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A micro potential method (MPM) is proposeu as a special approach to the statistical
thermodynamics of dense fluids. The classical partition function of simple fluids is estimated
by means of the MPM. Probability functions of micro potentials, i.e. potential encrgies of the
particles, and corresponding generating functions are introduced to get the configurational
integral of the pure fluid. In contrast to perturbation theories the MPM itself leads to a
reasonable expression for the free energy of the hard-sphere system as the reference system.
For the square-well fluid the MPM provides values of thermodynamic functions. which agree
well with corresponding computer simulation data. The MPM results arc at least of the same

accuracy as those of the well known approach of Ponce and Renon [J. Chem. Phys. 64 (1976)
638].

1. Introduction

In this paper we estimate the configurational integral Q and thermodynamic
functions of a classical many particle system in equilibrium. A previous paper
[1] already presented a brief summary.

We consider a canonical ensemble of N identical molecules in volume V and
with temperature 7. Thus the partition function is given by

Z = Qumk,T/h*)*M*QIN! . (1)

In this equation 4 is Planck’s constant, kg is Boltzmann’s constant, m is the
mass of the particles, and

Q=f~-jexp(—Ut/kBT) dg,---dq, . (2)
The vector g; symbolizes the coordinates (x;, y;, z;), and U, is the total
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potential energy function of the system. With the free energy
F=—kgThh Z 3)

and the thermodynamic relations one gets thermodynamic quantities. We
assume that the molecules of the system interact by pairwise additive forces,
and the (effective) pair potential w = w(r;) is a function of the distance r,
between the particles i and j only [2, 3]. Thus, U, can be written as

U= Z w(r;) - (4)

i<j

The starting point for the estimation of Q in our paper is a formalism of
Morgan [4]. Morgan derived a probability function P(E) dE to find the local
band-edge energy E of a heavily doped semiconductor within a range d E about
E. We consider the potential energy U of any given particle of the system. The
probability P(U)dU to find the “micro potential” U (potential energy U)
within a range dU about U is the sum of the probabilities of all random
configurations of the particles which generate a potential energy U in that
range.

In the literature also electric-microfield distributions in systems of charged
particles are calculated [5]. Iglesias [6] has reformulated the problem of
calculating the electric-microfield distribution in a plasma so that it is equiva-
lent to finding the pair-distribution function of a fluid interacting through a
complex potential. Lado [7] solved the mean spherical model for such a fluid
analytically. Powles and Fowler [8] evaluated a distribution function P( f) for a
Cartesian component f of the force on an atom in a Lennard-Jones liquid. Our
function P(U) and, particularly, generating functions of P(U)dU and
P(U,) dU, are used to estimate Q (micro potential method). P(U,) dU, is the
probability function to have the potential energy U, of the system within a
range dU, about U,. If P(U,) is explicitly known, it is simple to write Q as
shown in section 2.1. For instance, it seems possible to make a suitable ansatz
for P(U,) to estimate Q analogously to ref. [9]. In section 2.2 we estimate the
configurational integral ¢ approximately.

A system of hard spheres without atiractive forces between the molcules is
the simplest model of (dense) fluids. Such a hard-sphere system plays an
important role in the perturbation theory of fluids (see for instance refs. [2, 3]).
In section 3.1 the free energy and the equation of state of our model are given
for hard spheres. Very accurate and recent computer simulation data [10] of
the hard-sphere system are known for the compressibility factor. In the fluid
range for example the (analytical) Carnahan-Starling (C-S) equation of state
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[11] represents the results of computer simulations well. It is possible to
consider the C-S equation for hard spheres as arising from a kind of mean-field
theory [12].

The square-well system is one of the simplest systems incorporating both
repulsive and attractive forces. The pair potential of this system is

0o, forO0sr=<o,

w(r)=[s, foro<r<c, £<0, )
0, forr=c,

where o is the diameter of the hard core, || is the well depth and c/o is the

width of the well. For pair potentials according to eq. (5) the micro potential

method (MPM) allows to estimate Q (section 2.2) and thermodynamic func-

tions (section 3.2) analytically.

The square-well system has been used as a model in testing a variety of
theories and in gaining insight into the behaviour of real fluids (see ref. {13]
and references therein). Square-well fluids can be taken as suitable reference
systems in perturbation theories [14] for calculating thermodynamic functions
and radial distribution functions.

