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A generalization of lattice-cell theories of liquids is proposed by introduction of a structure of 
cells of different size. The number of molecules contained in cells with a radius r is determined 
by a function fc(r) describing essentially the collision probability of two particles. A relation 
between fc(r) and the radial distribution function g(r) is given. Any regular (lattice-like) 
arrangement of the molecules is not supposed. The estimation of thermodynamic quantities is 
shown both in a semiclassical approximation and in a quantum-statistical version. Particularly we 
studied the equation of state of simple liquids (neon, methane). Correlations are found between 
the shape of the distribution fc(r) and the course of the equation of state. The theory gives the 
usual cell theory behaviour and additionally some interesting new features. 

1. Introduction 

The proposed theory is in an extension and modification of well-known 
lattice-cell models of simple liquids with regard to a more realistic description 
of the liquid structure. The conventional cell theories ~) (for instance the 
Lennard-Jones Devonshire theory) assume a regular (lattice-like) arrange- 
ment of particles enclosed in cells consisting of the next neighbour molecules. 

Analyzing the radial distribution function (RDF) 2'3) of liquids we notice that 
these assumptions lead to an inadequate picture of the molecular structure of 
the liquid state. 

The RDF shows that the probability to find a neighbouring particle of any 
molecule in the liquid is smeared over a finite range of distances. Thus the 
supposition of a regular arrangement of molecules with fixed distances 
(lattice) and the idea to localize all molecules of the liquid in cells of the same 
shape and size are to be regarded as a drastic simplification of the real 
structural situation in liquids. 

In order to overcome these imperfections in the description of the liquid 
structure a lot of attempts are made. 

Of special interest in our connection are investigations of quasi-lattice 
structures to restrict long-range order effects. Franchetti 4) proposed such a 
quasi-lattice model and showed the way to estimate the RDF. 
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Recently Baer ~) investigated structural correlations by means of a "struc- 
tural diffusion" model based on a local lattice structure with spatially varying 
lattice parameters using some well-known ideas of Prins 6) and Frenkel7). 

Hoover et al)), analyzing computer simulations, suggested an improvement 
of the cell theory by the introduction of cells with different sizes and shapes. 

In first respect the mentioned models are to be regarded as contributions to 
a satisfactory picture of the liquid structure. But in almost all cases the 
development of the theories is not yet suitable for the calculation of ther- 
modynamic quantities of concrete systems. We have developed a modified 
cell theory (MCT), which allows both a detailed representation of the liquid 
structure by means of a generalized cell model and the estimation of the 
thermodynamic behaviour. 

In agreement with structural data 2'3) we suppose a distribution of different 
distances between neighbouring particles in the liquid. In terms of a cell 
theory that means: We have to distribute the molecules over cells of different 
sizes. The averaged cell volume in this structure is equal to the volume of the 
elementary cell in conventional lattice cell theories. This technique is similar 
to the quoted suggestions of Hoover et al3) to improve the cell theory. 

On the basis of our model we have calculated thermodynamic quantities not 
only in a semiclassical but also in an exact quantum-statistical manner. 

2. Characteristics of the model 

We assume that all particles of the system are contained in (approximately) 
spherical cells with exactly one molecule in one cell. The number of cells is 
supposed to be equal to the number of particles. Contrary to the conventional 
cell theories, using a fixed cell radius, we introduce in the MCT a distribution 
of different cell radii fc(r). This distribution determines the part dNrc of the 
total number of molecules N enclosed in cells with a radius between rc and 
re+dr. 

Then dNr c may be given by 

dN~c = Nf~(r~) dr, (1) 

with the normalizing condition 

00 

f f~(r) dr 1. (2) 
0 

In order to relate the distribution of cell sizes to the volume of the liquid we 
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formally define an averaged cell radius ~c: 

o o  

~c = / r/c(r) dr. (3) 
0 

Then in close analogy to the usual cell theories we express the volume V of 
the liquid by 

V = ~e~N. (4) 

It is important to emphasize that eqs. (3) and (4) do not imply the 
introduction of any lattice-like arrangement of the particles with a lattice 
constant ft. These relations serve to (approximately) estimate the volume of 
the model structure consisting of a distribution of cells of different sizes 
according to a given function [~(r). The averaged cell radius ~ h a s -  contrary 
to f~(r)- only the meaning of a formal mathematical quantity without any 
physical relevance. 

