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Quantum statistical theory of chemical  reactions 

II. Treatment of reactions in dense systems---the chemical  
version of the Enskog dense-gas theory 

by R. DER and R. H A B E R L A N D T  

Akademie der Wissenschaften der DDR,  
Zentralinstitut ftir Isotopen- und Strahlenforschung, 

DDR-705 Leipzig, G D R  

and H.-J.  C Z E R W O N  

Akademie der Wissenschaften der DDR,  
Zentralinstitut ffir Physikalische Chemie, 

DDR-1199 Berlin-Adlershof, G D R  

(Received 21 April 1977) 

Starting from the exact rate equations for chemical reactions derived in 
a previous paper [1], approximate rate equations are derived by considering 
a convenient class of diagrams containing both two-body dynamics and quasi- 
static two-body correlations. Thus, in the markovian limit, the rate constants 
are formulated in terms of the T-matrix elements of two-molecule reactive 
scattering theory and of pair distribution functions describing the correla- 
tions of the molecules of the different species in thermal, but not chemical, 
equilibrium. The pair correlation functions depend in a complicated way 
on the concentrations of the different species, which leads to a concentration 
dependence of the rate constants. Physically, our expressions for the rate 
constants are closely related to the usual expressions for the transport coeffi- 
cients of the Enskog dense-gas theory of non-reactive fluids. 

1. INTRODUCTION 

In a previous paper [1], we formulated a quantum-statistical theory of 
chemical reactions based on exact rate equations, i.e. equations of motion for 
the concentrations of the different species, and then used diagram perturbation 
theory to expand the integral kernels occurring in these equations of motion. 
In [1], by considering the diagrams of lowest order, we obtained rate equations 
which are valid for dilute systems and reduce to the usual collision theory results 
after suitable approximations have been made. 

In the present paper, we intend to treat denser systems by considering 
higher approximations. The  starting point is again the shor t -memory version 
equation (I 15)]-, of the exact rate equation (I 9). This  is correct [2, 3] provided 
that the set of parameters (the concentrations Cx(t ) and the deviations Aflx(t ) 
of the kinetic temperatures of the different species X)  chosen in [1] is complete, 

t Equation (I x) means equation (x) of paper I [1]. 
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1610 R. Der et aL 

thus allowing a macroscopic (chemical) description of the system. This is 
fulfilled for most chemical reactions of practical interest, and in dense systems 
we may even set Afix(t ) = 0, which means that thermalization is a much faster 
process than chemical relaxation. We are thus left with equation (I 15), the set 
On(t ) being just cx(t ), X =  A, B, C, D. 

In equation (I 15), the only diagrams that contribute are those rapidly 
decaying in time. The lowest-order diagrams to fulfil this condition were 
considered in [1]. As a guide for selecting the appropriate higher-order dia- 
grams, we can use the theory of kinetic equations for non-reactive fluids [3, 4], 
in which it was found that the diagrams we have to consider are those which 
contain both two-particle dynamics and quasi-static pair correlations in the non- 
equilibrium ensemble a(t). The contribution of these diagrams yields kinetic 
equations which, in the appropriate limits, reduce to the well-known Enskog 
equation which describes to a very good approximation the behaviour of dense 
gases, and is even a good approximation in simple liquids [5, 6]. 

The diagrams to be considered in this paper (see figures 1 and 2) are topo- 
logically the same as those taken into account in the non-reactive case, but the 
two-body dynamics is now given by reactive molecular collisions. Nevertheless, 
the physical interpretation of the equations obtained is essentially the same as in 
the case of non-reactive fluids (see for example [5]). 

The Enskog dense-gas theory was originally formulated for classical hard- 
sphere gases, but in recent years several papers concerned with the extension of 
the theory to realistic potentials have appeared [7]. An application to reactive 
fluids, however, has not yet been attempted, which, in view of the good results 
achieved with the Enskog theory in calculating transport coefficients, is rather 
surprising. The reason probably lies in the fact that the usual procedures for 
deriving the Enskog theory proceed via the BBGKY hierarchy, and the inclusion 
of reactive collisions in the theory poses a serious problem which, it seems, 
cannot be resolved at present. 