Since the thermodynamic behaviour of a classical square-well system with
the range of the well ¢ = 1.5¢ roughly follows that of real (classical) fluids most
of the studies have been carried out for this particular value of c. In the present
paper (section 3.2) we also use c¢/o = 1.5 to calculate thermodynamic functions,
and compare the results with those of Carley and Dotson [15, 16] and those of
Ponce and Renon [17]. But the most direct means for computing thermo-
dynamic properties of classical square-well fluids are computer simulations
[18-20]. We compare these and recently obtained results of Lee and Chao [21]
with those of the MPM in section 3.2.

A discussion of our method and results and some conclusions follow in
section 4.

2. Micro potential method

2.1. Generating functions

In order to obtain explicit expressions for the probability-density functions
P(U) and P(U,) we consider a system of N particles and N, available sites
which can be occupied by the particles. It is assumed that the molecules are
distributed randomly on the sites in the volume V. The average density of
molecules in V is N/V and the average proability of having any molecule per
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site is

N/V
= = -— 6
pO NO/V 1 ‘Io ’ ( )

where N,/V is the average density of available sites. Thus, in a given region
denoted by the index i, containing g; available sites, the probability to have
exactly n; particles is (see for example refs. [22, 23])

P(n)=py1 -y (%), ™
where (%) is the binominal coefficient expressing the number of ways in which
g; sites may be occupied by exactly n; particles. The binominal distribution (7)
corresponds to eq. (1) in ref. [4]. Here N, is substituted by N,/V, and small
regions i are chosen. Any molecule is assumed to be in the origin of the
coordinate system. If each molecule ii1 the (small) region i contributes to the
potential energy of the molecule in the origin an energy w;, the total energy
contributed by n, molecules is U, = n;w;, where w, is the pair potential. Now
one can introduce the generating function

Gi($) = (P ™" + g0} = Z P(n) s =3 P(U) s (®)
n; U,-

with w; = |e|w?*, U, = |e|U*, U = |&|U*, and € as the minimal value of the pair
potential. G,(s) generates P,(n;) from eq. (7) and s is a parameter. If we
consider all regions i in V, we obtain the generating function

G(s)= U (Posnw"f +q0)% = exP(Z g: In( Pos—w? + qo)) ) 9)

and the sum extends over the entire volume V. We set w, = w(r), g, =4mu
(N,/V)r* dr and get for the generating function G(s) of P(U)dU due to eq.
9)

G(s) = exp(4w I (N/VIFP In(pys ™ P +1— Po) dr)
0

= f P(U)s V" dU , (10)

where w*, U* and (later) T* are reduced dimensionless energies, respectively
temperatures with U*/T* = U/kgT and w*/T* = w/k,T. Although a generat-
ing function may not yield an explicit form for the probability function, it
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allows an easy access to its moments. The following cxpressions for the
moments can be written immediately due to eq. (10):

(U*) = —(d/ds)G(s) , s=1,
((U*)?),, =(d/ds)[s(d/ds)G(s)]. s=1, (11)
((U*)") o = [—5(d/ds)]"G(s) , s=1.

It is possible to find an explicit expression for P(U) by means of an inverse
Fourier transformation. We choose s =exp(it*) in eq. (10) (s is a complex
number, ¢ is a real number and t* = |¢|t). This leads to

P(U)=% f exp(itU) G(it*) dt (12)

and due to eq. (10) explicitly to

P(U)=%Jaf exp 41r(N /V)Ir InY, dr)

X cos(Ut — 47(N,/V) J r® arctan Y, dr) de (13)
[\

with

Y, = [2(N/N,)* + 1 — 2(N/N,) + 2(N/N,) cos(wt) — 2(N/N,)’ cos(wt)]'*
and

Y, = (N/N,) sin(wt)/[1 — (N/N,) + (N/N,) cos(wt)] .
As later shown it will be sufficient to know the expression G(s) in eq. (10) with

s =exp(1/2T*) to get Q and Z approximately. In order to estimate O we
introduce a generalized generating function

G* s = . ny 1 _ 81—y (gl ) s—nl(nzwh-l»-“+nMwiM)
~Gsn) "21 %Pl 1-p)) n, N

gr—n g2 ~ny(nywis+---+ 2
X ph(1-— P,)& 2( ) syl nMWim) ...