The parameter ot in eq. (4) gives the density of package of fictitious spheres 
with a diameter ~. For instance we have a = 1/V~ in a regular close-packed 
structure. 

The main problem of the structural description on the basis of this model 
remains the determination of the distribution of cell radii fc(r). This function 
should reflect the most important features of the liquid structure, especially 
the results of scattering experiments. 

To reach this aim we have to relate the distribution f¢(r) to the (experi- 
mentally established) RDF g(r) of the liquid2"3). It is plausible to define the 
magnitude of a cell, containing a particle, by the distance ("free path") which 
this molecule moves before it collides with a neighbouring particle. Precisely 
spoken we suppose that the part dNrc of the total number of particles N 
colliding f o r  the first time with another molecule in a distance range between 
re and r¢ + dr may be enclosed in cells with the radius re. If we remember the 
definition of the RDF 9) we can write down the number density in a distance r 
(i.e. the density in a spherical cell with the radius r and the thickness dr): 

p(r) = pg(r). (5) 

The number density on the surface of a sphere with the radius re is then given by 

p(r~) dr  = pg(rc) dr. (6) 

Now it is reasonable to choose the probability of collision between two 
particles in a distance re as proportional to the density eq. (6). The part dNrc of 
molecules colliding in a distance rc for the first time with a neighbouring 
particle is now to be regarded as proportional to the just mentioned prob- 
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ability of finding a second particle in a distance re. Furthermore the quantity 
dNrc may be supposed as proportional to the number of molecules N(0, rc), 
penetrating a distance 0 . . .  rc into the shell consisting of the neighbouring 
particles without a collision. So we obtain: 

dNr c = CpN(O, rc)g(r3 dr. (7) 

In order to estimate the quantity N(0, r~) we assume that the number of 
particles moving a finite distance without a collision will decrease propor- 
tional to the corresponding number density p(r) given by eq. (5). In this case 
we can easily derive: 

rc 

N(O, r3=Nexp{-Ap f g(r)dr}. (8) 
0 

Combining both relations (7) and (8) the number dN, c is finally 

rc 

dNrc = CpNg(rc)exp{-Ao f g(r) dr}. (9) 
0 

Now the distribution function f~(r) is given by a comparison between eqs. (9) 
and (1) as 

f~(r)=Cpg(r)exp{-Ap f g(r')dr'}. (10) 
0 

Eq. (10) is the desired relation between the (experimentally accessible) RDF 
of the liquid and the distribution of molecules over cells of different sizes in 
the MCT. 

But the attempt to use eq. (10) directly for a calculation of fc(r) leads to 
some difficulties. 

The most serious problem consists in an insufficient accuracy of experi- 
mentally obtained RDF's of real liquids. This is evident if we remember that 
the use of eq. (10) requires the knowledge of g(r) depending on the density 
and the temperature of the liquid. 

Until now the most detailed X-ray study of the structure of liquid argon is 
made by Micolaj and Pings2). Even this extensive work only leads to RDF's 
of some selected thermodynamic states and these data do not permit the 
establishment of g(r) as a function of p and T. An application of eq. (10) is 
also limited by the numerical amount of calculations rapidly increasing with 
the use of more detailed expressions for g(r). 

So first of all the importance of eq. (10) does not consist in a direct 
estimation of the distribution It(r); but employing this relation it is possible to 
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Fig. I. Radial distribution function g(r)- closely related to ref. 2 -  and corresponding cell size 
distribution re(r) obtained by eq. (10). 

establish a reasonable ansatz for re(r). We regard a model of g(r)  (given in fig. 
1) closely related to the quoted results of Mikolaj and Pings2). By numerical 
integration of eq. (10) we obtain the corresponding cell size distribution fc(r) 
(fig. 1). 

The main features of this function are: 
(1) In the range r <~ ro is (approximately): 

g(r)  oc fc(r), 

representing, that in this region the probability to collide with a molecule for 
the first time is (approximately) equal to the probability to collide with any 
molecule of the system at all. 
(2) The maximum is situated in the neighbourhood of the position %DF of the 
mean peak of g(r).  

