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ON THE INFLUENCE OF SPATIAL CORRELATIONS ON THE RATE
OF CHEMICAL REACTIONS IN DENSE SYSTEMS.
II. NUMERICAL RESULTS
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The explicit expressions for the rate constants k¢ and k|, of a dense reactive system obtained in the preceding paper are
investigated numerically. The pair correlation functions representing the spatial correlations are calculated from an associate
nonreactive hard sphere system by means of the multicomponent Percus—Yevick equation. The rate constants are found to
Jiffer in their dependence on density and time up to an order of magnitude from the corresponding dilute gas values. Tie
time behaviour of #¢ and &y, was found to depend sensitively on a relation between the total volumes of the reactant ancl

product molecules.

1. Introduction

In the preceding paper [1] (hereafter referred toasl),
starting from a general quantum statistical theory of
chemical reactions, for the bimolecular reaction

A+B=C+D n
the well known rate equation
ca(t) = —ke(0) ca (0 cp() + ko (1) cc(2) cp(8) @)

was derived, which contains, besides the dynamics of
binary collisions, the influence of the spaiial correlations
in the system. In this paper, the explicit expressions for
the rate constants k¢ and &k, are investigated numeric-
ally. The rate constants are obtained as a product of the
dilute gas rate constants £{® and k£{®? with quantities
Y1k, where I, K = A, B or C, D. The y; k account for
spatial correlations between the molecules of any reac-
tive pair of species I, K; they depend on the actual con-
centrations cx (1) of the species X = A, B, C, ) and thus
on time. In extremely dense systems the y x may well

reach values of about 10. Thus the chemical relaxation
in such systems is expected to differ largely from that
in its dilute counterparts as well as the resulting equilib-
rium constants K = k¢/k,,.

The present paper is devoted to a numerical investi-
gation of these cffects. We are interested in the devia-
tions of the values in dense systems compared to those
in dilute systems only. Thus it is sufficient to evaluate
the y; k as a function of the concentrations of the
different species (compare equations (35) in I).

To calculate y i we suppose again — as in I
that in the system considered, the number of the
elastic collisions is always much larger than the num-
ber of reactive collisions. From the interpretation of
the y (r)-function given in I it follows, that in this
case y(¥) may be calculated from the non-reactive
part of the hamiltonian. As is well known [2}, the
y(r)-function can be calculated for such systemsin a
very good approximation from a corresponding hard
sphere system with appropriztely chosen hard sphere
diameters. Usually these diameters lie inside a shell
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R}y <r <R}.The regionr <R}y is classically not
accessibie for pamcles having the average thermal
momentum. R} i x is the point where the potential
changes its sign. In any case the effective hard sphere
diameters lie in the strongly interacting region. It is
just in this region, where the transition from a clearly
identifiable species to a highly complicated complex
state is expected to occur. Thus the transition shell
should lie inside the shell defined above. Provided
hoth shells are sufficiently thin so that* the y(r)-func-
tions in this range scarcely change we may take the
1.k to be equal to yy xfR; ), where Ry g = 1R+
Ry)and Ry, Ry are the effective hard L.phere radii of
the molecules I and K.

2. Density dependence of rate and equilibrium
consiants

2. 1. General remarks

According to the conditibns formulated in section
1 we use the relation

Yix(Ry x) = 81,xk(R1 k) ©)]

for hard sphere systems, which simplifies the calcula-
tion of the y; k considerably. g1 k(#) is the pair distri-
bution function (PDF) for which many investigaticns

Table 1

exist [2]. In spite of its simplicity in particular the mul-
ticomponent Percus—Yevick equation is known to des-
cribe the hard sphere system remarkably well [2,3].

It can be solved exactly; the explicit expressions for
the function g5 k(R k) are:

8LxkRx)=ar+by/Rix » “)
where
=(1 — & +3RE)(1 - &), 16))
by = —3R{E/2(1 — 1), ®)
ybr B oxRl Q)
and
X = pCx, ®)

with the concentrations cx and the particle number
density p =N/V [4]. Sometimes it is convenient to
choose the reduced density,

= imp 2,{3 cxR% , ©)

as a parameter instead of p.

Expressions (3)--(9) show that the y; x depend on
the four radii Rx and &5, £3 (and thus on c¢x ) as free
parameters. To illustrate most clearly the expected

Variutions of parameters which seem to be suitable to investigate the different kinds of corrections

Group of
parameters

(2.2) evaluation of

L)/ k{0

as a function of 1, p, Cx,

(2.3) evaiuation of
KIK(®)
as a function of

(3.2) evaluation of
the corrections of ¢ o (f)
as a function of p

(3.1 evaluation vi
ke/k (@)

IRA = Rpl P, \Rpa~Rgl
n 03=n<0.7
Vx = §7RX
X=A,BC D VatVp=Ve+Vp VatVgaVe+V¥Vp Vat+tVpsVc+Vp
max. radius Rc=RpiRa, Rp

