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A micro potential method (MPM) is proposeu as a special approach to the statistical 
thermodynamics of dense fluids. The classical partition function of simple fluids is estimated 
by means of the MPM. Probability functions of micro potentials, i.e. potential energies of the 
particles, and corresponding generating functions are introduced to get the configurational 
integral of the pure fluid. In contrast to perturbation theories the MPM itself leads to a 
reasonable expression for the free energy of the hard-sphere system as the reference system. 
For the square-well fluid the MPM provides values of thermodynamic functions, which agree 
well with corresponding computer simulation data. The MPM results arc at least of the same 
accuracy as those of the well known approach of Ponce and Renon [J. Chem. Phys. 64 (1976) 
638]. 

1. Introduction 

In this paper we estimate the configurational integral Q and thermodynamic 
functions of a classical many particle system in equilibrium. A previous paper 
[1] already presented a brief summary. 

We consider a canonical ensemble of N identical molecules in volume V and 
with temperature T. Thus the partition function is given by 

Z = (2 ' r rmkBT/h2)3N/2Q/N!  . (1) 

In this equation h is Planck's constant, k B is Boltzmann's constant, m is the 
mass of the particles, and 

Q= f ""  f e x p ( - U t / k a T ) d q l ' " d q  N . (2) 

The vector qi symbolizes the coordinates (xi, Yi, zi), and U t is the total 
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potential energy function of the system. With the free energy 

F = _ k B T I n Z  (3) 

and the thermodynamic relations one gets thermodynamic quantities. We 
assume that the molecules of the system interact by pairwise additive forces, 
and the (effective) pair potential w = w(rv) is a function of the distance rij 
between the particles i and j only [2, 3]. Thus, Ut can be written as 

Ut = ~.  w(re) . (4) 
i< i  

The starting point for the estimation of Q in our paper is a formalism of 
Morgan [4]. Morgan derived a probability function P(E)dE  to find the local 
band-edge energy E of a heavily doped semiconductor within a range dE about 
E. We consider the potential energy U of any given particle of the system. The 
probability P(U)dU to find the "micro potential" U (potential energy U) 
within a range d U about U is the sum of the probabilities of all random 
configurations of the particles which generate a potential energy U in that 
range. 

In the literature also electric-microfield distributions in systems of charged 
particles are calculated [5]. Iglesias [6] has reformulated the problem of 
calculating the electric-microfield distribution in a plasma so that it is equiva- 
lent to finding the pair-distribution function of a fluid interacting through a 
complex potential. Lado [7] solved the mean spherical model for such a fluid 
analytically. Powles and Fowler [8] evaluated a distribution function P ( f )  for a 
Cartesian component f of the force on an atom in a Lennard-Jones liquid. Our 
function P(U) and, particularly, generating functions of P(U) dU and 
P(Ut) dU t are used to estimate Q (micro potential method). P(Ut)dU t is the 
probability function to have the potential energy U t of the system within a 
range d Ut about U t. If P(Ut) is explicitly known, it is simple to write Q as 
shown in section 2.1. For instance, it seems possible to make a suitable ansatz 
for P(Ut) to estimate Q analogously to ref. [9]. In section 2.2 we estimate the 
configurationa! integral Q approximately. 

A system of hard spheres without attractive forces between the molcules is 
the simplest model of (dense) fluids. Such a hard-sphere system plays an 
important role in the perturbation theory of fluids (see for instance refs. [2, 3]). 
In section 3.1 the free energy and the equation of state of our model are given 
for hard spheres. Very accurate and recent computer simulation data [10] of 
the hard-sphere system are known for the compressibility factor. In the fluid 
range for example the (analytical) Carnahan-Starling (C-S) equation of state 
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[11] represents the results of computer simulations well. It is possible to 
consider the C-S equation for hard spheres as arising from a kind of mean-field 
theory [12]. 

The square-well system is one of the simplest systems incorporating both 
repulsive and attractive forces. The pair potential of this system is 

{i w ( r )  - , 

for 0~< r~< o-, 
for o - < r < c ,  
for r~>c, 

e < 0 ,  (5) 

where o- is the diameter of the hard core, le[ is the well depth and c/o- is the 
width of the well. For pair potentials according to eq. (5) the micro potential 
method (MPM) allows to estimate Q (section 2.2) and thermodynamic func- 
tions (section 3.2) analytically. 

The square-well system has been used as a model in testing a variety of 
theories and in gaining insight into the behaviour of real fluids (see ref. [13] 
and references therein). Square-well fluids can be taken as suitable reference 
systems in perturbation theories [14] for calculating thermodynamic functions 
and radial distribution functions. 

Since the thermodynamic behaviour ol a classical square-well system with 
the range of the well c = 1.5o-roughly follows that of real (classical) fluids most 
of the studies have been carded out for this particular value of c. In the present 
paper (section 3.2) we also use c/o- = 1.5 to calculate thermodynamic functions, 
and compare the results with those of Carley and Dotson [15, 16] and those of 
Ponce and Renon [17]. But the most direct means for computing thermo- 
dynamic properties of classical square-well fluids are computer simulations 
[18-20]. We compare these and recently obtained results of Lee and Chao [21] 
with those of the MPM in section 3.2. 

A discussion of our method and results and some conclusions follow in 
section 4. 