(3) For large r an exponential decrease is found. (Generally this result follows 
from eq. (10) assuming g ( r ) ~  1 for r-> r0). 

A representation of such a type of functions is possible by the aid of the 
well-known F-distributiont°): 

, ( , - ,y  {_, ,_,  x} 
[c(x) = - ~ j  ~,---~-o ! x ' - '  exp ~ , (11) 
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with the parameters x0 (position of the maximum of fc(x)) and s. The 
behaviour of the F-distribution by variation of s is shown in fig. 2. 

Defining the quantity x by 

x --- r -  r~n, (12) 

we can regard eq. (11) as an expression for the cell size distribution. A 
comparison of fig. 2 with fig. 1 directly shows the representation of the main 
features of fir) by means of the F-distribution. 

rdx) 
f~ (Xo) 

1.0 

/: s=l.5 

2:s=2.0  

~ ~ 9:s=2.5 

1 

0.5 

Xo 3Xo 5x~ x 

Fig. 2. F-distribution eq. ( l  1) as a model of the cell size, distribution fc(x).  

In order to illustrate the superiority of our structural description compared 
with conventional lattice-cell models we emphasize the more realistic 
representation of density variations by means of the MCT. 

Changes in the liquid volume are realized in the usual cell theories by a 
variation of the lattice constant (i.e. a change of the next neighbour distance). 
This however disagrees completely with experimental results. It is well known 
from structural investigations of simple liquids 2'3) that the distance of next 
neighbours- represented by the position of the main peak of the R D F - i s  
(almost) constant over a wide range of densities. The variation of the volume 
is essentially due to a change of the next neighbour number. 

The description of density variations in terms of the MCT represents the 
experimental observed constancy of the first peak of the RDF (i.e. the 
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constancy of next neighbour distances) by a constant position of the maxi- 
mum of the distribution fc(r). 

The variation of next neighbour numbers is realized by an appropriate 
change of the distribution of the molecules over different cell sizes. 

3. Formal development of the theory 

In order to estimate the thermodynamic properties of liquids on the basis of 
the proposed structural model we have to write down the partition function of 
the system. 

Generally this is a serious problem. But using the approximation of in- 
dependent motion of the particles in their cells (analogous to most of the 
conventional lattice-cell models~), the partition function of the system Z is 
given by a product of partition functions Z,i of single molecules contained in 
cells with the radius r;: 

In Z = ~ N, i In Z, i. (13) 
i 

The quantity N, i is the number of particles enclosed in cells with the radius r~ 
supposing in the model only a discrete sequence of cell radii with constant 
differences e: 

r i + l  - -  r i  = E. (14) 

For e ~ 0  the number Nri goes over in the quantity dNr i of eq. (1). We can 
neglect the error of the approximation of discrete cell radii eq. (14) by an 
appropriate choice of E; i.e. the magnitude of e is to be chosen small enough. 

The thermodynamic properties are determined by the partition function of 
the liquid versus temperature T and volume V "). A simplification is given by 
the use of experimentally obtained structural characteristics of simple liquids. 
It is found 2,a) that the liquid structure above all depends on the density of the 
system but relatively little on the temperature (of course only by variation of 
temperature and volume within the limitations of the liquid phase of the 
investigated substance). 

On the other hand the behaviour of particles in cells of given size (i.e. the 
behaviour of the quantities Z,i) should be determined only by the temperature. 
This leads to the following relation for the partition function: 

In Z = In Z(T, V) = ~. N,~(V) In Z,~(T). (15) 
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The free energy of the system is then given by 

F(T, V) = - k T  In Z(T, V) = - k T  ~ Nri(V) In Zr,(T). (16) 

The other thermodynamic quantities follow from eq. (16) by differentiation 
with respect to T and V. We obtain the temperature derivatives of eq. (16) 
essentially by differentiation of the "cell partition functions" Zri with respect 
to T. This is almost the same procedure as in conventional lattice-cell 
theories. We assume in analogy to these models that the particles may move 
in their cells within a cell field (for instance within the Lennard-Jones- 
Devonshire cell potential1). The difference to the cell theories with a fixed cell 
size is: In the MCT we have to calculate a set of partition functions Zr~ 
including the derivatives OZr]OT, oEZr i ]aT  ~ f o r  the different cell radii occurring 
in the model. Because of the close relationship to the procedure in the usual 
cell theories we will not discuss here in detail the estimation of the quantities 
Zr~. In section 4 we present for a special cell field the practical calculation of 
the cell partition function and their derivatives with respect to T. 

