
modifications. Thus we formulate them without further proof below. 

To get any diagram occurring in the expansion of f~n(1)(t, t ')= - ( O ~ ( t - t ' ) )  t, 
draw at time t9 = t -  t' a vertex corresponding to N x or Ho, an arbitrary number 
n >/2 of the basic diagram elements given below, and a number m/> 0 of wavy 
lines corresponding to the interaction W and the corresponding propagator lines. 
Connect the long line ends with the short ones in an arbitrary manner, observing 
however the direction of the lines. Note that from each exchange group [16] 
just a single diagram has to be considered. Label the left-most dashed line 
with time 8, the right-most one with time zero, and all the other dashed lines 
with times #i. Label the wavy lines with imaginary times r, and all propagator 
lines with momenta Px and species X. 

The algebraic expression associated with such a diagram is then obtained 
from the following rules : 

(i) For each of the basic diagram elements occurring in the diagram include the 
corresponding factor given by the expression below. 

(ii) With each wavy interaction line associate a factor according to 

I, i t.t 
) ) 

i (Ii,  Kh lWlLl ,  Mm),  
h 

K~k M,m 

the matrix element being given by (4). 
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1754 H.-J. Czerwon et al. 

(iii) With each propagator line which is connected with at least one wavy line 
associate a free Green function according to 

D) x : 

% 1: k = G(p, X ; -4- t r i -  ~'k) = -- Tr {T,[ax, ,(rl)ax, , (rg)]ao(t)}, 

where A(r)=%(t ' ) -* /n 'PA%(t ' )  "/h" ~, and %(t') is obtained from a(t') by 
putting W =  0. 

(iv) Include a factor of �89 for each equivalent pair of lines, i.e. for each equally 
directed pair of two propagator lines of the same species which connect any 
two (dashed or wavy) interaction lines. 

(v) Associate a stepfunction | i -  tk) with each propagator line connecting two 
dashed lines i, k, i.e. 

ti, ,tk = |  i -  tk) ', 

independently on the direction of the line. 
(vi) Integrate all real times #i from 0 to t -  t', all imaginary times from 0 to fl(t') 

and sum over all momenta and all species labels. The resulting expression 
is multiplied by ( - 1)L where L is the number of closed fermion loops. 

The basic diagram elements for the unrenormalized diagrams and the correspond- 
ing analytic expressions are 

I,i 

tl' = - -  (Ii ,  KklW(t l )[Ll ,  Mm) ,  
i h I .  
L,~ 

(A 1) 

K,R M,m 
I 

tl, ' i (I i ,  KkIPW(tl)IL1,  Mm) ,  (A 2) 

L , ~ t  ~t 1 i 
',~Kk = ---- x[nL(l, t ')--nz(i, t')] 

~,m h 
x (Ii ,  Kk[W(tl)lL1, Mm) ,  (A 3) 

M ) rlq 

i 

I~i L.,f 

i 
=~  K[(Ii, KklPW(t l )[LI ,  Mm)nM(m, t') 

- ~c(Ii, Kk  IF~(~ Mm)] ,  (A 4) 
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~ t  1 i 
= - ~  <Ii, Kkl(PW(t~)F~(~ 

- F2(~ Mm>, (A 5) 

where P =  P(t'), F2t~ F2t~ 
The corresponding expressions for renormalized diagrams read 

K,k 

h S/./~! - =~ <Ii, Kkl~(t l ,  t2)lLl, Mm>, 

l j  L,~ 

K,k M,m 
- -  ,F//~/i-- 

h i . i t  2 i <Ii, gk lP~( t l ,  t~)lL1, Mm>, 
_ ,'///,I _ = - ~  

I,i L,{ 

(A 6) 

(A 7) 

K,k 

i 
= - ~  K<Ii, K k l ~ ( q  , tz)lLl, Mm>nL(1, t') 

1 
+-~ <Ii, K k l d ( t  z, t~)lLl, Mm>. (A 8) 

t I being the time of the dashed line, the propagator line labelled I, i is connected 
with ; 

M~flq 

K,k i i 
"11/~11t2 =~ •[<I/, KklP~(t t ,  tz)lLl, Mm)nM(m, t') 

- I//I- 

u L,, -K<Ii, Kkld(tz ,  g <, t,)lLl, Mm>], (A9) 

where tx, K < is the earlier of the times of the vertices, the propagator lines I, K are 
connected with. 

The interaction line (A 5) is renormalized by introducing the open box 
defined in (36). In working with these diagram elements one has to observe that 
one has always to replace 

; / / / /  - 

tl ~ t2 

and 

II 
I /  "1" V t 

(A 11) by t 1 t 4 
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thus avoiding the problem of over-generation of diagrams. Note that reversing 
all of the line directions in a given diagram element is equivalent to taking the 
complex conjugate of the corresponding analytic expression. As discussed in 
more detail in [16, 23] the Maxwell-Boltzmann limit of the above expressions 
is obtained by putting P =  1, d = 0 and neglecting the term containing F~ (~ in 
(A 4). 
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