For the sake of simplicity, we begin in the following section with the deriva- 
tion of the desired rate equation by considering those diagrams which contain 
the full quasi-static pair correlations, but treat the two-body dynamics in the 
weak-coupling limit. The renormalization of the interaction is carried out in 
w 2.2 by summing the appropriate ladder diagrams. In w 3, the markovian 
limit of the rate equations thus obtained is expressed in more familiar terms by 
the use of scattering theory. In this way the rate constants are expressed in 
terms of the off-shell T-matrix elements of molecular scattering theory and the 
pair distribution functions which describe the quasi-static correlations of the 
molecules in the ensemble a(t). This ensemble describes a system which is in 
thermal, but not chemical, equilibrium. All quantities calculated in this 
ensemble thus depend on the actual concentrations of the different species at 
time t. These points are discussed in w 4. Finally, in w 5, we discuss our 
results and attempt to outline some possible implications of the present theory on 
both the theory of reactive molecular collisions and the theory of chemical reac- 
tions in general. In concluding this introduction, we would like to mention, 
that the approximate rate equation (10) could be obtained directly from our 
general rate equation (I 15) by some kind of cluster expansion, in the Maxwell- 
Boltzmann limit at least. Any reader who is not interested in the details of the 
diagram expansion could therefore start directly from equation (10). 
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2. CONSIDERATION OF PAIR CORRELATIONS IN RATE EQUATIONS 

The diagrams we wish to consider in this paper are shown in figures 1 and 2. 
These  diagrams contain the correlated part F2c(t) of the two-particle density 
operator F2(t) defined by 

<Ii, K k  [F2~(t)ILl, Mm> = T r  {aL, ,+ aM, m + az, iag, ka(t)} 

- {(1 - KSz, ~:)~Z,L~i, l~K, M~k,m "4- K~I, K~I, M~i,m~K,L~k, l} 
x C , < ( l ,  L)G,<(m, M).  (1) 

T h e  first te rm on the r ight-hand side of equation (1) corresponds to the two- 
particle Green  funct ion G (2) for a special ordering of the creation and annihila- 
tion operators. T h e  diagram expansion of F~ ~ is given in figure 3. In equation 
(1), Gt < is the one-particle Green function of equation (I 18), and K= + 1 for 
bosons and - 1  for fermions. By the choice of observables discussed in [1], 
a(t) is now given by 

a(t) = exp { -  Ao(t ) - f i ( t ) [H-  E Fx( t )Nx]} ,  (2) 
x 

which may be considered as a Gibbs grand canonical ensemble with given con- 
centrations of the different species. These  concentrations may deviate arbitrarily 
far f rom the concentrations in chemical equilibrium. A more detailed descrip- 
tion of the above function will be given in w 4. 

T I - I " I Kk Mm [ I I I I Kk 
I , ' ' , . c  , I ~ 1  I0 FzC I ~ l  0 I t '21 + 
I I I I I I a I [ 

Aa I i  ! L_.! I I A. I f l i  

IAO AIO L'I 

Figure 1. The diagrams of lowest order considered in this paper. These diagrams are in 
the weak-coupling limit with respect to the dynamical part, but contain the full quasi- 
static correlations represented by the box F~ e. The box is explained in figure 3. 
The labelling is chosen so that only reactive contributions are retained. Two 
further diagrams are obtained by reversing all the arrow directions. All propagator 
lines are to be understood as double lines representing exact Green functions. 

~b ~rn 8,b R,r M.,. 

,~ 'f v 

" ~ A  - ~ ~ L.I , , .a a,q ' 

Figure 2. The renormalized diagrams. The shaded and the open box contain two- 
particle ladders and are explained in I. As to labelling, arrow directions and 
propagator lines see figure 1. 
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1612 R. Der et al. 

' ' ' K k  M,m 

Figure 3. The definition of the correlated part of the two-particle Green function. 

2.1. The weak-coupling limit 
Let us now consider figure 1. This diagram is obtained from figure 1 in [1] 

by introducing, either between its particle or hole lines, all possible wavy-line 
diagram parts, the sum of which is just the matrix element of F~ c given in equa- 
tion (1). (We shall denote the lines running to the right (left) as particle (hole) 
lines. Of course, this is rather arbitrary ; for more details see the discussion in 
[3].) 