Now let us regard the volume dependence of the partition function given by 
a volume dependence of the particle numbers Nr,. Here the approach is quite 
different from the treatment in usual cell theories because of replacing the 
variation of the lattice constant by a change of the cell size distribution fc(r). 
To determine the thermodynamic behaviour we have also to differentiate the 
partition function eq. (16) with respect to V: 

0 ,gvln Z ~ d  Nr~(V), (17) - -  t ~  " I n  Zr,(T) 

i.e. we have to calculate the volume derivative of the numbers N~ r These are 
given by (compare with eq. (1)): 

xi +el2 

N I fc(x) dx ~- N fc(xi)e. (18) Nr, 
xl ¢/2 

If we apply the F-distribution eq. (11) to represent the distribution l:c(r) we 

obtain: 

N~ - x] -l exp{-(s - 1)xJx0}. (19) 

In order to describe the volume dependence of the quantities N~ i we use the 
free parameters x0 and s. The quantity x0 gives the position of the maximum 
of f~(r) (compare section 2) and therefore x0 should be independent of the 
volume. So we have to assume that only the parameter s depends on the 
liquid volume. To get an explicit expression for the relation s(V) we employ 
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eq. (3). For  the F-distribution we find 

re  - r o s  - -  n 
s - 1 ' (20) 

and with eq. (4) we obtain 

s (  V )  = 1 - r m i n ( o t N ]  V )  ll3 
1 - ro(aN] V )  1]3 " (21) 

Eqs. (19) and (21) give the volume dependence  of the numbers Nrl = Nr i (V) .  
The distribution function re(r) depends on the volume only implicitly through 
the parameter  s. So we get the volume derivative of  Nr, in the following way: 

d V = Nr,(s)  d V " (22) 

By differentiation of eq. (19) with respect  to s we obtain 

d N r , ( s ) : N r , ( s ) { l n X i ( s _ l ) _ & ÷  s d l nF ( s )} .  (23) 
ds x0 x0 s - 1 ds 

The derivation of eq. (21) with respect  to the volume is given by 

d = 13 ( o l N ~  113 rn~n - ro (24) 
d V  s ( V )  \ V 4 ] [1 -ro(o tN]V) l /3]  2" 

Introducing eqs. (23) and (24) into the relation (22) the volume derivatives of 
the numbers Nrl (i.e. the volume derivative of the partition function) are 
completely determined. 

Up to now we have written down the basic relations for the estimation of 
the thermodynamic  behaviour  of a liquid by the aid of  the MCT. For  the 
practical calculations we have to choose only an expression for the cell field 
in which the particles move (see next  section). 

4. Calculations and results 

For the calculation of thermodynamic properties of liquids we use as a first 
approximation a simple model of the force  field in the cells. This cell potential 
wi(r),  "fe l t "  by a molecule in a cell with a radius ri, may be given by 

wi(r)  = {O for  r < ri -- rd 
for  r /> ri -- rd' (25) 

where r is the distance f rom the centre of  the cell and rd is the particle 
diameter.  
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As interpretation of the cell field eq. (25) in terms of the well-known 
Lennard-Jones-Devonshire cell theory we can regard our expression (25) as a 
hard sphere approximation of the general Lennard-Jones-Devonshire cell 
potential. 

By means of eq. (25) it is possible to carry out both the semi-classical and 
the quantum-statistical treatment of the theory with a justifiable amount of 
calculations. In the semiclassical approximation we can write down a simple 
analytic expression for the cell partition functions Zr~(T): 

[ m k T ~  3/2 41r .  
Zr , (T)  = ~ }  -~-  tri - rd) 3. (26) 

In eq. (26) m is the molecular mass, h means Planck's constant h = h/2~r, k 

is Boltzmann's constant. The temperature derivatives of the partition func- 
tions Zri are directly obtained from eq. (26). A quantum-theoretical treatment 
requires the solution of the eigenvalue problem of the radial Schr6dinger 
equation for the cell potentials wi(r)  given by eq. (25). We obtain the 
following spectrum of energy levelsl2): 

hExi, 1 
Et,(rl)  - 2 m  (ri - ra) 2 (27) 

with the quantum numbers ! = 0, 1, 2 . . . .  and n = 1, 2, 3 . . . .  The quantities Xt, 
are the zeros of the spherical Bessel functions. Important for the practical 
calculations is the following fact: We have to determine the spectrum of the 
zeros Xt. only once and then we get the energy eigenvalues for the different 
cell sizes directly by the simple relation (27). 

