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For a classical homogeneous system of particles interacting via steeply repulsive potentials a generalization of the Enskog
equation is proposed. This kinetic equation has the properties that it reduces to the usual Enskog equation in the limit of
hard-sphere potentials and that the total instead of the kinetic energy is conserved in the system. The expression for the
potential energy obtained is correct at arbitrary densities in equilibrium.

The generalized Boltzmann equation for hard-core systems as proposed by Enskog [1] is known to describe
the kinetic properties of such systems nearly exactly up to half the closest packing density and to yield good ap-
proximations for transport coefficients even at liquid densities [2]. Also, equilibrium properties are obtained ex-
actly at arbitrary densities. In view of the simplicity of the Enskog equation this is a very surprising, still not fully
understood situation. Since a microscopic interpretation of the Enskog equation is very complicated even in the
case of hard-sphere systems no generally accepted extension to the case of (short-ranged) soft-core potentials ex-
ists in the literature,

The philosophy underlying the EE is that spatial correlations between colliding particles are taken into account
while momentum correlations are neglected altogether. These spatial correlations originate from the influence of
the surrounding particles via the so-called screening effect [3] this effect being of a purely geometrical origin.
Therefore, these correlations will play an important role also in a system of particles interacting via a steeply re-
pulsive potential V. In an equilibrium system these correlations are represented by y,(1, 2) = y,(r; — r,) where

g =e~F"0y,(r), )

&(») being the pair correlation function, 8 = 1/kT and V{(r) the pair interaction potential. In a hard-sphere system
¥(r) is entirely independent of the temperature (i.e. on the kinetics) and represents just the screening correla-
tions mentioned above. In a realistic system and in nonequilibrium the screening will be slightly dependent on the
kinetics of the system so that y,(r) should actually be determined self-consistently. For simplicity of presentation
we neglect these effects in the present paper and use the y,(r) of (1) in nonequilibrium, too.

To introduce these correlations into the desired kinetic equations for a classical homogeneous N-particle sys-
tem we start from the first two equations of the BBGKY hierarchy which read for large NV with given density n,

%fl(l;t)=—n fd2L1(1,2)f2(1,2;t), @)
[;%’rL(l,2)]f2(1,2;t)=—nfd3 [L,Q1,3)+L{(2,3)]1f5(1,2,3;8), 3)
where

0 031-9163/82/0000—0000/$02.75 © 1982 North-Holland 123



Volume 92A, number 3 PHYSICS LETTERS 1 November 1982

- Pra P2 o L (B)
L_LO +L1, L0(1,2) m arl +m arz, Ll(l,])——--———a?l— —_—)

These equations have to be equipped with an initial condition which we choose here in such a way as to take ac-
count of the screening correlations mentioned above,i.e.

f(1,2;0)=£1(1;0) £1(2:0) y,(1,2) . O]
These correlations are formally introduced into the hierarchy, too, by rewriting (3) by means of (2) as

[ +2a.0]na.20-2 009000000

=-n fd3{L1(1, D301, 2,3, 0 —y,(1, 2)f,(1, 3, 01 (2; D]
+L1(2,3)[f3(1,2,3;0) —y,(1, )/, 3; )/, (1 )]}

o Z(1,2;0f(1,2;0), (5)

the latter equality sign simply defining a quantity £ which depends on f3, f, and f; . It is interesting to evaluate
Z in equilibrium. Using

1541, 2,3) = e=FV(L,2.3)y (1,2, 3)

and the hierarchy equations for the y functions, one immediately obtains

oVa(ry - rz)( 3 2

a. T A eq1’29
ory dp; apz)fz( )

e =3 (1,2)F%9(1,2) =
13 eq(1, 2)F31(1, )Def

V&) —ry)=—kTInly,(ry — 1)),

where fleq is seen to be just an interaction liouvillean defined in terms of the average force exerted by the sur-
rounding medium via the screening effect on the particles in consideration. This force depends on the kinetics of
the system only through the average kinetic energy and is easily interpreted as a kind of pressure driving the par-
ticles together. This easy physical picture arises from the fact that in equilibrium there are no momentum correla-
tions between the particles.