The analytic expression of figure 1 in terms of F f  is obtained by separating 
the box from the remainder of the diagram in the same way as was demonstrated 
for the general case [2] (see figure 1), and by using the sign rule [1 (vi)] and the 
equivalent-pair-of-lines rule [1 (iv)]. It is easily verified that we obtain the 
correct factors if, with respect to rule (iv), we treat the box in the same way as 
an interaction line, and with respect to rule (vi), we assume the lines to run 
straight through the box without crossing. The sign factors in figure 2 are 
then obtained by applying the usual rule [8]. Proceeding in this way, and 
using the diagram rules given in [1], we find that the sum of the diagrams of 
figure 1 is 

1 ~ exp (~ [8~(a)+SB(b)-gl(i)-SK(k)]~) 
h 2  a, b, i, k, 1, m 

I ,K ,L ,M=A,B ,C ,D 

x {(Aa, Bb I W]Ii, Kk)(Ii, Kk[PWILI, Mm) 

x (Ll, Mm[FflAa, Bb)+ (Aa, Bb[ W[Ii, Kk) 

x (Ii, Kk[FflLl, Mm)(Ll, Mm[PW]Aa, Bb)} + c.c., (3) 

where c.c. is the corresponding complex conjugate expression, and P is the 
operator introduced in [1]. In labelling the propagator lines of the dia- 
grams, it was taken into account that purely elastic processes do not contribute to 
~ .  It should be clear that in this case there occur no factors of �89 The two 
diagrams which are obtained from those drawn explicitly in figure 1 by reversing 
all the arrow directions yield the complex conjugate of the above expression (3). 
This is easily verified by applying the diagram rules and the fact that F2 ~, as 
defined by equation (1), is a hermitian operator. 
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Quantum statistics o[ chemical reactions 1613 

Using the decomposition of the unit operator in two-particle space 

1= E [Ii, Kk)<Ii, Kkl, (4) 
l , i  K,k 

expression (3) is obtained in a more compact form, 

<Aa, Bb ILl (2)(uq).ogOlF2C IAa, Bb>, (5) 
a, b 

where 
1 

L1 (2)(v~)A = h [ W(v~), A ]. (6) 

The matrix elements of W(~) are given by 

<Ii, Kh[W(~)ILl, Aim) = exp {i/h[#z(i) + gz~(h) - #L(1) -- #i(m)]~} 

• {<Ii, Kh[W[LI, mm)+~3z, K<Ii, Kk[W[Mm, Ll>} (7) 
and 

1 [PWA - A WP]. 

The rate equation obtained from expression (5) will be discussed below. 

2.2. Strong interactions 
In the above expressions the dynamics of the two-body system is treated in 

the limit of weak coupling, corresponding to treating the binary collision in the 
Born approximation, which is well known from scattering theory. This is, 
of course, unsatisfying, since in real systems the short-range part of the interac- 
tion is in general very strong. 

This difficulty is overcome, as it is in [1], by summing the appropriate 
ladder diagrams. The corresponding diagrams are shown in figure 2, and it is 
easily concluded that they represent all possible diagrams which can be obtained 
by introducing additional dashed lines between the particle or hole lines of the 
diagrams of figure 1. 

The corresponding analytical contribution is 

1 
- {<Aa, Bbfr O)F2~ o)[.4a, Bb> 

h 2 ' 

+<Aa, Bb]W(a)ql(t~, O)F2c(t-a)W(O)PJll+(v ~, 0)]Aa, Bb)} + c.c., (8) 

where equation (I 42) is used. This can be expressed more compactly as 

~, <Aa, Bb]Ll (2)(a)qb(a, O)[.PiF~(t-a)]~+(a, O)[Aa, Bb>. (9) 
a, b 

In labelling the diagrams, it was again taken into account that purely elastic 
processes do not contribute to ~.4. Expression (9) can be combined with 
equation (I 41), producing the rate equation 

t 

fA(t)  = -- i d a  ~. <Aa, Bb]L~ (2)(~)qZ(a, O)[Lf~F~(t-a)]q/+(a, O)lAa, Bb>, (10) 
0 a, b 

where 
F2(t ) = F~ (~ + F2e(t). (11) 
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1614 R. Der et al. 

Equation (10) is the rate equation which is expected to describe chemical reac- 
tions in dense fluids. 

The right-hand side of equation (10) depends, via F2( t -~ ) ,  on the inverse 
temperature fi(t), which may vary in time, since we are considering a closed 
system. To determine fi(t) we use the condition from equation (I 7), 

( H ) t  = Tr {Ha(t)} = const. 