Nevertheless the quantum-statistical partition functions 

Zr, = ~ ,  tot e -~t"/kr (28) 
I,n 

and the corresponding temperature derivatives are to be calculated numeric- 
ally. 

For the practical treatment of the MCT we have established an extensive 
computer program. This FORTRAN-program allows the estimation of ther- 
modynamic quantities both in dependence of the temperature and of the 
density (the volume) of the liquid not only in the semiclassical but also in the 
quantumstatistical formulation of the theory. Putting in the necessary mole- 
cular data of the considered liquid as well as the model parameters of the 
theory it is possible to obtain the desired thermodynamic functions versus T 
and O in only one run of the computer. A detailed description of the numerical 
technique is given in ~3). On the basis of that program we have studied the 
thermodynamic behaviour of a number of simple liquids particularly liquid 
neon and liquid methane. 
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These estimations are model calculations in order to demonstrate the 
principle possibilities of the MCT compared with conventional cell theories. 

For this reason we did not fit the used model parameters to experimental 
thermodynamic data. We only roughly adjusted these quantities to the 
experimentally accessible density range of the investigated liquid. The starting 
point for a determination of the input parameters is the maximum number 
density of the model structure fixing the position r0 of the maximum of the 
cell size distribution: 

1 
Pm~x = ar3o • (29) 

This follows from eq. (4) introducing eq. (20) for the averaged cell radius r in 
case s-->oo (i.e. the transition to the minimum volume). For liquid neon we 
took the density range including the maximum density from experimentally 
P V T - d a t a  17) and by means of eq. (29) we estimated a value of r0 ~ 32.1 nm. 

For methane we used a value of r0 ~ 41.9 nm introduced by Bhatia 18) in a 
similar structural model. 

Generally we did not vary this quantity b u t - i n  agreement with the basic 
ideas of the M C T - w e  assumed a fixed volume independent value for r0 
representing the experimentally found relative constancy of the nearest 
neighbour distance. 

A comparison of the position of the main peak of the RDF and the 
maximum of the cell size distribution estimated by eq. (29) shows the required 
approximately agreement. (For neon using the structural data ~) the accuracy is 
about 3%.) 

For the particle diameter we took the values of the o-parameter from the 
Lennard-Jones (6, 12)-potentiaP 9) varying this quantity in a range ap- 
proximately corresponding to the accuracy of the experimental determination 
of or (compare ref. 19). 

A maximum for r0- main (i.e. a minimum for rmin) is given by the difference 
r0RDF--r~naDF taken from RDF-data (compare eq. (10) and fig. 1) or ap- 
proximately taken from a corresponding Lennard-Jones (6, 12)-potential in the 
form 21/6or -- Or. 

In order to investigate the temperature dependence of thermodynamic 
properties we have calculated the free energy F, the internal energy U, the 
entropy S, the heat capacity Cv as well as the pressure p versus T. In case of 
a constant density we did not obtain qualitative differences between the 
results of the MCT and the findings of usual cell theories. Therefore we shall 
not represent these data in detail here (see ref. 13). A short discussion of the 
results is given in section 5. 

The calculation of thermodynamic properties dependent on the volume is of 
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greater  interest  because  of the qualitatively new t rea tment  of density fluctua- 
tions of  the liquid by means  of the MCT compared  to the usual cell-lattice 
models.  