Ry normulized
10 1.9

€x
A= .,B.C,D
Ly, =1

©
T

Re=Rp

(I)cp »cg,cenepn

Q)eg=cp,concp

evaluable from 7, ¢ x

Rg, Ry arbitrary

catecg®»reotop

CACRB > 2CCD

arbitrary or Rc =Rp
RC = RAv RD =Rp RA' }(’.B arbitrary

CA(O) = CB(O) 0.5

cc(0) = ¢p(0) =0.0
k{9 /k{O) have to be assumed such, that ¢ () = ¢ (o)
~0
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effects, we have selected suitable parameter combina-
tions out of the parameters Rx and cx which are given
in table 1. It should be noted, however, that we have
not intended to scan the whole possible parameter
space so that there might well exist other combinations
leading to additional conclusions.

The criterion whether or not the equaiion

Vot Vyg=Veo+Vp, 10)

(where Vy = $aRY is the effective volume of a mole-
cule of species X) is valid plays an important role in
choosing the relevant parameter combinations. This
relation couvid be approximately valid in many cases
because one might expect that there are only minor
changes in the total volumes of reactants A and B

and products C and D for many bimolecular reaction
types. As far as we know, contrary to the one-compo-
nent case, the n-values for close packing as well as for
the phase transition are not known for mixtures of
hard spheres. For that reason the range of the n-values
was chosen according to the one-component data.

In this section the correction of the rate and equilib-
rium constants as a function of the density and the
choice of radii and concentrations of different compo-
nents will be treated.

2.2. Density dependence of the reaction rates

In fig. 1 the ratio k¢/k$ is plotted against the
reduced density i for two different sets of radii. We
can see that the reaction rate constant may increase
by at most one order of magnitude due 1o the incre-
asing reduced density . In fig. 2 ke/k§? is plotted as
a function of [R5 — Rgl with Rc =Rp for two dif-
ferent densities g * and concentration sets. The maxi-
mum change of the reaction rate was observed under
the following conditions: at high density the mole-
cules with largest diameters exist in the highest pos-
sible concentration and the diameter difference of
molecules of sorts A and B is at minimum.

A physical explanation of the results of fig. 2 is
obtained from the screening model for correlations
[3]. According to this model we select a pair of

* In describing chemical reactions of type (1) the choice of
the particle number density instead of the reduced density
as a parameter seems to be mofe suitable, because con-
stant particle number also means constant p-
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Fig. 1. Plot of the PDF 75 g(Rp ) = kf/kf-o) against the redu-
ced density n for a one-compaonent system (solid line) and
four-component systems for two different sets of radii and

€A = ¢ =cc = cp = 0.25 (dashed line).

molecules, say A, B, which screen each other depen-
ding on their relative diameters. The spatial correla-
tion between A and B originates from the collisions
between the moiecules, surrounding A and B, and A
and B respectively. It is maximal if the mutually
screened solid angle between A and B is as large as
possible. This reasoning immediately explains the
observed increase of the correlations with decreasing
difference IR 5 — Rp |, since the mutual screening

is at a maximum if R, = Ry. On the other hand, the
reduced density and thus the collision cross section
of the surrounding molecules in the unscreened
region of A and B respectively increases, if the concen-
tration of species having the greatest diamerer incre-
ases. This fact leads again to an enhancement of the
correlations. It should be noted that this simple
screening model is also capable of explaining the den-
sity dependent corrections discussed below.
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Fig. 2. Representation of the ratio Iq-/k?o) s a function of the
difference of tadii, IR 5 —~ Ryl. where K¢ = Rpy, for two den
sities and two sets of concentration.
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2.3. Density dependence of the equilibriurn constants

To estimate the deviation of the K-value of 2 dense
system from its dilute system value K one needs the
concentrations of the species at times near the relaxa-
tion time. Thus, the rate equation (2) with the density
dependent constants has to be solved for given initial
values cx(0), X = A, B, C, D. Because of the nonline-
arity of this differential equation this could only be
done numerically. To avoid this, we have used an itera-
tive procedure:

Using (35) from I and (3) X is written as

K=t0%, (R 5)*P8c,0Re,p) - (i1)

As a first approximation we evaluate the PDF’s and
thus X from the equilibrium concentrations of the
corresponding dilute system. With the help of K,

cx=1, 12)
X=A,B,C.D
and assuming that the two concentrations with the
smallest absolute value are constant, new equilibrium
concentrations are calculated which we use to evaluate
new PDF’s and thus K; in a second step. This proce-
dure converges very fast. Knowing the behaviour of
the density dependent corrections of the rate constants
from previous discussions (see section 2.2), we may
conclude: the ratio K©Y/K will be maximal, if botk
|Rs — Rg| as well as the component with the largest
molecular diameter and R = Rp, are as large as pos-

2%
-
22
20 —R;:t0l01la7afo7s
) ——-Rr;10102[073078
18 —- R:-10 03108 (08
= St c: :08lac001/01/0 098
3~ ——"
e 16 -
W e -
12 .
1z 3 i3 B3 8

Fig. 3. Ratio of the equilibrinm constants in the dense and
dilute media K/K(®) plotted against the particle number
density p for different sets of radii and K () = 100.

sible for high densities. As an example, fig. 3 repre-
sents the quantitative behaviour of K©/K as a function
of the particle number density p for different sets of
radii.