Using the diagram expansion together with figure 3, we find, after some manipula- 
tions, that 

(H}t  = ~kT(t)N(t) + ~ Nx(t )~x '  
X 

+ E (Ii, KkIWILI, gm} (L l ,  MmlF2(t)]Ii , Kk).  (12) 
i ,k , l ,m 

I , K , L , M = A , B , C , D  

This equation supplements equation (10), and thus we have a closed system of 
equations of motion. 

Equation (10) contains memory effects, and takes full account of the fact 
that the binary collision is affected by the other particles of the system by ex- 
change effects. The most important feature of this equation, however, is the 
appearance of F2 ~, which describes the two-particle correlations in the ensemble 
a(t). The matrix elements of F2 ~ depend in a very complicated way on the 
concentrations of the different species, and thus it is to be expected that the rate 
constants in equation (I 44) also depend on the concentrations in a complicated 
way. A more detailed discussion will be attempted in w 4. 

For most chemical reactions the memory effects are very small, so we can 
take the markovian limit of the rate equations. In w 3 we shall study the 
resulting equations somewhat more closely and derive explicit expressions for 
the rate constants. Actually, these expressions could be obtained by considera- 
tions analogous to those of paper [1]. Since the situation is now rather more 
complicated, we prefer, however, to carry out the theoretical scattering con- 
siderations with greater rigour. Because of the fact that the field operators of 
the different species commute, the usual non-orthogonality problem of rearrange- 
ment scattering theory does not occur in this case. 

3. THE MARKOVIAN RATE EQUATIONS 

The markovian limit of equation (10) is obtained by setting 

F,c( t- t~)  = F2e(t). 

As in [1], we will now introduce the transition operator of scattering theory. 
To simplify the derivations, we shall assume that we can neglect exchange effects 
due to the presence of the other particles in the system, t 

In this limit, we set K=0, from which it follows that P =  1. Using the 
relations 

~(t,  0 ) =  i o), 

t For a mono-component fluid, it is shown in [4] how the general case is treated. These 
ideas can also be applied to the present situation. 
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Quantum statistics of chemical reactions 1615 

and 

Where the 
it is easily recognized that the integrand in equation (10) is equal to 

i ~ {(Aa, Bb[ql(t, O)[L 1 (2) V2(t)]~+(t ' O)]Aa, Bb) 
a, b 

-<Aa, Bb]LI(~) F~(t)lAa, Bb>). 

~ll+(t ' i O)W(t), ~-i 0) =i~+(t ,  

matrix elements of W are given by equation (I 4) with K=O, 

(13) 

i • {(Aa, Bb[~A,B(-)+(~)[L1 <2) F2]~2A, u <-)(E)]Aa, Bb> 
a,  b 

- (Aa, Bb[LI(2)F2[Aa, Bb)}. (17) 

To introduce the transition operator T, we define an operator T(r such that 

TI, K*(E)= WY~I,~z(-)(E), T*(E)----- T(--E), (18) 

where the asterisk denotes the complex conjugate. T is then obtained from 
the relation 

lira T(E) = T. 
~'---~0 

Now, we note that, by virtue of equation (16), 

where 

~Z,K (--)(~)]Ii, Kk> = (1 + G(-)(EI, K)W)]Ii, Kk>, 

1 
fC(-)(E) E - H - i E  

where ~• (-)+ is the Moller wave operator [9] for the 
cules I and K. The projection operator PI, K is defined as 

PZ, K = Z Jli, Kk>(Ii ,  Kk]. 
i ,  k 

Provided that the system is finite, it is more convenient to work with a modified 
version of the Moller wave operator [10], 

~Z,K(-)(~)= {1 +~ ~0 dt exp (-Et /h)  exp (ill  (2) t/h) W 
i 

• exp (-iHo (2) t/h)t PI, K, (16) 

where in an infinite system, for ~-+0, ~(~) converges strongly to ~. From 
the properties of the above limits, it is concluded that the integrand (13) may 
be written as 

(19) 

(15) 

scattering of mole- 

Since q /may  be written as 

~'(t, 0 )=exp  [(i/h)Ho (~) t] exp [(i/h)H (2) t], (14) 

Where H0 (2) and H (~) are the free and full hamiltonians of the two-molecule 
system respectively, we have, for an infinite system, that 

lim Pi.g~(t ,  O) = f~z,g (-)+, 
t--+ O~ 
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1616 R. Der et al. 

and 

El, K = gi(i) + #K(k). 