Above  all we investigated the behaviour  of  the equation of state: 

P 
pk  T = "f ( P )" 

The results of  the semiclassical  t rea tment  are shown in fig. 3 and fig. 4. The 
quantum-stat is t ical  data are drawn in fig. 6, fig. 7, fig. 8. The numerical  values 
of  the used input parameters  are presented in the figures (corresponding to the 
general remarks  given above).  The most  important  fact  we have found by the 
classical t rea tment  is a significant correlat ion be tween the shape of the cell 
size distribution fc(r) and the behaviour  of the equation of state. Using the 

6.0 

5.0 

4.0 
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-~kT 
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32.1nm r#=2Z9nm 

/ J J  ;.;:;=::.;:: 
J 3:rmi n 29.7rim 

i Z: rd= 27.9rim 
ZZ: rtt= 25. fnm 

3o <'° Do 

Fig. 3. Semiclassical equation of state in the MCT (curves 1, 2, 3) compared to usual cell theory 
results (curves I, II) for neon. 



A MODIFIED CELL THEORY OF THE LIQUID STATE 229 

5.0 

,~.0 

3.0 

P 

$kr 
2 

3 

I 

ro=&l.9nm 

f:rmin=3Z3nm rd=36. Snm 

2:rmi~ 38.Snm rd=37.2nm 

3:rrnin = 38.8nm rd=36.anm 

1.o 75 s [1o 22¢ -a ] 

Fig. 4. Semiclassical equation of state (methane). 

F-distribution to modelize It(r) a variation of the parameter difference r0 - rmi, 
in this function (compare fig. 2) shows a considerable change of the rise of the 
compressibility factor p/pkT versus p. By diminuation of r0 - r,u. we observe 
in the equation of state a transition from an almost linear course (curve 1 in 
fig. 3) to a behaviour with a more increasing rise (curve 3 in fig. 3). In case of a 
fixed distribution fc(r) a change of the particle diameter essentially leads to a 
parallel displacement of the curves without any significant variation of the 
shape (fig. 4). We found these characteristics not only for liquid neon (fig. 3) 
but also for the other investigated systems particularly for liquid methane (fig. 
4) and its isotopes. 

For comparison in fig. 3 (curves I and II) the results are given of a 
corresponding simple cell theory, i.e. a Lennard-Jones-Devonshire cell 
theory')  using the cell potential of eq. (25). In case of quantum-statistics we 
do not find such simple correlations between the input parameters of the MCT 
and the behaviour of the equation of state. 

To get a review about the possible results, obtained by the variation of the 
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model parameters, it was necessary to estimate a relatively large number of 
PV-isothermes (about 200). Most of these calculations are done for neonS3). 

In this paper we intend to summarize the most important information and 
the main features of these extensive data. The calculation of thermodynamic 
isotope effects shall be represented in a separate paper~4). 

In order to test the consistency of the results we have studied the cor- 
respondence of the quantum-theoretical data to the classical quantities in a 
range of higher temperatures up to about 160 K. The transition to the classical 
behaviour could be confirmed in all the investigated cases. 

In the medium and upper temperature interval (about 60 K . . .  160 K) the 
behaviour is very similar to the semiclassical case showing the same charac- 
teristic dependence of the shape of the equation of state from the parameter 
difference r0 - m a i n  (see above). 

In general for the same density the quantum-statistical compressibility 
factors are greater than the semiclassical values. The differences are growing 

15 

10 

.~kT 

30K-1 

120K -1 
1: rd= 28.Snm 

~ 120K -2 

scl. -2 

I I L e* 

2.0 

Fig. 5. Quantum-theoretical and semiclassical equation of state in the simple cell theory (neon). 
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Fig. 6. Quantum-theoretical equation of state (methane). 

with decreasing temperatures (neon: fig. 7; methane: fig. 6). In case of volume 
variations the derivations of the isothermes from the semiclassical curves 
increase with growing density (compare again figs. 6 and 7). This is almost the 
same behaviour, which is well known from conventional cell theories. 

For comparison the results of an adequate simple cell theory are represen- 
ted in fig. 5. There are given semiclassical and low temperature quantum- 
statistical calculations with particle diameters corresponding to the upper and 
under limitation of the variation range of r~. It is shown that in the high 
density region the MCT-equation of state will not so extremely increase as it 
is found in the usual lattice-cell theory. In the low temperature range however 
the MCT-calculations lead to an equation of state depending on the model 
parameters in a more complicated form (30 K curves in figs. 7 and 8). 
Particularly the difference r ,~,-rd representing the minimal cell size in the 
structure, is important for a classification of the results. 

