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Tho explicit expressions for the rste constants kt and kl, of a dense reactive system obtnincd in the prcccding pnpcr ure 
investigagnted numerically. The pair correlation functions represcntnng the spatial correlntions arc calculated from PII associate 
nonreactive hard soherc svstcm bv tieans of the multicomnonent Percus-Yevick cauation. The rntc constents are found to . - 
Jtffcr in their dependence OII density and time up to an order of magnitude from the corresponding dilute gwvulue!~ 7’~ 
time bchaviour of Pfand kb WILS found to depend sensitively on u rehtion betwcon the total volumes of tha rewtamt and 
product molecules. _ 

1. Introduction 

In the preceding paper [ 11 (hereafter referred to as I), 
starting from a general quant:lm statistical theory of 
chemical reactions, for the bimolecular reaction 

A+B+C+D (1) 

the well known rate equation 

c*(t) = -kf(t) cAtr) c,tf) + kb(t) cC(r) CD(t) (2) 

was derived, which contains, besides the dynamics of 
binary collisions, the influence of the spaiial correlations 
in the system. In this paper, the explicit expressions for 
:he rate constants kr and kb are investigated numeric- 
ally. The rate constants are obtained as a product of the 
dilute gas rate constants k{O) and k,(P) with quantities 
JQ~, where I, K = A, B or C, 11. The Yr,K account for 
spatial correlations between the molecules of any reac- 
tive pair of species I, K; they depend on the actual con- 
centrations cx(r) of the species X = A, B, C, D and thus 
on time. In extremely dense systems the YI,K may well 

reach values of about 10. Thus the chemical relaxation 
in such systems is expected to differ largely from that 
in its dilute counterparts as well as the resulting equillb- 

tium constants K = kf/kb. 
The present paper is devoted to a numerical invcsti- 

gation of these effects. We are interested in the devia- 
tions of the values in dense systems compared to thuse 
in dilute sysf.ems only. Thus it is sufficient to evaiuate 
the yt,K as a function of the concentrations of the 
different species (compare equations (35) in I). 

To calculateyr,K we suppose again - as in I -. 
that in the system considered, the number of the 
elastic collisions is always much larger than the num- 
ber of reactive collisions. From the interpretation of 
they(r)-function given in I it follows. that in thh: 
case y(r) may be calculated from the non-reactive 
part of the hamiltonian. As is well known [2), the 
y(r)-function can be catculated for such systems in a 

very good approximation from n corresponding h;Jrd 
sphere system with approprirtely chosen hard sphere 
diameters. Usually these diameters lie inside a shell 
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R~,K <r < RisK. The region r < R& ia chseical?lly not 
accessibie for particles having the average thermal 
momentum. Ri,K is the point where the potential 
changes its sign. In any case the effectC[e hard sphere 
diameters lie in the strongly interacting region. It is 
just in this region, where the transition from a clearly 
identifmble species to a highly complicated complex 
state is expected to occur. Thus the transition shell 
should lie inside the shell defined above. Provided 
both shells are sufficiently thin so tha+ the y(r)-func- 
tiers in thin range scarcely change we may take the 
YI,K to be equal toY&Rr,K), where RI& = :(RI + 
RK) and RI, RK are the effective hard sphere radii of 
the molecules I and K. 

2. Density dependence of rate and equilibrium 
conshnts 

2.1. General remarks 

According to the conditibns formula.ted in section 
1 we use the relation 

YI,K(RI,K)I~I,K(RI,K) (3) 

for hard sphere systems, which simplifies the calcula- 
tion of theyr,K considerably.gl,&) is the pair distri- 
bution function (PDF) for which many investigations 

exist [2]. In spite of its simp!icity in particular the mul- 
ticomponent Percus-Yevick equation is known to des- 
cribe the hard sphere system remarkably well [ZJ]. 
It can be solved exactly; the explicit expressions for 
the function gl,K(R:RI,K) are: 

~I,K@I,K) =a~ + bdRr,K Y (4) 

where 

or= (1 - $3 + 3R&)/(l - 5s)* 9 

h = --3R:h/2(1 - Ed* , 

.$=%s c PI& 
X=A.B,C.D 

(5) 

(6) 

(7) 

and 

Px = PCx9 (8) 

with the concentrations cx and the particle number 
density p = N/V [4]. Sometimes it is convenient to 
choose the reduced density, 

s=:np~c&. 

as a parameter instead of p. 