The Green function is written in terms of the scattering states 

~:Z,M(-)(/, m)=  ~2L, M ( - ) ] L I ,  Mm) 

(20) 

(21) 

a s  

1 
G(-)(Ez'K)= L,EM I~L'M(--)(I' m)) EI, K _ E  L,M_i~ <tFL, M(-)(I, m)[, (22) 

l, m 

where it is assumed that the interaction of equation (1 4) does not support 
bound states between different molecules, and where the sum over L and M is 
carried out in such a way that there appear only those elastic and reactive 
scattering processes allowed by equation (I 4). 

Using equations (18), (19) and the relation 

(g (-)(E)= G(-)(E) + G(-)(E)Wfg(-)(E), (23) 

where 

1 
G (-)(E) = E -  H o - iE' 

we obtain 

O~,B(-)(E)IAa, Bb) =(1 +G(-)(E~,B)Ta, B(-E))IAa, Bb) ; (24) 

from this and equation (18), 

(Aa, BbI~2A, B (-)+(E)[L 1 (3) V2o] ~2a, B (-)(~) [ Aa, Bb) 

1 
= ~ <Aa, Bb[TA, B+ ( - E)Ff[1 + G (-)(EA, B)T~,B( -- E)] 

--[I +G(-)(EA, B)TA, B(--E)]+ F2 ~ TA, B(-r , Bb). (25) 

Now consider the equation 

(Aa, Bb[Ta, e+ ( - E)F~ c -  F f  TA.B( -- E)IAa, Bb) 

=h(Aa, Bb ]L~ (2) F2~IAa, Bb) + (Aa, Bb[ W(#(-)+(Ea,.) 

x W F f - F 2  ~ WfY(-)(Ea, B)W]Aa, Bb). (26) 

Using equations (18), (19), (21) and (22), this becomes 

h(Aa, Bb]L1 (~) F~eIAa, Bb)+2i  Im  i,k,~,m~ {(Aa,  Bb[TLK(-e)]Ii,  Kk)  
I, K, L, M 

1 
X E 4,B_E~,z~+ie ~Ii, KklTz, K+(-e)lLl, Mm) 

x (L1, MralF~~ , Bb)}.  (27) 
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Quantum statistics of chemical reactions 1617 

Applying the above result, the integrand (17) becomes 

_ 2  h Im E { (Aa, Bb[TA, B+(--E)]Ii, Kk ) ( I i ,  Kh]F~(t)]LI, M m )  

1 
• E~,B_EL, M_ie (L1, MmIT~,B(--e)IAa , Bb)  

1 
+ (Aa, Bb]T~,K(-E)]Ii , K k )  

Ei, + 

• (Ii, Kh[ T~, K+( -- ~)] L1, M m )  (Ll, Mm [F2(t){Aa, Bb) t" 
J 

To obtain the above expression in the form of a rate equation, we define 

( Ii, KklF2(t ) ILl, M m ) =  �89 t)nK(k , t)+ nL(l , t)nM(m , t)} 

k, l, m ; 

where 

(28) 

(29) 

gZK, LM(i, k, l, m ; t)=grMdK(l, m, i, k ; t), 

gLM, LM(1, m, l', m' ; t)=gLM(l, m, l', m.; t), 

function expressing the conservation of total momentum is displayed the 3 
explicitly, and the momentum distribution nx(x, t) is given by equation (I 45). 
The  functions gZK, LM and gnM are connected with the Fourier transforms of the 
pair distribution functions in configuration space, and will be discussed in more 
detail in w 4. 

Incorporating the results of [1], the rate equations are now 

d~(t) = - klc.~(t)cB(t ) + k~co(t)cD(t), (30) 

where 
k! = k] (B) + kl (E), 

kl(B) being the expression on the Boltzmann level [1]. Either from there or 
from the above considerations with F 2 replaced by F 2 (o), and using 

1 = ~  ( ~ )  - i~rS(x), 
x+i~ 

where ~ means principal part, we find that 

2~r E [(Aa, BbITA, B(--e)[Cc , Dd)[ 2 3[#A(a)+gB(b ) kl(B) = h---#., b, ~, 

--#c(C)--SD(d)]cA(a, t)cB(b, t), (31) 
V being the volume of the system. 