n,

P (L= pyg ) (B4

M

= f P(U,) s 7t dU,. (14)
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M is the number of the very small regions in V (N/M <1), w, = |e|w]; is the
pair potential of the moleculesi and j, U, /T* = U/kgT,n, +--++n,, = N, s,
is a parameter, and the N particles are again randomly distributed on the N,
sites in V. For our purposes it is suitable to set g;=1 in all regions i
(i=1,2,..., M). Thus, N,= M and all n, become 0 or 1. For the probabilities
p; (ratios of densities) we write

NIV,
pPi= NOi/VOi =1 q;- (15)

That is, if certain sites were occupied by any particles, then the number of
particles which can occupy other sites is smaller than N. Thereby the number
of sites which can be yet occupied by other particles is smaller than N,. We
consider the region i. Then N, molecules can be distributed on N,; sites in a
(rest) volume V,<V. Itis V,=V,,, M=N,, N;<N, and N, <N, for i=
1,2,..., M. In appendix A a detailed expression is given for the p, of eq.
(15). Choosing s, = exp(1/I'*), the exact relations

Grsy)=V™Q (16)

and
o=v" f P(U) exp(-U/kgzT)dU, (17)

are derived. The term kg In[P(U,) 8U|] is the difference of the entropy S of the
system and the entropy Sy of the corresponding ideal gas.
With s, = exp(it*) and #* = |&|¢ one gets from eq. (14)

G(it*) = f P(U,) exp(—itU,) dU, , (18)

and by means of inverse Fourier transformation

x

P(U)= % f exp(itU,) G y(it*) dt . (19)

-

P(U,) or S — S, can be calculated directly. This is a possible starting point to
estimate 0 and thermodynamic functions according to eq. (17). We prefer
ancther way. In appendix B, Q is derived from G, of eq. (14) with p; of eq.
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(15). The exact result is

oK <

N
o=v* [ - [ (Lp@u-l--1w)s 1) av, ... a0y, @0)
—oc - 1=
where
N
s=s\?=exp(1/2T*), U IT*=UlkgT, 2 U,=2U,,
j=1
and
P(U\U,_,|---|U,) dU;

is the conditional probability to have a potential energy U; for the particle of
number j, if the particle of number 1 has the potential energy U,, the second
particle has the potential energy U,, etc., and the particle of number j — 1 has
the potential energy U;_,. By means of eq. (10) and eq. (20) we shall give
approximate formulae for Q.

2.2. Approximate estimations of the configurational integral

We estimate Q from eq. (20) using the approximation

Q=V”(f P(U)s"”‘dU)sz”[G*(s)]”, (21)
where
G (s) = exv(z g In(p;s™i + q.—)) (22)

is a modified generating function. Assuming again that g, =1 for all regions i
and setting w; =0, p, can be taken from eq. (15). Because N, N,>1 and
w(r) r* — 0 for r—> o, the quantities p;, g, in eq. (22) can be replaced by p, and
q,, respectively, for all i. Thus, G *(s) of eq. (22) becomes G(s) of eq. (9) and
according to eq. (10) it foilows from eq. (21) that

r N
Q= VN[exp(41r(N0/V) f rPIn(p,e "% T +1-p,) dr)] : (23)
0

In order to take into account the facts that the particles have a finite volume
and that the P(U,)dU; in eq. (20) are conditional probabilities we assume
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N,=Vf in eq. (23) with o’f=1, w(c)=0, and o is the diameter of the
molecules. In the following part of this paper hard-core fluids, particularly
square-well fluids are considered. For example f=2'"%¢"> corresponds to a
regular close packing of N, hard spheres in V. In this case using egs. (1), (3),
(23), the square-well potential (5) and thermodynamic relations, one gets
G=v" exp(41er(cr3/3){ln(l — NIV¥)

+[(c/o)® - 1] In[(N/Vf) eV %*8T + 1 — N/Vf]}) (24)
and qualitatively correct results for the thermedynamic functions. In order to
improve our model, the expression 4wr’(N,/V) in eq. (23) is substituted by

4wr’A(r) (Ny/V), Ny=Vf and it is f=(2"%0®)f*, where f* is a reduced
quantity. Due to eq. (23) one can write then

o=v" exp(4w1vff A(r) r* In[(N/VF)(e " "%*sT — 1) +1] dr) (25)

with an appropriate function A(r). We remark that P(U,) can be estimated by
means of eq. (19) for the function