(9) 

Expressions (3)-(g) show that the Y1.K depend on 
the four radii Rx and &, h3 (and thus on cx) as free 
parameters. To illustrate most clearly the expected 

Table I 
Vuriutions of parameters which seem to be suitable to investigate the different kinds of corrections 

Group of (2.2) evaluation of (2.3) evaiuation of (3.1) cveluation 0~ (3.2) evaluation of 
peramctcrs vCftrvk~O)I K/K@) kf/$%) the corrections crf 6*(r) 

BS u function of q, p. cx, US il function of 3s B function of r 
IRA - RBt P.c~. IRA-RBI 

--_ - 
rl 0.3 6 R 4 0.7 

Yx -;lIRR 
X-A.B,C,D VA* v”= v,+ VD VA+VBSVC+VD VA+Vf,*VC+VV 
mux. rudius Rc=Rv;RA. Rg 
R, normulized Rc = RI, Rc, Rv arbitrary arbitrury or Rc =.Rv 
to 1.0 Rc=RA,Rv’RB RA, RB arbitrary 

CX (1) c,, + cB.“C.C,, CA+CB*CC+CD CA(o) = C@) = 0.5 
x- ., B.C. D c (0) = CD(o) = 0.0 
xx’,, - 1 (ZfCB’*CA.CC,CD CACB 5 ,zcCD k FQ )/kb”) huve to bc assumed such, that CA(-) = r’~(-) 

-+O 

*... P cvuluablc from n. cx 
_ ---. -----..-___,-- 
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effects, we have selected suitable parameter combina- 
tions out of the parameters Rx and cx which are given 
in table 1. It should be noted, however, that we have 
not intended to scan the whole possible parameter 
space so that there might well exist other combinations 
leading to additional conch~sions. 

The criterion whether or not the equarion 

VA + v, = vc + v, , (10) 

(where Vx = $nRg is the effective volume of a mole- 
cule of species X) is valid plays an important role in 
choosing the relevant parameter combinations. This 
relation couid be approximately valid in many cases 
because one might expect that there are only minor 
changes in the total volumes of reactants A and B 
and products C and D for many bimolecular reaction 
types. As far as we know, contrary to the one-compo- 
nent case, the wvalues for close packing as well as for 
the phase transition are not known for mixtures of 
hard spheres. For that reason the range of the vvalues 
was chosen according to the one-component data. 
In this section the correction of the rate and equilib- 
rium constants as a function of the density and the 
choice of radii and concentrations of different compo- 
nents will be treated. 

2.2. DoMy dependence of the reaction rates 

In fig. 1 the ratio kt/k$‘) is plotted against the 
reduced density 9 for two different sets of radii. We 
can see that the reaction rate constant may increase 
by at most one order of magnitude due to the incre- 
asing reduced density q. In fig. 2 kt/k$‘)is plotted as 
a function of IRA -RI, I with Rc =RD for two dif- 
ferent densities p i and concentration sets. The maxi- 
mum change of the reaction rate was observed under 
the following conditions: at high density the mole- 
cules with largest diameters exist in the highest pos- 
sible concentration and the diameter difference of 
molecules of sorts A and B is at minimum. 