The expression for k] (E), which is the corrective term calculated at the 
Enskog level, is immediately obtained from equations (28) and (29) as 

hl(~) = km (E)+ hl.2 (n), 

where 
1 

km (E) = 2hV Im ,,, b, ., a, ,,', (Aa 'Bb{T '~B( -E) {Cc 'Dd)Ea ,  B - E o D + i E '  , 

• (Cc, Dd{TA, B+(-E){Aa', Bb')L(a ' ,  t)fB(b', t)haB(a, b, a', b'; t), (32) 

M,P. 5 P 
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1618 R. Der et al. 

and 
hlK, LM(i, h, l, m ; t )=  -~I,L~L,M~I, t~k,m +glK, LM(i, k, l, m ; t) 

where 
h l g ,  I g  = h i E ,  

so that h = 0  in very dilute systems, i.e. in the Boltzmann case. k],2 (E) then 
contains the remaining terms and it is easily seen that ki,~(E) is proportional to 
the ' react ive '  correlation function h~B,C D. We do not think it necessary to 
give the explicit expression for kl,2 (E) since its structure is easily ascertained 
from the above formulae, and, as argued below, the most important contribution 
is contained in h/,I(E). 

Analogously we obtain 

k b = k b ( B ) + k b ( E ) : k b ( B ) + k b  l (E)-k kb, 2 (E), (33) 

k0(B) being given by equation (I 48), and 

kb I ( E ) _  2 ' -h---V Im ~ (Aa,  Bb[TA, B+(--E)ICc, Dd)fc(c,  t)fD(d, t) 
a, b, c, d, c', d' 

1 
' d "  t) <Cc', Dd'ITA, B ( - e ) I A a ,  Bb>, (34) x hvD(C , d, c ,  , Ea, B-- Ec, D -- ie 

and in the same way as above we find that kb, e (E) is again proportional to hAB, C D, 

4. THE PAIR DISTRIBUTION FUNCTION 

Because of the choice of the ensemble a(t) in equation (2), the two-particle 
distribution functions F2(t ) depend implicitly on the concentrations of all 
species in the system. To get an idea of this concentration dependence we 
assume for the time being that the number of elastic collisions is much greater 
than the number of reactive collisions, which is the case in dense systems; 
we can then neglect the reactive collisions in the perturbation expansions of hIK. 
For simplicity, we also neglect quantum corrections to the momentum distribu- 
tions [11] and to hiK. 

We express the matrix elements in terms of Wigner functions, as in [12]. 
Using the fact that in the classical limit the momentum dependence can be 
factorized, we can express equation (29) as 

lim ~Px + k, PK-- k [F2(t)[pi- k, PK + k~ = n~(pz , t)nK(PK, t) 
•--+0 

• --k, - k ,  k ;  t), (35) 
or  

lim (Pz + k, PK + k]F~(t) [Px- k, OK-- k)  = nl(pD t )ng(pg , t)gig(k, t), 
h---~0 

where 
gxK(k, t )=~  exp (ik.  q)gIK([q [, t) dq; (36) 

gZK(lq [, t) being the usual radial pair distribution function. After introducing 
the fugacities zx ( t  ) and the thermal de Broglie wavelength 

V(2~)h 
Ax(t ) = v/ (mxkT( t ) ) ,  (37) 
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Quantum statistics of chemical reactions 1619 

equation (35) becomes 

zi(t)zK(t)AiS(t)AKa(t) exp ( -- fl(t)[pI~/2mi + pK~/2mK])gzg(k, t) 

The fugacities are normalized as 

lira Zx  = 1. (38) 
cx--~oC X 

Since a generalized grand canonical ensemble is used in the averaging pro- 
cedure in equation (1), hzK(Iq[ , t)=glK(Iq] , 0- -1  can be represented in the 
classical limit for short-ranged interactions in known manner in an expansion 
in powers of the fugacities [13] if we extend the results of Smith [14] to the 
case of many-component systems : 

h,K(lq~--qKl)=exp (-- flW, g) 

x { l +  E z x l d q x [ e x p ( - - f i ( W , x + W x K ) ) - - l J + O ( z ~ ) } - - l ,  (39) 
X =  A, B, C, D 

where WZK is the elastic part of the interaction in equation (I 2). A typical 
diagram from figure 3 that contributes, in the classical limit, a term of the order 
ZlZKZX, is 