3. Time dependent corrections in dense systems

In realistic dense systems the rate constants are time
dependent mainly for two reasons: (1) as previously
discussed, the spatial correlations depend on the concen-
trations of the different species and these change with
time during the relaxational process; (2) due to the influ-
ence of the surrounding molecules on the reactive
binary collision, the cross section or even the reaction
mechanism itself can change. Formally this leads to the
replacement of A{® and k{®, according to time depen-
dent equations for them. In a dilute system important
conclusions about the reaction mechanism can be
drawn from studying the time dependence of the rate
constants in the rate equation (2); the rate constants
are time independent only if the reaction is an elemen-
tary one [5].However, in a dense system these conclu-
sions are possible only if the time dependence intro-
duced by the spatial correlations is known. For this
reason we investigate the time dependence of the rate
constants due to the spatial correlations.

Fig. 4 shows, that the ratio k¢ (£)/k® or &y (2)/7%§
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Fig. 4. Plot of the ratio kf/kgo) against time ¢ for two densi-
ties and different sets of radii. The heavy line represents the
concentration Cx as a function of time 7, evaluated from
the gas phase relations: ££2) = 15, k%7 = 0.01 5, c2(0) =
cp(0) = 0.5, c(0) = ep(0) = 0.0.
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depends weakly on concentration and thus on time
provided (10) is valid. In fact, for Rc = Rp and for
highly different radii R 4 and Ry the maximum change
of k¢(t) or ky(?) related to the initial value at time ¢
=0 is 8—12%. If (10) is not valid, the ratio &¢ (£)/k®
(or kp(1)/x®) changes appreciably with time (see
fig. 4); it decreases with cao(#) for Vo + Vg > Ve +
Vp and increases for V5 + Vg < V¢ + V.- This beha-
viour may be explained with the help of the screening
model, as has been done in section 2.2. One may sum-
marize, that a maximal dependence of the rate constants
on concentration and thus on time occurs, if the total
volume of two reactants A and B differs strongly from
that of the products C and D for a reaction where the
concentrations change considerably. The resuits
obtained allow us to draw some conclusions on the rate
of change of the concentrations itself.

For the parameter considered in fig. 4, the rate equa-
tion (2) may be approximately written in the form

—(k)dea/dr =24, 5(R A pex (D)
X [ea(f)ep(® — K Yec(®) ep®] (13)

where k{&® and ¢c(0), cp(0) where chosen in such
a manner, that the second term in the rate equation (1)
contributes only at times, when the ¢concentrations are
already verv close to their equilibrium values (X¢/k;, =
1072, c((_f’) = cg)) = 0). From the corresponding curves,
shown in fig. 5, it is immediately obvious, thatina
dense system the chemical relaxation is much faster
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Fig. 5. Plot of the reaction rate (1/k¢) dcp/dr as a function
of time t for the dilute system@zmd dense systems with
different particle-number-densities p (dashed lines(®and
@. The heavy line represznts ca (z) in the dilute gas case.

than in the dilute gas case. Comparing curves (2) and
(3)in fig. 5 with the corresponding curves in fig. 4 we
conclude that the time dependence of the rate constants
is oniy weakly reflected in the time dependence of
ca(2), at least in the cases considered. The same is true
for ¢4 (¥), obtained by integrating c 4 (£). The results
demonstrate that the correction to the cp (#)-function
arises mainly from the correction to the equilibrium
constant from K@ to K. This means, that a careful
analysis of any empirically obtained curve c5 (7) is
necessary to detect the correct time behaviour of the
rate constants.

4. Concluding remarks

In the present paper we studied the dependence of
the rate constants k¢ and %y, and the equilibrium con-
stant & on density and time for the parameter combi-
nations shown in table 1. The rate constants of a dense
system were found to differ by up toan order of magni-
tude from their dilute gas values due to the influence
of the spatial correlations. To decide whether the time
dependence of rate constants is

(2) due to time dependent spatial correlations or,

(b) due to concentration dependent changes in the
binary collision cross section and the reaction mecha-
nism respectively, relation (10) plays a decisive role.

If relation (10) is fulfilled, the time dependence of the
rate constant originaies from (b). If relation (10) is
violated, the time dependence of the spatial correla-
tions has to be properly taken into account in drawing
any conclusions about the reaction mechanism from
the time dependent rate constants. In this sense the
present paper might contribute to investigation of the
reaction mechanism in dense systems.
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