Gy(sy) =[G®)]"

= exp(4ﬂN(N0/V)j A(r) P In[(N/Ny)s ™" +1 - (N/Np)] dr) ,
) (26)

where s, = exp(it*) = 5%, t* = |¢|t and G(s) is the generating function in eq.
(10), modified by a function A(r). We get

1
T
0

PU)=— f exp(41rN(N0/V) f AP riny; dr)

withi
YT =[2(N/N,)’ +1=2(N/N,) + 2(N/N,) cos(wt/2)

—2(N/N,)? cos(wt/2)]'"
and

Y3 = (NIN,) sin(wt/2)/{1 = (N/N,) + (N/N,) cos(wt/2)] .
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Now we set f* = (2''%a) ™" with @ = w*/12 from a random close packing [24-26]
of N, hard spheres in V= N,0”a. Recently Berryman [27] showed that for a
random close packing the packing fraction is given by 1 =0.64 = 0.02. This
value of 7 corresponds to a =0.8181. For r <o it is plausible that A has a
value A, <1 because one particle is in the origin r = 0 and this site is occupied.
Thus, the number of available sites in a sphere of diameter 20 is

A l(ac?®) '(dna¥3)] = [(acg’) ' (@w/3)][0’ - (0,/2)] - 1, (28)

where (ao®)”! is the average density of sites in the volume V and o, = o. Then
it becomes

A,=1-(0,/20)’ —3aldx. (29)

In order to explain o, we consider a large volume V. It contains N, sites
(N, >1) which can be occupied by molecules. These sites are uniformly
distributed, that is, they are distributed as molecules which have no volume
and do not interact. The distance distribution function of the nearest site is

w(r) = 4wr’n exp(—4nr'n/3) (30)

with n = N,/V and r as the distance between the origin and the nearest site
[28]. For the maximum value of w(r) one can write

r...=R2x2"wV/vV)] e, (31)

where V, = N,a*/2""% Firstly we set (V,/V)=(2"a)”" in eq. (31). This
corresponds to a random close packing of N, hard spheres in V. Thus, one has
r... =0.5078¢0. Secondly we use o0,/2=0.5078c in eq. (29) and get Ay=
0.6727. The function A(r) is now known for r<o (A= A,). For o <r<x,
with the parameter x_ < 1.50, the densest possible packing of sites (N, spheres)
is assumed, i.e. A =2"%a. For r=x_ the above introduced average density of
sites is assumed (random close packing; A =1). This leads to the equation

Ay=1-[(x/0)’ = 1](a2"* - 1) (32)

because the average dersity of available sites in 0<r=x_is (1/ac’). With

A, =0.6727 and using eq. (32) the parameter x_ is equal to 1.4430.
Choosing the function A(r) in the just presented manner and using €q. (32)

then eq. (25) for Q yields eq. (7) in ref. [1]. But we are especially interested in
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a square-well system according to eq. (5). Our model leads to
Q=v" exp((41-r2”2/3)Nf*{A0 In(1 - V,/VF*)
+By[(c/o)’ — A I[(Vo/VF*)(e'"**T — 1) + 1]}) (33)

with V= No*/2*'% clo=1.5 and three parameters A,, B,, f*. In the case
discussed above the parameter B, was B,=1 and it is f*=0.8597, A,=
0.6727. This is the first version of the micro potential method (MPM) denoted
by MPM1. Another possitiility to explzin A, and f* in eq. (33) is the following
one: A, is set equal to 0.5 to get the exact second virial coefficient of a
hard-sphere system, f*=0.795 is chosen to fit the equation of state of
Carnahan and Starling [11] for V,,/V <0.667, and it is B, = 1.

This is a second version of the MPM (MPM2). A third version (MPM3) with
B,>1 is described in section 3.2.