I ; i  I, it 

X, X I 1 
K,k K~,.k I 

Using the known relation between the concentrations and fugacities 

C I =  E n/b- zn 
n~>l 

= zi + 2buzz 2 + ~ bzKZxZK + 3bmzx a + ~ 2bnKZi ~ ZK 
I # K  I c K  

+ E E bzKLZzZKZL +''" , (40) 
K > L  L r  
K r  

where b. are the reducible cluster integrals [13, 15, 16, 17], we obtain the expan- 
sion of z in powers of c, and for hzK (see for example [17]), 

ZIZKhzK(Iql--qK[)=CzCK{exp (--fiWzK)[ 1 + 2 Cx I dqx  
X = A ,  B, C, D 

x (exp ( -  fiWxx ) - 1)(exp - f lWxK ) - 1) + O(ca)]-l} 

= ClCKTIIK( IqI -- qg I)" (41) 

Therefore, we finally obtain explicit concentration-dependent expressions 
for k/(E) and kb (E) in the rate equation 

da(t) = --k/ (B)( T)ca(t)cB(t) --k/ (E)(c, T)ca(t)cB(t ) + kb (B)( T)cc(t)cD(t) 

+ k b (E)(c, T)cc(t)cD(t), (42) 

51'2 
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1620 R. Der et al. 

where kl(E) is given, under the above assumptions, by 

k (E)--2 1 
f - h  (2-rrh) 1 - - ~  Im {I dp.~ dpB dpc dPD df)a d~B<p.~, PBI T.~,=lPc, PD) 

1 
• <pc, + PB- 

EA, B -- Ec, D + ie 

x A~a(t)ABa(t) exp ( -  fl(t)[o~ +O~B])h(~A, PB ; t), 

h(Pz, PK; t) being the Fourier transform of h(qz, qK; t). 
analogous expression for kb(E)(C, T). 

(43) 

There exists an 

5. DISCUSSION 

The corrective terms kltm and kb (E) derived in w 3 are the main result of 
the present paper. These terms are derived from our model hamiltonian, 
equation (I 2), but they no longer contain the model interaction W. Instead, 
they are formulated entirely in terms of T-matrix elements and pair distribution 
functions. This is a desirable feature, since a serious disadvantage of our 
hamiltonian consists in the fact that the connection of the phenomenological 
interaction W with the realistic intermolecular forces (or thequan tum chemical 
potential surfaces) is not known. At the present level of approximation this 
drawback is easily overcome by assuming that W is chosen such that the T- 
matrix elements defined above are just the realistic T-matrix elements which, 
in principle, can be either measured by two-particle scattering experiments in 
free space, or calculated by the usual theory of molecular scattering which starts 
from the quantum chemical potential surfaces. 

Similar considerations apply to the pair distribution functions introduced in 
equation (29). From equations (29) and (1) it is easily seen that the definition 
of gZK, LM is independent of any particular choice of the representation of the 
hamiltonian. Thus we may use in equation (1) the realistic hamiltonian which 
is formulated in terms of atoms ; the g functions are then the realistic ones. 
From these considerations we conclude that by means of this reinterpretation we 
obtain a theory which is valid in rather dense systems, although our hamiltonian 
is valid only for dilute systems. Of course, this approach has to be verified in a 
more fundamental theory which starts from the realistic hamiltonian formulated 
in terms of atoms rather than molecules. After suitable ~partial summations, and 
on a certain level of approximation, such a theory would again be formulated in 
terms of just the T-matrix elements and pair distribution functions introduced 
above. From the reinterpretation scheme it seems at least highly probable that 
expressions obtained for the rate constants in the more fundamental theory 

s h o u l d  coincide with those derived in the present paper. 
The physical interpretation of these expressions for t h e  rate constants is 

different for the different parts kl, x (E) and kb, x (E), and kl,2 (E) and kb,2 (E). The 
former terms contain the pair distribution functions gab or gOD which describe 
the static correlations between molecules A and B, or C and D respectively. 
As with the corresponding Boltzmann terms equations (I 48) and (31), the 
expressions contain the reactive T-matrix elements only. Thus, one might say 
that the terms considered take into account that in a dense system the frequency 
of the collisions which lead to reactive transitions is no longer given--as in the 
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Quantum statistics of chemical reactions 1621 