2. Micro potential method 

2.1. Generating functions 

In order to obtain explicit expressions for the probability-density functions 
P(U) and P(Ut) we consider a system of N particles and N o available sites 
which can be occupied by the particles. It is assumed that the molecules are 
distributed randomly on the sites in the volume V. The average density of 
molecules in V is N/V and the average proability of having any molecule per 
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site is 

N / V  
= 1 - qo,  (6) Po = NolV 

where No/V is the average density of available sites. Thus, in a given region 
denoted by the index i, containing g~ available sites, the probability to have 
exactly n~ particles is (see for example refs. [22, 23]) 

P~(n,) = po'(1- po)S'-"' ( g' ) 
ni ' 

(7) 

where ( g' n, ) is the binominal coefficient expressing the number of ways in which 
gi sites may be occupied by exactly ni particles. The binominal distribution (7) 
corresponds to eq. (1) in ref. [4]. Here N, is substituted by No/V, and small 
regions i are chosen. Any molecule is assumed to be in the origin of the 
coordinate system. If each molecule iii the (small) region i contributes to the 
potential energy of the molecule in the origin an energy w~, the total energy 
contributed by n i molecules is U~ = niw ~, where w~ is the pair potential. Now 
one can introduce the generating function 

Gi(s)  = (Po  S-w* + q , , ) g '  = ~ P i ( n i )  s-"iw7 = 2 P ( U i )  s -v;  
ni U i 

(8) 

"-- * U i  I 1" with w, i lw,, - U = lelU* and e as the minimal value of the pair 
potential. G~(s) generates P~(n~) from eq. (7) and s is a parameter. If we 
consider all regions i in V, we obtain the generating function 

G(s)=l-I(po s-~7 + qo)'i : e x p ( ~  giln(po s-w~ + qo)) , 
i t 

(9) 

and the sum extends over the entire volume V. We set w i = w(r), g/=4"tr 
(No/V)r  2 dr and get for the generating function G(s) of P ( U ) d U  due to eq. 
(9) 

o¢  

o 

\ 
(No/V)r  2 ln(Po s-w'~r) + 1 - Po) dr) 

U* = P(U)  s-  d U ,  (lO) 

where w*, U* and (later) T* are reduced dimensionless energies, respectively 
temperatures with U*/T*  = U / k B T  and w*/T*  = W/kBT. Although a generat- 
ing function may not yield an explicit form for the probability function, it 
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allows an easy access to its moments. The following expressions for the 
moments can be written immediately due to eq. (10): 

( U*)a  ~ = - ( d / d s ) G ( s )  , 

( ( U * )  2 ) av = (d/ds)[s(d/ds)G(s)].  

( ( u * ) m ) . ~  = [ - s ( d / d s ) ] m G ( s ) ,  

$-----1, 

s = l  , 

s = l .  

(11) 

It is possible to find an explicit expression for P(U) by means of an i n v e ~  
Fourier transformation. We choose s =exp(it*) in eq. (10) (s is a complex 
number, t is a real number and t * - l e l t ) .  This leads to 

if P(U) = ~ exp(itU) G(it*) dr (12) 

and due to eq. (10) explicitly to 

e ( o ) =  1- fexp(4~(No/V)fr2ln Y, dr) 
o o 

x cos(Ut-4~r(NolV ) f rZarctan Y2 d r ) d t  
o 

with 

and 

(13) 

Y, = [2(N/No) 2 + 1 - 2(N/No) + 2(N/N o) cos(wt) - 2(N/No) 2 cos(wt)] '~2 

Y2 = (N/No) sin(wt)/ l l  - (N/No) + (N/No)cos(wt)l .  

As later shown it will be sufficient to know the expression G(s) in eq. (10) with 
s - e x p ( 1 / 2 T * )  to get Q and Z approximately. In order to estimate Q we 
introduce a generalized generating function 

GN(SN) = ~' " " " ~" Pl (1 -- p l )  gl- 
n I n M n I 

+---+nM,,,;M) 

n2 °N 

. . . .  p~M(1 pM)gM-nM(gM) N 
n M 

= f P(Ut)s~ vl' OU t . 
~ 0 C  

(14) 
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M is the number of the very small regions in V ( N / M  ,~ 1), w 0 = lelw,j is the 
* T* + . . . + n  = N , s  N pair potential of the molecules i and j, U t / = Ut[  k s T, n 1 M 

is a parameter, and the N particles are again randomly distributed on the N O 
sites in V. For our purposes it is suitable to set g~ = 1 in all regions i 
(i = 1, 2 , . . . ,  M). Thus, N o = M and all n i become 0 or 1. For the probabilities 
Pi (ratios of densities) we write 

NilV~ = 1 - qi . (15) 
Pi = Noi/Vo i 

That is, if certain sites were occupied by any particles, then the number of 
particles which can occupy other sites is smaller than N. Thereby the number 
of sites which can be yet occupied by other particles is smaller than N O . We 
consider the region i. Then Ni molecules can be distributed on N0i sites in a 
(rest) volume V/~< V. It is V i = V o i  , M = N o, N i ~ N ,  and Noi ~ N O for i =  

1, 2 , . . . ,  M. In appendix A a detailed expression is given for the p~ of eq. 
(15). Choosing SN = exp(1 / F*), the exact relations 

* NQ 
G N ( S N )  = V -  (16) 

and 

Q =  v N f P ( U t ) e x p ( - U t / k B T ) d U t  
-- oo 

(17) 

are derived. The t e r m  k B ln[P(Ut) BUt] is the difference of the entropy S of the 
system and the entropy Sid of the corresponding ideal gas. 