3. Thermodynamic functions

3.1. Hard spheres

Choosing £ = 0 in eq. (33) we get Q of the MPM for the hard-sphere system.
According to eqgs. (1), (3) and (33) one finds

(F— F,4)/ NkgT = —(4m2"%13)f* A, In[1 — (V,,/ V) /f*] (34)

for the free energy, where F; is the free energy of the ideal gas. Using eq. (34)
and the relation

p=—(9F/3V), (35)
the compressibility factor of a hard-sphere system is

pVINkgT =1+ (4m2'213) A (V,/V)[1 = (V,/V)If*] " . (36)
In the fluid range a simple and nevertheless good approximation is the
Carnahan-Starling (C-S) equation of state [11]. The C-S equation can be

further improved by adapting to the lower virial coefficients, whose exact
vaiues we find for instance in rei. [29]. In a paper of Boublik and Nezbeda [30]
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a modified C-S equation of state of Kolafa for the fluid range is given by
PVINkgT=(1+7n+n" =30’ = in")/(1~9)’ (37)

with % = Now/6V. This equation is significantly better than the C-S equation.
From eq. (37) one gets

(F— Fy)/NkgT= 3 In(1- 1) + [/6(1 — 7)’}(34 — 33n + 4n%). (38)

For the MPM1, (F — F,;)/ NkgzT from eq. (34) is plotted in fig. 1. This function
is compared with that of the Percus—Vevick theory given by Ponce and Renon
[17] and that which follows from the MPM2. Reliable values for the free
energy from eq. (38) are given, too.

For a system of hard rods the corresponding one-dimensional form of eq. (9)
is the starting point to derive

0 = V" exp[N In(1 — Na/V)] (39)

Fig. 1. Reduced excess free energy versus reduced density for the hard-sphere system. — MPM1
results; —— MPM2 results; —- — PY results given by ref. [17]; X x X Kolafa’s resuits from eq. (38).
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and
pVINkzT =1+ No/(V— No), (40)

where o is the length of the N hard rods confined to a line of length V. Our eq.
(40) is Tonks’ exact equation of state for the many-body system [31].

With B,=1, f*=1/2""a and a =n/12, eq. (33) results in eq. (9) of ref.
[1]. There A,=0.670 was chosen to fit the C-S equation for V,/V <0.667.

By means of a cell theory Gurikov [32] found an expression similar to our
eq. (36) with a slightly changed parameter A, =0.6738 and f* = 0.8597.

A modified cell theory of Vortler {33] is applied to hard spheres. The result is

PVINkgT =1+0.5[s/(s — D)][e2'*(Vo/W]'I[1 = («2"2V, V)3 (41)

with @ =0.8225 and s =2.134. In the case s =2 and a =2"""* one obtains the
equation of state from the corresponding conventional lattice—cell theory using
the one-particle partition function approximation [34].

Table I shows the values of the Kolafa hard-sphere equation (37), which
represents simulation data in a very accurate manner. The second column
comprises the values of the compressibility factor via eq. (36) for the MPM1.
In the third column we find the values of the modified cell theory (MCT) of
Vortler [33] according to eq. (41). The MPM values in the second column are
not far from those of the first column. For comparison extrapolated values of
Carley [15] for T*— % and the results of Gurikov [32] are given, too.

Fig. 2 shows graphs of pV/NkyT for different approaches (explanation as in
fig. 1). The MPM1 (full line) matches the generally accepted simulation results.

Table [
Compressibility factor of the hard-sphere system in dependence on the reduced density.
Vo'V Kolafa MPM1 Vortler Carley Gurikov
eq. (37) eq. (36) eq. (41) [15] [32]
0.07071 1.2397 1.3070 1.7241 1.241 1.3075
0.11111 1.4085 1.5085 1.9622 1.409 1.5093
0.17500 1.7359 1.8756 2.344 1.735 1.8770
0.2500 2.244 2.405 2.847 2.24 2.407
0.3000 2.683 2.836 3.238 2.67 2.839
0.3536 3.270 3.393 3.730 3.25 3.397
0.4243 4.295 4.338 4.545 4.24 4,343
0.4950 5.727 5.649 5.657 5.62 5.657
0.5657 7.770 7.592 7.285 7.57 7.602
0.62500 10.164 10.123 9.391 9.87 10.138

0.6670 12.48 12.86 11.66 12.1 12.88
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Fig. 2. Compressibility factor versus reduced density for the hard-sphere system. — MPM1

results; —— MPM2 results; —-— PY results given by ref. [17]; x x x Kolafa’s results from eq. (37).