Boltzmann case--by the velocity distribution functions fx(x) alone, but instead 
depends sensitively on the structure of the fluid which is expressed by the pair 
distribution functions gaB and gc9. From this point of view, it is not at all 
surprising that the T-matrix elements occurring in the above expressions are in 
general off the energy shell. In t h e  Boltzmann case, the appearance of the 
energy-conserving 3 function may be attributed to the fact that the time of free 
flight between collisions is large compared with the duration of a collision. 
Thus, only the asymptotic behaviour of the molecule-molecule collisions, i.e. 
the cross-sections, enter into the theory. In dense systems, the duration of the 
collision is of the same order of magnitude as the inverse of the ' collision fre- 
quency, so that effects due to the finite duration of the collisions are important. 
Therefore, with respect to the two-body dynamics, and after a suitable expansion, 
the corrective terms k1,1 (E) and kb, t (E) could be expressed in terms of the cross- 
section in first order, the lifetime matrix [18] in second order, and so on. 

The interpretation of the terms kl,2 (E) and kb,2(E) is more difficult. These 
terms contain both elastic and reactive T-matrix elements, together with the 
' react ive '  pair distribution function gAB, C9. This pair distribution function 
represents some kinds of chemical correlations in the system which are absent 
in non-reactive systems. 

From these facts it follows that the corrective terms kl,2 (E) and k0,2 (E) can 
by no means be expressed in terms of physical quantities such as cross-sections, 
the lifetime matrix or collision frequencies. The appearance of the ' reactive ' 
pair distribution function seems to take account of the fact that, in dense systems, 
there is always a macroscopic number of molecules which are just undergoing a 
reactive collision so that the different species are not identifiable. These mole- 
cules do not therefore fit into the above scheme, which involves the collision 
frequency, but instead they should make a more complicated contribution to the 
chemical change, this contribution being given by kl.2 (E) and kb,2 (E). If the 
system is not too dense, and if the number of elastic collisions is much greater 
than the number of reactive collisions, these terms should be small. Of Course, 
this conclusion and the above tentative interpretation need numerical verifica- 
tion, but this is outside the scope of the present paper. 

Let us now return to the off-shell contribution of the T-matrix. From the 
point of view of scattering theory, the appearance of these contributions compli- 
cates the evaluation of the rate constants for realistic potentials. With our 
present knowledge of molecular scattering theory, even the calculation of the 
quantum cross-section is possible only for very simple molecules. The off- 
shell matrix elements, however, contain much more information concerning the 
details of the scattering process and the potential surface, and are thus more 
difficult to calculate. Nevertheless, for the physical reasons given above, 
this difficulty can never be circumvented if denser systems are to be considered. 
Thus, the treatment of such systems poses a serious challenge to reactive molecu- 
lar scattering theory. 

On the other hand, the fact that kl(E) and k 0 (E) are much more sensitive than 
k/B) and ko(B) to the details of the potential surface could be used as a more 
detailed check of the calculated potential surfaces. In the Same sense, a com- 
parison of the calculated values of k I (E) and k s (E) with the experimental ones would 
lead to more detailed conclusions about the progress of the molecule-molecule 
scattering process, provided that the pair distribution function is known. 
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1622 R. Der et al. 

The calculation of the pair distribution function is a problem of equilibrium 
statistical mechanics, and many methods are available for deriving approximate 
expressions for g. A diagram method has been described in [2]. 

Some approximate expressions were obtained in w 4. There,  we displayed 
the explicit concentration dependence of g, and thus of the rate constants. This  
concentration dependence has important  consequences for chemical kinetics. 
While the reaction (I 1) considered in this paper is a reaction of second order 
[19] in the gas phase, in denser systems there occur higher powers of the con- 
centrations of the different species. Therefore it is not possible to determine 
the reaction order in an unambiguous way. The importance of the concentra- 
tion dependence of the rate constants has already been emphasized [20]. 

At present we cannot give a reliable assessment of the validity of the present 
theory. However,  we know that the usual Enskog dense-gas theory for non- 
reactive fluids [5, 6] is a good approximation for dense gases, and even for 
simple liquids. The  deviation of the Enskog theory from the Boltzmann 
results may amount  to an order of magnitude. From the great physical simi- 
larity of the present theory to the usual Enskog dense-gas theory, it is to be 
expected that similar conclusions also hold for chemically reacting systems. 
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