With S N = e x p ( i t *  ) and t*=  lelt one gets from eq. (14) 

* " * / 
GN(I t  ) = P(Ut) exp(- i tUt)  dUt,  

J 
~'~o 

(18) 

and by means of inverse Fourier transformation 

if P ( U , )  = exp(itUt) G N(It  ") dt . (19) 

P(Ut) or S -  S~d can be calculated directly. This is a possible starting point to 
estimate Q and thermodynamic functions according to eq. (17). We prefer 
another way. In appendix B, Q is derived from G N of eq. (14) with Pi of eq. 
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(15). The exact result is 

Q = V N "'" [ g ( U j l U j _ l l ' "  lU,) s-U;l dU,.., dUN, 

where 

and 

1/2 
S--'~SN 

N 

= exp(1 /2T*) ,  Uj /  UjlkBT, E Uj=2Ut, 
j=l 

ej(ujluj_ l.., lug) dUj 

(20) 

is the conditional probability to have a potential energy Uj for the particle of 
number j, if the particle of number 1 has the potential energy UI, the second 
particle has the potential energy U 2, etc., and the particle of number j -  1 has 
the potential energy Ui_ 1. By means of eq. (10) and eq. (20) we shall give 
approximate formulae for Q. 

2.2. Approximate estimations of the configurational integral 

We estimate Q from eq. (20) using the approximation 

(f )N - U *  Q = V s e ( u )  s dU = VN[G+(s)] s , (21) 

where 

G+(s) = e x p ( ~  gi In(p, s-w;+ q,)) (22) 

is a modified generating function. Assuming again that gi = 1 for all regions i 
and setting w I =0 ,  pi can be taken from eq. (15). Because N, N O >> 1 and 
w ( r )  r 3 ---->0 for r---> ~, the quantities pg, qi in eq. (22) can be replaced by P0 and 
qo, respectively, for all i. Thus, G+(s) of eq. (22) becomes G(s) of eq. (9) and 
according to eq. (10) it follows from eq. (21) that 

 =V Iexp 4 , o'V, 
0 

(23) 

In order to take into account the facts that the particles have a finite volume 
and that the Pj(Uj)dUj in eq. (20) are conditional probabilities we assume 



412 H. Schmid et ol. I Micro potential method for thermodynamic functions 

N O = Vf in eq. (23) with cr3f~ 1, w(cr)=0, and cr is the diameter of the 
molecules. In the following part of this paper hard-core fluids, particularly 
square-well fluids are considered. For example f =  21/2/o -3 corresponds to a 
regular close packing of N O hard spheres in V. In this case using eqs. (1), (3), 
(23), the square-well potential (5) and thermodynamic relations, one gets 

G = V u exp(4~Nf(or313){ln(1 - N/Vf) 
+ [ ( c / q )  3 -- II  l n [ ( N / V f )  e 1~l/2k"r + 1 - N/WI}) (24) 

and qualitatively correct results for the thermodynamic functions. In order to 
improve our model, the expression 4~rrZ(No/V) in eq. (23) is substituted by 
41rrZA(r) (No/V), N o = Vf and it is f =  (21/2/cra)f *, where f* is a reduced 
quantity. Due to eq. (23) one can write then 

Q= VN exp(4~rNf f A(r) r21n[(N/Vf)(e-W(r)/ZksV-1) 
0 

+ 1] dr) (25) 

with an appropriate function A(r). We remark that P(Ut) can be estimated by 
means of eq. (19) for the function 

* N 
CAs~)  = [C(s)l 

= exp(4rrN(No/V ) f A(r )r  2 ln[(N/No)s 
0 

\ 
+ 1 - (N/No) ] dr ) ,  

(26) 

where su =exp( i t* )=  s z, t*= [elt and G(s) is the generating function in eq. 
(10), modified by a function A(r). We get 

1 
P(L~) = 7r 

wit~ 

 exp(4 N( o,V, A(r, r2 ,n Y: dr) 
0 0 

x cos - 4wN(No/V ) j A(r) r 2 ~rrt~. v 2 
0 

\ 
d r /  cl t (97~ 

Y, = [ 2 ( N / N o )  2 + 1 - 2 ( N / N o )  + 2 ( N / N o )  cos(wt/2) 

-2(N/No) 2 cos(wt/2)] ''2 
and 

Y~ = (N/No) sin(wt/2) /11 - (N/No) + (N/No) cos(wt/2)l. 
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Now we set f*  = (21~2a) -~ with a = " n ' 2 / 1 2  from a random close packing [24-26] 
of N o hard spheres in V =  Noo.3a. Recently Berryman [27] showed that for a 
r andom close packing the packing fraction is given by r / =  0.64 _-. 0.02. This 
value of 7/corresponds to a = 0.8181. For  r ~< o. it is plausible that A has a 
value A 0 < 1 because one  particle is in the origin r = 0 and this site is occupied. 
Thus,  the number  of available sites in a sphere of d iameter  2o-is 

A0[(ao.3)-  1(4,rro-3/3)] = [(ao-3)-~(4~r/3)][o. 3 - (o.,,/2) 3] - 1 ,  (28) 

w h e r e  (ao.3) -! is the average density of sites in the volume V and o.~ = o.. Then  

it becomes  

A 0 - 1 - ( o ' , , / 2 o ' )  3 - 3a/4~r. (29) 