In nonequilibrium this force is expected to be expressed by the operator

z‘l(l,z;t)izf‘f;—jl’—ztfl[%l—gf,—z], 0)
where

V(1,20 =~ §Egn® Iy, (1,2, Ega@= [Ep@22mfy(p:0)

so that (5) becomes

[%w -2, - zz(f)]fz(l, 20) ~ 2oy ofi (1 0f, (230 =0, 7

where Z,f, =(Z — ) 1)f, mainly contains effects due to the nonequilibrium momentum correlations between
the particles. We have dropped indices where no misunderstanding is possible.
Now it is easily proved by differentiation that (7) together with (4) is equivalent to the integral equation
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We use the identity

t t t t
[t ==Ly, (1, 2;¢) = [af yye=t-ILA(1, 2:¢) — [dr e~ Lgy) [ ar" e~ =LA, 2;1")
0 0 0 0 (9)

which is most easily proved in Laplace representation by using L = L, + L, is a linear differentiation operator and
L, commutes with y. Introducing (9) into (8) and iterating as

t : '
IO =9 AWOAEY - 4y, e OLL AW O = [ar KOC - R0 O, (108)
0 0
t
PO =P+ [df e EOLE 1)y, + 2y g — Loy (L8125 6)
0
t t'
— [ar' [ ar" et (E @)y + 20"y — Loyl L £ (1 (2517
0 0

t
= [ar' kD, ) 00:0), (10b)
Defo

and for ¢ -0 (in the abelian sense) we see that in equilibrium f—f.q, faO) yields the exact equilibrium function
f eq while the higher order corrections are equal to zero, i.e.

=Dy, VE=1,2,...

Hoping that (10) in nonequilibrium rapidly converges, we may obtain a kinetic equation by introducing (10b) in-
to (2). '

To stay in the Enskog picture however we have to neglect any terms which are connected with momentum cor-
relations extending beyond the range of the interaction potential ¥. This means dropping in K1) the term con-
taining Z, and all terms which do not decay on a time scale given by ¢, ¢, being the duration of a single collision
with respect to the potential V. This leads to the following equation (for details see ref. [4])

Z t-t'
0 ’ S 4 ' ' 4 ' - '
Shn=n [dt [fdz{yle et LL fi(1st— )@t —t) = [ de"Ly e L{Loyy) - 21— £)py]
0 0 0

Xe t"LL fi(L;e—1 —1")f1Q25t -1 — r")}] . a1
In the limit of hard-sphere potentials the first term is seen to yield the usual Enskog equation

2D = m(0) [d2 T, DA f,C50) a2

and g is the hard-sphere diameter, T being defined in ref. [5], while the second term may be shown to be equal to
zero [4] and this term will therefore be small in systems with sufficiently steep repulsive potentials.
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(11) does still contain the distribution functions at earlier times. Because of the afore mentioned decay proper-
ties of the kernels we may write

fl(l;t—'r)=f1(l;t)—'r§a?f1(1;t~7'), 13)

l(t—T) El(t)—T 21([’) (14)
and anticipating the result (14) we may replace

Zie-1) by E@-f-1")

since the corresponding correcture term may be shown to be smaller than the terms retained by a factor of
Upot/Ekin' Introducing this into (11) and extending after introducing the usual damping factor the integrations
to infinity one obtains in first order of retardation terms ﬁnally

Shwn=-ntin 14221 falsr, o 1 Loy @) - 5101 7 L A00nGsD -
(15) forms the central result of the present paper. Similarly as the Enskog equation, it contains only the dynamics
of two particles, the effect of the medium being mainly represented by the factor y in the first term on the ths of
(15). The second term looks like a correcture term in Born approximation, the perturbation being (Lyy) — z 1

While £ describes a force, driving the particles together, (L y) represents the tendency of the particles to di-
minish the correlations due to free streaming. In equilibrium, the two effects cancel each other, while in nonequi-
librium these terms represent the influence of the medium on the course of a single binary collision.

In the limit of a hard-sphere system, the second term on the rhs of (15) is equal to zero, thus (15) reduces to the
usual Enskog equation of a homogeneous system. By multiplying (15) with p2/2m and integrating one obtains [4]

2 0
ﬁEkin(t) = - 5{Upot(t) ’

Upor(®) = lim ~in2f a1 dz{—Vy + V-6+LL [Cor) — 2101 —57 L1105 0,250 (16)

and

U= [ Srve) e Oye) = [ vinse).

Identifying Upot(t) with the potential energy in the system we may say (15) conserves total energy. Since in a
dense realistic system the potential energy cannot be neglected with respect to the kinetic energy this fact is non-
trivial and serves as a serious test of any kinetic equation.

The details of the derivation will be presented elsewhere.
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