A physical explanation of the results of fig. 2 is 
obtained from the screening model for correlations 
[3]. According to this model we select a pair of 

1 In describing chemical reactions of type (1) the choice of 
the particle numbor density instead of the reduced density 
es a pnr”mcter seems to be mote suitnblc. because con- 
stant particle number also IWU~S conSt00t C- 
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Fig. 1. Plot of the PDF~A,#?~,~) = kp/k$‘) against the rcdu- 
ted density t) for a one-compwent system (solid line) nnd 
four-component systems for t’wo different sets of radii nnd 
CA = CB = cc = CD = 0.25 (dashed lint). 

molecules, say A, B, which screen each other dcpen- 
ding on their relative diameters. The spatinl correln- 
tion between A and B originates from the collisions 
between the molecules, surrounding A and B, and A 
and B respectively. It is maximal if the mutually 
screened solid angle between A and B is as large as 
possible. This reasoning immediately explains the 
observed increase of the correlations with decreasing 
difference IRA - RR 1, since the mutual scrceniny 
is at a maximum ifRA = RR. On the other hand, the 
reduced density and thus the collision cross section 
of the surrounding molecules in the unscreened 
region of A and B respectively increases, if the conccn- 
tration of species having the greatest diamctrr incrc- 
ases. This fact leads again to an enhnncemcnr. of the 
correlations. It should bc noted that this simple 
screening model is also capable of cxplnining the dcrl- 
sity dependent corrections discussed below. 

Fig. 2. Krprescntation of the rutio k&O) us a function ot lhr 
difference of radii. IHA -’ RBI. whcrc RC = Rt,. IDI IWU &VI 
sitics end two sets of concentration. 



2.3. Density dependence of the e&ilibrium constanh 

To estimate the deviation of the K-value of a dense 
system from its dilute system value AZ@‘) one needs the 
concentrations of the species at times near the relaxa- 
tion time. Thus, the rate equation (2) with the density 
dependent constants has to be soIved for given initial 
values cx(O), X = A, B, C, D. Because of the nonline- 
arity of this differential equation this couId only be 
done numerically. To avoid this, we have used an itera- 
tive procedure: 

Using (35) from I and (3) K is written as 

K = k:O’g~,B(RA.B)lk~‘gc.D(Rc,D) . (II) 

As a first approximation we evaluate the PDF’s and 
thus K from the equilibrium concentrations of the 
corresponding dilute system. With the help of &, 

x=&i$Ll cx = I’ (12) 

and assuming that the two concentrations with the 
smakst absolute value are constant, new equilibrium 
concentrations are calculated which we use to evaluate 
new PDF’s and thus K1 in a second step. This proce- 
dure converges very fast. Knowing the behaviour of 
the density dependent corrections of the rate constants 
from previous discussions (see section 2.2), we may 
conclude: the ratio K(O)/K wiIl be maximal, if both 
IRA - RB I as well as the component with the largest 
molecular diameter and Rc =RD are as large as pos- 

Fig. 3. Ratio of the equilibrium constants in the dense and 
dilute media K/K@) plotted againsr the particle number 
density p for different sets of ndii and K(O) = 100. 

sible for high densities. As an example, fig. 3 repre- 
sents the quantitative behaviour ofK (0) /K as a function 
of the particle number density p for different sets of 
radii. 

3_ Time dependent corrections in dense systems 

In realistic dense systems the rate constants are time 
dependent mainly for two reasons: (1) as previously 
discussed, the spats correIations depend on the concen- 
bations of the different species and these change with 
time during the relaxational process: (2) due to the influ- 
ence of the surrounding molecules on the reactive 
binary collision, the cross section or even the reaction 
mechanism itself can change. ForrnaUy this leads to the 
replacement of k$@ and kF), according to time depen- 
dent equations for them. In a dilute system imporrant 
conclusions about the reaction mechanism can be 
drawn from studying the time dependence of the rate 
constants in the rate equation (2); the rate constants 
are time independent only if the reaction is an elemen- 
tary one [S] .However, in a dense system these conclu- 
sions are possible only Iftbe time dependence intro- 
duced by the spatial correlations is know+ For this 
reason we investigate the time dependence of the rate 
constants due to the spatial correlations. 