In order  to explain o.,, we consider a large volume V. It contains N o sites 
(No "> 1) which can be occupied by molecules. These sites are uniformly 
distributed, that is, they are distributed as molecules which have no volume 
and do not interact. The distance distribution function of the nearest site is 

to(r) = 4"trr2n exp(-4"trr3n / 3 ) (30) 

with n = No/V and r as the distance between the origin and the nearest site 
[28]. For  the maximum value of to(r) one can write 

rma x = [2 x 2 1 ' 2 7 r ( V o / V ) ] - l ' 3 o . ,  (31 )  

where V0= N0o.3/2 t/2. Firstly we set (Vo/V)=(21/2a) -1 in eq. (31). This 
corresponds to a r andom close packing of N o hard spheres in V. Th,ls, one has 
rma x - - 0 . 5 0 7 8 o ' .  Secondly we use o-,/2 = 0.5078o" in eq. (29) and get A0 = 
0.6727. The function A(r) is now known for r ~  < o. (A = A0). For o. < r < x c 
with the parameter  x~ <~ 1.5o., the densest possible packing of sites (N0 spheres) 
is assumed,  i.e. A = 2~/:a. For r >i x~ the above introduced average density of 
sites is assumed ( random close packing; A = 1). This leads to the equation 

A,, = 1-[(Xc/O') 3 -  l ] ( a 2  ' ' 2 -  I)  (32) 

because the average density of available sites in 0 4  r i> x c is (1/~o.3). With 
A 0 - 0 . 6 7 2 7  and using eq. (32) the parameter  xc is equal to 1.443o'. 

Choosing the function A(r) in the just presented manner  and using eq. (32) 
then eq. (25) for Q yields eq. (7) in ref. [1]. But we are especially interested in 
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a square-well system according to eq. (5). Our model leads to 

Q =  v N exp((4xt21/2/3)Nf* { Ao I n ( 1 -  Vo/Vf* ) 

+ Bo[(c/tr) 3 - ao] ln[(Vo/Vf*)(e 1~l/2k"r- 1) + 1]}) (33) 

with V 0 = Ntr3/2 +1z2 cltr = 1.5 and three parameters A 0, B 0, f*.  In the case 
discussed above the parameter B o was B0= 1 and it is f* =0.8597, A o =  
0.6727. This is the first version of the micro potential method (MPM) denoted 
by MPM1. Another possibility to explain A 0 and f*  in eq. (33) is the following 
one" A 0 is set equal to 0.5 to get the exact second virial coefficient of a 
hard-sphere system, f* =0.795 is chosen to fit the equation of state of 
Carnahan and Starling [11] for Vo/V <~ 0.667, and it is B 0 = 1. 

This is a second version of the MPM (MPM2). A third version (MPM3) with 
B o > 1 is described in section 3.2. 

3. Thermodynamic functions 

3.1. Hard spheres 

Choosing e = 0 in eq. (33) we get Q of the MPM for the hard-sphere system. 
According to eqs. (1), (3) and (33) one finds 

( F -  F~a)/NkBT= -(4,tr21/z/3)f * A o In[1 - (Vo/V) /f*] (34) 

for the free energy, where Fid is the free energy of the ideal gas. Using eq. (34) 
and the relation 

P = - (OF/OV)r  (35) 

the compressibility factor of a hard-sphere system is 

pV/NkBT= 1 + (4~r2~/2/3)Ao(Vo/V)[1 - (Vo/V)/f*] -~ (36) 

In the fluid range a simple and nevertheless good approximation is the 
Carnahan-Starling (C-S) equation of state [11]. The C-S equation can be 
further improved by adapting to the lower virial coefficients, whose exact 
values we find for instance in ref. [29]. In a paper of Boublik and Nezbeda [30] 
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a modified C-S equation of state of Kolafa for the fluid range is given by 

pV/NkBT= (I + 77 + ,/2_ 2*/3_ 2./4)/(1_ */)3 (37) 

with 7/= N t r 3 ~  ]6V. This equation is significantly better than the C-S equation. 
From eq. (37) one gets 

( F -  F i d ) / N k a T =  ~ I n ( l -  7/) + [7//6(1- */)21(34- 33./+ 4./2). (38) 

For the MPM1, ( F -  Fid)/NkBT from eq. (34) is plotted in fig. 1. This function 
is compared with that of the Percus-Vevick theory given by Ponce and Renon 
[17] and that which follows from the MPM2. Reliable values for the free 
energy from eq. (38) are given, too. 

For a system of hard rods the corresponding one-dimensional form of eq. (9) 
is the starting point to derive 

Q = v N exp[N In(1 - Nit/V)] (39) 

6 

T :t_...OO 
h 

O / ' ~ e " '  , t t i i 
o o z 0,4 Vo/-'v 06 

Fig. 1. Reduced  excess f ree  ene rgy  versus r educed  densi ty  for the h a r d - s p h e r e  system. ~ M P M  1 
resul ts ;  - -  MPM2 results ;  - . -  PY results given by ref.  [17]; x x × Ko la fa ' s  results f rom eq. (38) .  
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and 

pV/lVk,,T= I + lV /(v- No-), (40) 

where tr is the length of the N hard rods confined to a line of length V. Our eq. 
(40) is Tonks' exact equation of state for the many-body system [31]. 

With Bo= 1, f*  = 1/21/2  and t~ = "rr2/12, eq. (33) results in eq. (9) of ref. 
[1]. There A o = 0.670 was chosen to fit the C-S  equation for Vo/V <~0.667. 

By means of a cell theory Gurikov [32] found an expression similar to our 
eq. (36) with a slightly changed parameter A 0 = 0.6738 and f* -0 .8597.  