If r . . . - r d  is greater than a "critical" value the behaviour of the com- 
pressibility factor is the same in the low temperature range and in the high 
temperature range (figs. 6 and 7). But using a reduced value of r . . . - r d  we 
observe some unexpected properties of the equation of state. 
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Fig. 7. Quantum-theoretical equation of  state (neon). 

This is shown in fig. 8 (30 K) where only for  low densities the com- 
pressibility factor  increases in a usual way; but  with growing density a 
maximum of p/pkT occurs followed by a visible decrease. This effect in- 
creases with diminuation of rn~n- rd; it weakens with rising temperature  and 
disappears in the correspondence  transition to the semiclassical data. 

For  neon we found a critical value of/'rain --  rd ~< 1.8 nm almost independent  
on the selection of the other  model parameters  (i.e. a normal behaviour  of the 
equation of state is observed by use of rmin--rd > 1.8 nm). 

For  methane these low temperature  phenomena do not play any important  
role. The liquid phase of this system exists in such a temperature range (triple 
point temperature  Tt ~ 90.7 K) that we observe always a normal behaviour of 
the equation of state (fig. 6). In a comparable temperature  interval the 
quantum-theoretical  calculations show for neon (figs. 7 and 8) and for 
methane (fig. 6) and for  isotopes of these liquids the same qualitative features.  
This is quite similar as in the semiclassical case. 
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Fig. 8. Quantum-theoretical equation of state using a special set of model parameters (neon). 

5. Discussion and conclusions 

First we make some general remarks on the temperature dependence of 
thermodynamic quantities. The formal representation of the MCT (section 3) 
shows that some thermodynamic functions (free energy F, internal energy U, 
entropy S, heat capacity Cv) can written in the following manner 

A(T, V) = ~,+ Nn(V)An(T). (30) 

A n means the corresponding thermodynamic quantity (per particle) in an 
adequate simple cell theory using a fixed cell radius ri. The representation eq. 
(30) is valid because the estimation of these thermodynamic functions does 
not require the derivation of the partition function with respect to the volume. 
It is evident to interpret the quantities represented by eq. (30) as a weighted 
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average over the corresponding functions in a simple cell theory. The weight 
factor is given by the number of particles contained in cells of the radius ri. 
For that reason the temperature dependence of these quantities should agree 
qualitatively with the behaviour found in usual cell theories. Both the semi- 
classical and the quantum-statistical calculations confirmed completely this 
expectation (see section 4). 

A quite other situation is given investigating the volume dependence of 
thermodynamic quantities. This is due to the qualitatively new technique of 
the description of volume changes within the framework of the MCT. The 
calculations of the equation of state presented in section 4 show significant 
correlations between the compressibility factor p/pkT versus p and the cell 
size distribution It(r). 

For a discussion we will compare the MCT-data with the usual lattice cell 
theory results. Additionally we shall give some remarks to experimental 
PVT-data and to computer simulations. Fig. 3 shows the results of the 
calculations of the semiclassical equation of state. Using the same particle 
diameter rd the simple cell model leads to larger values of p[pkT at the same 
density than the MCT does. Simultaneously the simple cell theory curves rise 
more compared to the MCT data (fig. 3, curve I). 

A reduction of rd in the simple cell theory (curve II) yields a decrease of 
p[pkT to the order of magnitude of the MCT-results connected with a 
considerable weakening of the rise of p[pkT versus p. This is due to the fact 
that the particle diameter rd is the only adjustable parameter of the theory 
determining both the magnitude of the compressibility factor and the rise of 
the isothermes. Compared to it the MCT permits alternations of the rise of 
p/pkT versus p almost independently of the absolute values of the com- 
pressibility factors by variation of the cell size distribution [c(r). Using for 
f¢(r) the F-distribution eq. (11) this is possible by variation of r0-r~n (see 
section 4). 

Varying the diameter rd the magnitude of p[pkT can be changed without a 
significant alteration of the shape of the isothermes. These possibilities are 
important for a description of experimental PVT-data. Although we have not 
done a special fit of the model parameters (see section 4) a comparison with 
the experimental equation of state (neontT)) shows clearly that the MCT 
represents the data better than the usual cell theory does. 