Fig. 4 shows, that the ratio k&)/kp) or kb(t)/k%) 

aI4 R‘:lolo.1lo*ffilPas 

Fig. 4. Plot of the ratio Ly/,$@ against time r for two densi- 
ties and different sets of radii. The heavy Line represents the 
concentration CA as a function of time I, evaluated from 
the gas phase relations: kfoO’ = Is, k&O) = 0.01 S, c*(O) = 

CB(o) = 05, C,-(o) = Q,(o) = 0.0. 



depends weakly on concentration and thus on time 
provided (10) is valid. In fact, for Rc = RD and for 
highly different radii Rh and RB the maximum change 
of kr(f) or kb(f) related to the initial value at time t 
= 0 is 8--12%. If (10) is not valid, the ratio kr(r)/k$” 
(or kb(t)/@‘)) changes appreciably with time (see 
fig. 4); it decreases with c*(t) for V, + Vn > V, + 
V, and increases for V, + VB < V, + VD _ This beha- 
viour may be explained with the help of the screening 
model, as has been done in section 2.2. One may sum- 
marize, that a maximal dependence of the rate constants 
on concentration and thus on time occurs, if the total 
vohrme of two reactants A and B differs strongly from 
that of the products C and D for a reaction where the 
concentrations change considerably. The results 
obtained allow us to draw some conclusions on the rate 
of change ofthe concentrations itself. 

For the parameter considered in fig. 4, the rate equa- 
tion (2) may be approximately written in the form 

-(k$“)-’ dc,/dr =g,r,,B(RA,Bcx(f)) 

x kA@kB@) -K-‘c&) CD@)] , (13) 

where k$‘)/k$,‘) and cc(O), Q,(O) where chosen in such 
a manner, that the second term in the rate equation (1) 

contributes only at times, when the concentrations are 
aheady very close to their equilibrium values (kJk, = 
lO_‘, ~$1 = cg) = 0). From the corresponding curves, 
shown in rig. 5, it is immediately obvious, that in a 
dense system the chemical relaxation is much faster 

1 2 3 6 5 6 (61 

Fig 5. Plot of the reaction rate (l/kf) &&It as a function 
of time t for the dilute systefiand dense systems with 
different particle-numberilensties p (dashed Iines@and 
@. The heavy line represents CA(t) in the dilute gas case. 

than in the dilute gas case. Comparing curves (2) and 
(3) in fig. 5 with the corresponding curves in fig_ 4 we 
conclude that the time dependence of the rate constants 
is oniy weakly reflected in the time dependence of 
c*(r), at least in the cases considered_ The same is true 
for c_&), obtained by integrating cA(t). The results 
demonstrate that the correction to the c,(t)-function 
arises mainly from the correction to the equilibrium 
constant from K(O) to K. This means, that a careful 
analysis of any empirically obtained curve cA(r) is 
necessary to detect the correct time behaviour of the 
rate constants. 

4. Concluding remarks 

In the present paper we studied the dependence of 
the rate constants kf and k, and the equilibrium con- 
stant K on density and time for the parameter combi- 
nations shown in table 1. The rate constants of a dense 
system were found to differ by up to an order of rnagni- 
tude from their dilute gas values due to the influence 
of the spatial correlations. To decide whether the time 
dependence of rate constants is 

(a) due to time dependent spatial correlations or, 
(b) due to concentration dependent changes in the 

binary collision cross section and the reaction mecha- 
nism respectively, relation (IO) plays a decisive role. 
Ifrelation (10) is fulfaed, the time dependence of the 
rate constant originates from (b). If relation (IO) is 
violated, the time dependence of the spatial correla- 
tions has to be properly taken into account in drawing 
any conclusions about the reaction mechanism from 
the time dependent rate constants. In this sense the 
present paper might contribute to investigation of the 
reaction mechanism in dense systems. 
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