A modified cell theory of V6rtler [33] is applied to hard spheres. The result is 

pV/NkBT= 1 +0.5[s/(s- 1)][=2"2(Vo/V)l"3/[1-(t 21'2Vo/V) 1/3] (41) 

with a = 0.8225 and s = 2.134. In the case s = 2 and a = 2-1/2 one obtains the 
equation of state from the corresponding conventional lattice-cell theory using 
the one-particle partition function approximation [34]. 

Table I shows the values of the Kolafa hard-sphere equation (37), which 
represents simulation data in a very accurate manner. The second column 
comprises the values of the compressibility factor via eq. (36) for the MPM1. 
In the third column we find the values of the modified cell theory (MCT) of 
V6rtler [33] according to eq. (41). The MPM values in the second column are 
not far from those of the first column. For comparison extrapolated values of 
Carley [15] for T*---~ ~ and the results of Gurikov [32] are given, too. 

Fig. 2 shows graphs of pV/Nk B T for different approaches (explanation as in 
fig. 1). The MPM1 (full line) matches the generally accepted simulation results. 

Table I 

Compressibility factor of the hard-sphere system in dependence on the reduced density. 

Vo/V Kolafa MPM 1 V6rtler Carley Gurikov 
eq. (37) eq. (36) eq. (41) [15] [321 

0.07071 1.2397 1.3070 1.7241 1.241 1.3075 
0.11111 1.4085 1.5085 1.9622 1.409 1.5093 
0. i 7500 1.7359 1.8756 2. 344 1. 735 1. 8770 
0.2500 2. 244 2. 405 2. 847 2.24 2. 407 
0.3000 2.683 2.836 3.238 2.67 2.839 
0.3536 3. 270 3. 393 3. 730 3.25 3. 397 
0.4243 4. 295 4. 338 4. 545 4.24 4. 343 
0.4950 5. 727 5.649 5.657 5.62 5.657 
0.5657 7. 770 7. 592 7. 285 7.57 7. 602 
0.62500 I 0.1 ~4 10.123 9.391 9.87 10.138 
0.6670 12.48 12.86 11.66 12.1 12.88 



H. Schmid et al. /Micro  potential method for thermodynamic functions 417 

12 

10 

i - -  ao 

o,.. 

8 
mX~ oo 

S / 
- / /  

I I I I I I 
0 0 0.2 Otl 0,6 Vo/V 

Fig. 2. Compressibility factor versus reduced density for the hard-sphere system. ~ MPM1 
results; - -  MPM2 results; - - -  PY results given by ref. [17]; x x x Ko!afa's results from eq. (37). 

3.2. Square-well system 

T h e  approx imat ion  of  Q from eq.  (24) leads to an express ion  for the excess 

free ene rgy  F -  Fid. This  is 

(F-  Fio)/NkBT= - (4 r r2~ /2 /3 ) In (1  - ~,/V) 

-(4~r2t/2/3)[(c/cr) 3-  1] 

x ln{1  + (Vo/V)[exp(lel/2kBT)- i ] } .  (42) 

Sand ie r  and Lee  [35] sugges ted  a mode l  of  the total coord ina t ion  n u m b e r  Arc 
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for square-weU fluids based on the lattice gas theory. By means of N c they get 

( F -  F~d)/ Nks T= (Fh~- Fid)/ Nks T 

- z  M In{1 + (Vo/V)[exP(lel/2ksT) - 11}, (43) 

where Fhs is the free energy of the hard-sphere system and z M is the maximum 
coordination number. For the c/cr = 1.5 square-well fluid, the lattice coordina- 
tion number is z M = 18. The attraction terms of eq. (42) and eq. (43) are equal 
except for a multiplicative constant. 

Our improved model results in eq. (33). Via eqs. (1), (2), (3), (33) and the 
relations 

) p = k  BT ~-~lnZ r (44) 

for the pressure, and 

Uint  = ksT2(o ~ In Z)  (45) 

for the internal energy, we get the reduced excess free energy 

( F -  Fid)/NksT= -(4qr2~/2/3)f*{Ao In(1 - Dr) 

+ Bo[(C/tr) 3 - A0] In D~}, (46) 

the compressibility factor 

pV/NksT= 1 + (4~r2~/2/3)f*{AoDv/(1- Dr) 

-Bo[(C/tr) 3 -  A0](D ~ - 1)/D~}, (47) 

and the reduced excess internal energy 

U d)/gl l : - ( 4 1 r 2 ' / 2 / 6 ) f * B o [ ( c / c r )  3 -  A o ] D v D r / D  1 , (48) 

where 

Dv=(Vo/V)/ f* ,  lnDr= 1 /2T* ,  

D, = Ov(D r - 1)+ 1, T *  - k T/l l , 

and Uid is the intercal energy of the ideal gas. 
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For the parameters A~, f* in eqs. (46), (47), (48) we have taken the same 
MPM values as in the case of the hard-sphere system. For the MPM2 eq. (33) 
leads to a partition function and to thermodynamic functions, which are 
already given in ref. [36]. MPM1 and MPM2 are characterized by Bo = 1. An 
improved version of the MPM1 should use B 0 > 1. 