The MCT-values of the compressibility factor are lower, than the simple 
cell theory results and yield altogether a better description of the PVT-data, 
where the rise of the equation of state can be well represented (fig. 3, curve 
3). This tendency is confirmed by computer simulations of the equation of 
state too (for instance2°)). 

The quantum-theoretical calculations of the equation of state are concen- 
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trated on such sets of parameters leading in the semiclassical case to an 
approximate representation of the experimentally found rise of the iso- 
thermes. 

In the MCT the quantum-statistical deviations from the semiclassical 
results behave in most of the cases similar as in the usual cell model. Some 
special features appear only in the high density range. Thus we do not find 
such an extremely (unrealistic) increase of the equation of state in this region. 
For special sets of parameters even a weak decrease of p[pkT versus p is 
obtained in the vicinity of the upper density limit (compare section 4). 
Summarizing both the semiclassical and the quantum-theoretical calculations 
of the equation of state we can state that - depending on the choice of the cell 
size distribution-the MCT provides results which exceed essentially the 
possibilities of conventional cell theories and lead to an improved description 
of experimental PVT-data. 

However, it is to emphasize that the presented calculations are not yet to be 
regarded as an optimal treatment of the thermodynamic behaviour of simple 
liquids on the basis of our model. The purpose of the calculations is a 
representation of the general features of a cell theory including a distribution 
of cells of different sizes compared to a simple lattice-cell model with a 
uniform size of the cells. To get a satisfactory description of experimental 
PVT-data it may be necessary to use an optimal set of model parameters as 
well as a more realistic cell potential including attractive forces between the 
molecules (for instance a Lennard-Jones-Devonshire potentiall)). It is 
encouraging that even the presented simple version of the theory permits a 
better representation of experimental results. There are interesting con- 
nections between the structural assumptions of the MCT and Bernal's model 
of randomly close packed structures of hard spheres tootS't6). 

Interpreting a randomly distributed system of particles in terms of a cell 
model we follow some suggestions of Finney ~6) dividing the liquid volume into 
a set of Voronoi polyhedra where every polyhedron is associated with exactly 
one particle. Thus each Voronoi polyhedron can be regarded as a cell 
containing one particle. Finney gives distributions of cell volumina obtained 
by the randomly close packed system. These look to be consistent with the 
distribution of cell sizes used in our model. 

So we have a further strong support for the necessity to introduce different 
cell sizes in a satisfactory cell model of the liquid structure (see also Hoover 
et al.S)). Simultaneously the study of random arrangements of particles can 
provide informations about the cell size distribution fc(r) which do not depend 
on experimental structural data. 

An extension of the MCT to more complicated liquids should be possible 
by the introduction of distributions of non spherical (simple symmetrical) cells 
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and  b y  the  use  of  m o r e  c o m p l e x  cel l  po t en t i a l s .  In  gene ra l  the  M C T  shou ld  be  

o f  i n t e r e s t  no t  on ly  fo r  the  ca l cu l a t i on  o f  t h e r m o d y n a m i c  p r o p e r t i e s  of  rea l  

l iqu ids ;  a l so  the  p r e s e n t e d  g e n e r a l i z a t i o n  o f  a cel l  s t ruc tu re  w i thou t  any  la t t i ce  

shou ld  be  su i t ab le  fo r  a s t u d y  of  the  poss ib i l i t i e s  and  the  l imi ta t ions  o f  the  cel l  

p i c tu re  in the  t h e o r y  o f  l iquids .  

T a k i n g  in to  a c c o u n t  the  f lex ib i l i ty  o f  s t ruc tu ra l  d e s c r i p t i o n  b y  use  of  

su i tab le  cel l  s ize  d i s t r i bu t i ons  and  the  poss ib i l i t i e s  to  g e n e r a l i z e  the  m o d e l  the  

M C T  m a y  be  r e g a r d e d  as  a hope fu l  s t a r t ing  po in t  no t  on ly  fo r  a t r e a t m e n t  of  

s t ruc tu ra l  and  t h e r m o d y n a m i c  p r o p e r t i e s  of  s imple  l iquids  bu t  a l so  fo r  an 

i nves t i ga t i on  o f  m o r e  c o m p l i c a t e d  s y s t e m s  inc lud ing  l iquids  cons i s t i ng  of  

n o n s p h e r i c a l  pa r t i c l e s .  
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