For T*----> ~ the reduced excess internal energy of eq. (48) becomes 

l im [ ( U i , , t -  u, )/NIelI = -(4"tr2'Zz/6)Bo[(C/O') 3 -  AoI(Vo/V). ( 4 9 )  

Generally spoken, for a square-well system 

l im [(Uin ' - ui )/Nlell = - ( M ) / N  

is the second coefficient A t in a Taylor exr~ansion of the reduced excess 
Helmholtz free energy with respect to the infinite temperature limit and 
depends only on the density [18]. The first term of the series is A~/Nkt~T. 
where A(~ means the excess hard sphere free energy. The term ( M )  is a 
statistical average of the number M of pairs of interacting particles, which have 
the coordination number 2 ( M ) / N .  

At close and regular packing each particle has 12 nearest neighbours and 6 
second-nearest neighbours in its well. Hence it seems to be possible and 
reasonable to set (Ui, t-Ui~)/Nle[=-9 in eq. (49) to get B,,. Because 
(Vo/V)--> 1 in this limit it is B0 = 1.124. Thus, an improved version of the MPM 
(the MPM3) results in A0=0.6727,  f* =0.8597. and B,,= 1.124. For the 
model of eq. (43) the quantity (Urn,- U~j)/Nlel has the limit value - 9 .  too. 
Similar, but more complicated expressions for the thermodynamic functions 
are given by Lee and Chao [21]. They obtain 

F/NkBT= Fh.,/NkBT-(zo/2T2'"2)(V/Vo)In[1 + 2tZ2(Vo/V)(g2- 1)1 (5o) 

in their eq. (5), in which 

a =exp(y]el/ksT), 

" -  - -  u . 5 t  A . -  r o t  v } z .  v ( ) ,  V , z,, (4xt/3)[(c/~) 3 I](I + '~ -7...~1/2,z ,,z,.~,;2,// 

3' = 1 + 0.1044 × 2t/2(V0/V) - 5.6938(Vo/V) 2 + 4.7570 × 2"-'(E,/v)'. 

but Fh , is taken from the approach of Carnahan and Starling [11], and instead 

of y Lee and Chao use the symbol a. 
In fig. 3 the reduced free energy, calculated via eq. (46), is plotted against 

the reduced density for the three versions of the MPM and is compared with 
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Fig. 3. Reduced  excess  free energy  versus  reduced densi ty  for  the square-well  sys tem with 
c/cr = 1.5. - - - -  M P M 3  results; . . . .  M P M 1  results; - -  M P M 2  results;  × x x f o u r - t e r m  series 
approximat ion  resul ts  f rom ref. [18]. 

results of Alder et al. [18]. In fig. 4 the reduced free energy, calculated by the 
MPM3, are compared with results of Lee and Chao, eq. (50), and Ponce and 
Renon [17]. Ponce and Renon found an analytical equation for the Helmholtz 
free energy of a pure fluid. They use the successful perturbation theory of 
Barker and Henderson (see for instance ref. [2]) and a square-well potential 
with c/~r= 1.5. For the same pair potential Carley and Dotson [15, 16] 
computed thermodynamic properties in liquid and vapour regions. Their 
results appear to be reasonably accurate. 

Figs. 5 and 6 show calculated values for the compressibility factor of 
square-well fluids of the 3 versions of the micro potential method and other 
theoretical approaches [15-17]. The exact simulation data [18-20] are given for 
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Fig. 4. Reduced excess free energy versus reduced density for the square-well system with 
c/ tr= 1.5. MPM3 results: - . -  results from ref. [17]: . . . .  results from eq. {50)- x x x 
four-term series approximation results from ref. [181. 

comparison. Fig. 7 shows the dependence of the excess internal energy 
(Ui, t -Uid)/N!e I on the reduced temperature T* for different E~/V via eq. 
(48) and the parameter sets used above• As we see in fig. 8 the results of the 
MPM3 reproduce the simulation data of refs. [18, 19, 37] more accurately than 
the results of some other theories. They are comparable in accuracy with those 
of Carley and Dotson [15, 16] for V, IV >0.354.  

4. Discussion and conclusions 

The thermodynamic functions of a fluid many particle system are estimated 
in terms of the micro potential distribution function P(U)dU, that is, of the 
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Fig. 5. Compressibility factor versus reduced density for the square-well system with c/or = 1.5. 
MPM3 results; . . . .  MPMI results; - - M P M 2  results; x x x computer simulation data [18-20]. 

probability function to find system particles with a potential energy between U 
and U + d U. Thereby. it is assumed that the total potential U, of the system is 
the sum of pairwise additive interaction potentials (see eq. (4)). By intro- 
duction of genelating functions G and GN one can evaluate P(U) and P(U,) 
exactly. The generating functions are related directly to thc configurational 
integral Q. Thus. it is not necessary to calculate the probability density 
functions P(U,) or P(U) explicitly. P(U,) is proportional to exp[ (S-  S~a)/kB] 
with ( S -  S,d ) as the excess entropy of the canonical ensemble. It is interesting 
to ask whether P(U,) and Q can be estimated in a similar way under more 

:e. 

general conditions than given by eq. (4). G~, also cnablcs us to find an exact 
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MPM3 results; - . -  results from ref. [17]; . . . .  results from refs. [15.16]; x x x computer 

simulation data [18-2(I]. 

relation between the configurational integral Q and conditional probabilities 
Pj(Uj) d U i (eq. (20) in section 2.1). 

The assumption that these probabilities are not conditional probabilities 
permits an easy estimation of Q by means of G. Then we take into account the 
fact that the particles have a finite volume and the Pj(Uj)dUj are conditional 
probabilities by restricting the number of sites in V. Introducing a suitable and 
simply chosen function A(r) the function G is modified and we get an 
approximation for Q (section 2.2). 

In this paper the MPM is applied to a square-well fluid providing analytical 
expressions for Q (eq. (33)) and thermodynamic functions (section 3). For 
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data  [18, 19, 37]. 

T*----> ~ the hard-sphere results are recovered. Eq. (33) contains three parame- 
ters A0, f* and B 0. We do not try to adjust the parameters in a formal way or 
to introduce a larger number of parameters. Comparing the thermodynamic 
functions for different parameters or several models we consider the prop- 
erties, especially, at higher densities. Exact computer simulation results are 
cited for comparison. 

Three versions of the MPM are cnn~idored. The original version MPM1 
leads to good results for the reduced excess free energy and the compressibility 
factor for a hard-sphere fluid (T*--~ ~) as shown in figs. 1 and 2. For T*<~ 2 
the MPM2 (B o = 1) provides better values for these quantities (see figs. 3-5) 
than the MPM1. But all parameters of the MPM1 (B o -  1) are derived by 
physical arguments. Choosing B o > 1 one can improve our results (MPM3). By 
means of eq. (49) we suggest for T*---~ ~c and c/or - 1.5 the value B~ = 1.124. A 
comparison with Alder and Hecht [38] confirms this value. The effect of 
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attractive forces is now taken into account to adjust the parameter BO. The 
version MPM3 is a clear improvement of the MPMl (see figs. 3, 5 and 7). The 
parameters A, and f* are explained in the same wav as in the MPMl. Of 
course, a corresponding determination of B, in eq. (49) at the density of a 
random close packing would be desirable. Nevertheless, the version MPM3 is 
likely the best version of the MPM for square-well fluids. However, in this 
paper we do not intend to find the optimized value of B,. In our opinion it is 
more important to improve the MPM model itse!f. 

Comparisons with the values of thermodynamic functions estimated by 
Carley and Dotson [15,16], Ponce and Renon [17], Lee and Chao [21], and 
with corresponding computer simulation data [lo, 18-20, 371 show that the 
micro potential method leads to results of about equal accuracy for square-well 
fluids (see also table I, figs. 4, 6 and 8). Our model is fairly simple and yields 
reasonable results. The description of more general hard-core fluids by means 
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of the MPM is straightforward. Summarizing we state that  generating functions 
are a successful approach to estimate partition functions and thermodynamic  

quantities. 
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Appendix A 

The detailed expression of eq. (15) is 

i - I  

N i / V  i N -  ~ ,  n i j=0 

P ~ -  l*olVol~rill;" i ~V0~r_ i + 1 = 1 -- q~, (A.1) 

where V i = Vow, g~ = 1 for all small regions i (i = 1, 2 , . . . ,  M),  nj is equal to 0 
or 1, n 1 + n 2 + . . .  + n M = N,  and M - N 0. Of course, Pi---0 for all i, if 

i - -!  i - 1  

n / > I N ,  and q i = 0  for a l l i ,  i f N  o - i + ~ ' ~ n /  
j = O  j=O 

< N .  

Thereby,  n o = 0 and go = 0. Choosing g i -  1 in all regions i (N o - M)  one gets 
from eq. (14) 

*" . . n i ! n l ( n o w ~ , + . . .  + 
G N ( S N ) = E E  " ~ , p ~  ( 1 - p ~ ) - " ' s - -  - . -  ,M,';.,, N 

t i  I n 2 n M 

X n-~( _ l - n ,  -n.~(n~,w-]a+--.+nMW-]M) nv/ I - n ~ l  0 
P2- 1 P 2 )  "~SN . . . . . . . .  P~W (1 - PM) ' SN 

f -v;  
= P(Ut )SN d U , .  

- - 7 .  

(A.2) 

W. 
We estimate the generalized generat ing function G N in eq. (A.2) by means of 
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the probabilities defined by eq. (A.1). This gives 

:~ W* W*  . . . .  W*. 

= 2 2  • • • 2 - - ',"- - ", ,', 

i I i 2 i N 

i i < i 2 < • . .  < i N , 

Pi , ' ' "  PiN A q) ,  

(A.3) 

with 

i I - 1 i 2 - 1  i N -  1 

A q = H H . . .  H ( q k , ' ' "  qkN), 
i i = l  k 2 = i l +  1 k N = i N _ l + l  

(A.4) 

where k / <  k/+ ~ -  1 for j = 1, 2 , . . . ,  N. The following equations hold: 

Pi, P'2"' 'P'N = [ N / ( N o - i ,  + I ) I [ ( N -  1) /(No- i 2 + 1)1"" 

" ' ' [ 1 ~ ( N o - - i N + l ) ]  (A.5) 

and 

i ! - - i  

H qkj = [ ( N o -  N ) / N o I I ( N o -  N -  1 ) / ( N o -  1 ) ] ' ' "  
k l = !  

i 2 - ! 

Ii 
k2--- i I + 1 

i 3 -- 1 

1-I 
k 3 = i 2 + 1  

-- .  [(N o - N -  i, + 2 ) / (N  O - i, + 2)],  

qk2 = [ ( N o -  N -  i, + 1 ) / ( N  o - i , ) ] [ ( N o  - N -  i l ) / ( N  . - i , -  1 ) l - -  - 

• " " [ ( N o -  N -  i2 + 3 ) / ( N o -  i2 + 2 ) 1 ,  

qk~ = [ ( N o -  N -  i 2 + 2 ) / ( N o -  i2)l[(No- N -  i 2 + 1) 

~ ( N o -  i 2 -  1)1" .-[(No- N - i  3 + 4 ) / (N  o - i3 + 2)1, 

(A.6) 

• ° • 

iN- - I  

H 
k N = i N _ l + i  

qkN = [(N0- iN-t -- I)/(No - iN- l)][(No - iN-~ - 2) 

~(No--iN_ ! - -  1 ) l "  • " [ ( N o -  iN + 1) / (No-- iN+2)I .  

Thus we can write 

N ! ( N  o -  N ) ( N  o -  N -  1 ) - - . ( N  o -  i N + 1) 
P i ' ' ' ' P i N A q  = No(N o - I ) ' " ( N  o -  i N + 2 ) ( N  o -  iN-- 1) 

(A.7) 
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and according to eq. (A.3) 

Z Z --W-* • - -W-* . --  . . . .  * • / t l ~  t l l  3 W i N - l i N )  
G N ( s N ) =  " ' "  t s N  " 

i i i N 

/ [ (N O - N + 1)(N o - N + 2 ) . . - N o ]  

- - w * .  - - w *  . . . . . .  w.* • 

= ~ , " "  ~, su "" "'" '~-"~(N o - N ) !  ~ N o ! ,  
i ! i N 

(A.8) 

where i~, i 2 , ' ' " ,  iN are now any different numbers from 1 to M = N 0. But 
because the limit of the quotient of any given function f(N, T*) and N o is zero 
as N o tends to infinity (N/N o ~ 1), n! = (n/e)"(2,rrn) 1/2 for large n, ( 1 -  x) I/~= 

e -~ for x - > 0 ,  sN=exp(1/T*),  wii=~ for all i and AV= V/N o, one gets the 
exact equations 

. y GN(sN)=V ""  exp( -Ut /kaT)dq~ . . .dqN V-NQ (A.9) 

and 

Q= v u f P(Ut)exp(-Ut/kaT)dUt " (A.10) 

Eqs. (A.9) and (A.10) are the relations (16) and (17) of section 2.1 in this 
paper. 

Appendix B 

Using eq. (14), setting gi = 1 for all i = 1, 2 , . . . ,  M (N O = M and all n i are 0 
or 1), and taking the p~ from eq. (15) (that is, eq. (A.1)) we get the generating 
function 

* _. .  n ) 1 - -  - n l ( t l 2 w ~ 2 + n 3 w ; 3 + . . . + n M W ; M  ) Gu(s) Z Z " "  E p , ' (1  - Pl n'S 
nl  n 2 n M 

x p~Z(1 - p2)~-'2s -"'-("'w~' +"3~i3+'"+"Mw~-M)... 

n,vt ! W*Ml + n2w*M2 + ... ) " ' -  pM (1 -- PM) -'MS-"M("' +"M-,'~;,M-, , (B.1) 
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1/2 = exp(1 /2T*) .  The terms with w, do not contribute to GN. It is with s = s N 

n l + n ~ + . . . + n  M = N ,  Uii ]e I U* _ = , ,  and we find 

M M M 
, -U ' .  -U' .  

G N(S)= ~.  E "'" E P, t P i 2 " ' P , s  " . . . s  '" 
i1-1 i2--2 iN=N 

i~ < i 2 < • • " < i N , ( B . 2 )  

where P~j is the probability that the sites i~_~ + 1, ij_t + 2 . . . . .  i j -  1 are not 
occupied and the site ij is occupied by by any particle. U~, is the potential 
energy of this particle and U~, + U ~ _ + - - - +  Ui, =2U, .  Eq. (B.2) can be 
written in the form 

M M M 
* 1 

G N ( s ) =  . . .  ~., ~ Pi, P,, " " P',,, s 
i = i  i = l  iN=! 

- v ,  -v;. -v; ,  
. . . .  s . (B.3) 

• " + 1 ,  " + 2 ,  , " - 1  are Thereby P~, is the probability that the sites Zk,_, tk,_l . . .  Zk, 
not occupied and the site ikj = ij is occupied by any particle. It is ik, , < ik, for 

all k j 1, 2, N. Introducing P~, = P* - - .. = . . . . .  , ,[N ( j  1 ) ] o n e ~ e t s f r o m c q . ( B . 3 )  

M ,14 M 

G = X E . . .  E e ' e * . . .  P* ' ; : '  ,, i2 i,.s - ' "  s . (B.4) 
il--1 i2=! iN=I 

w h e r e P *  " + 1 , "  + 2 . . .  ,"  - l a r e n o t  ij is the probability that the sites Zkj_, tk,_t . tk, 
occupied and the site ik, = ij is occupied by the particle of number j. And this 
particle of number j has the potential energy Uii. Now we use conditional 
probabilities Pj(UjlUj_,l... IU,)dUj, which are the probabilities that the 
particle of number j has the potential energy Uj in dU/abou t  Uj, if the particle 
of number  1 has the energy U~, the particle of number 2 has the energy U2, 
etc., and the particle of number j -  1 has the energy Uj_t. Thus. eq. (B.4) 
leads to the exact equation (N/M = N/No ~ 1) 

ss a ~ ( s )  = . . -  _ [ p j ( v j l u j _ , l . - - l V , ) s - U ; l )  d U ,  . . . d V  N 

=V-NQ (B.5) 

with Uj = leluj. Eq. (B.5) is relation (20) in section 2.1 of our paper. 
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