3.2. Square-well system
The approximation of Q from eq. (24) leads to an expression for the excess
free energy F— F,,. This is
(F — F,\)/NkgT = —(4w2'%/3) In(1 — V,/V)
—(4m2'"?13)[(cla)’ = 1]
xIn{1+ (V,/V)[exp(|e|/2kgT) — 1j; . (42)

Sandler and Lee [35] suggested a model of the total coordination number N,
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for square-well fluids based on the lattice gas theory. By means of N_ they get

(F— F,g)/ NkgT = (F,, — Fq)/ NkgT
—zy In{1 + (Vo/V)[exp(|e| 12kgT) — 1]} , (43)

where F, is the free energy of the hard-sphere system and z,, is the maximum
coordination number. For the c¢/o = 1.5 square-well fluid, the lattice coordina-
tion number is z,, = 18. The attraction terms of eq. (42) and eq. (43) are equal
except for a multiplicative constant.

Our improved model results in eq. (33). Via egs. (1), (2), (3), (33) and the
relations

)
p= kBT(a—V In z)r (44)

for the pressure, and

3
U, =kg TZ(B—T: In z)v (45)

for the internal energy, we get the reduced excess free energy

(F— F4)/ NkgT = —(4m2""%3)f*{ A, In(1 - D,)
+By[(c/o)’ — A, JlnD,}, (46)

the compressibility factor

pVINkyT =1+ (4n2"%3)f*{A,D,/(1 - D,)
~By[(clo) = A,)(D, - 1)/D,} | (47)

and the reduced exczss internal energy
(Uiae = Uig)/ Nle| = =(4m2'216)f* B,[(c/0)’ ~ Ag]D,D,/D, , (48)

where

Dy, =(Vy/V)if*, InD,=1/2T*,
D,=Dy(D;~1)+1, T*=k,T/|e|,

and U, is the internal energy of the ideal gas.
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For the parameters A, f* in eqs. (46), (47), (48) we have taken the same
MPM values as in the case of the hard-sphere system. For the MPM2 eq. (33)
leads to a partition function and to thermodynamic functions, which are
already given in ref. [36]. MPM1 and MPM2 are characterized by B, = 1. An
improved version of the MPM1 should use B,>1.

For T*— x the reduced excess internal energy of eq. (48) becomes

lim_[(Usy, = U,g)/ Nlell = =(472'%/6) By[(clo)’ = AJ(Vy/V).  (49)
Generally spoken, for a square-well system
Tl“_“m [(Uie = Uid)/ Nle|] = (M) /N

is the second coefficient A, in a Taylor exnansion of the reduced excess
Helmholtz free energy with respect to the infinite temperature limit and
depends only on the density [18]. The first term of the series is Ag/NkgT.
where A; means the excess hard sphere free energy. The term (M) is a
statistical average of the number M of pairs of interacting particles. which have
the coordination number 2(M)/N.

At close and regular packing each particle has 12 nearest neighbours and 6
second-nearest neighbours in its well. Hence it seems to be possible and
reasonable to set (U,,,— U,,)/N|e|=-9 in eq. (49) to get B,. Because
(V,/V)— 1 in this limit it is B, = 1.124. Thus, an improved version of the MPM
(the MPM3) results in A,=0.6727, f*=0.8597. and B,=1.124. For the
model of eq. (43) the quantity (U;,, — U,)/N|e| has the limit value —9. too.
Similar, but more complicated expressions for the thermodynamic functions
are given by Lee and Chao [21]. They obtain

FINkyT = F,/NkgT — (2,/2y2"*)(VIV,) In[1 + 23V, IV - 1] (50)
in their eq. (5), in which

Q =exp(y|el tkyT) |

3 1/2 1/
2o = (4n/3)[(clo)’ — 1](1+0.57 x 2" VvV 2! PV /v
2

but F,_ is taken from the approach of Carnahan and Starling [11], and instead
of y Lee and Chao use the symbol a.

In fig. 3 the reduced free energy, calculated via eq. (46), is plotted against
the reduced density for the three versions of the MPM and is compared with
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Vo/V

Fig. 3. Reduced excess free energy versus reduced density for the square-well system with
clo=1.5. —— MPM3 results; ---- MPM1 results; —— MPM2 results; XXX four-term series
approximation results from ref. [18].

results of Alder et al. [18]. In fig. 4 the reduced free energy, calculated by the
MPM3, are compared with results of Lee and Chao, eq. (50), and Ponce and
Renon [17]. Ponce and Renon found an analytical equation for the Helmholtz
free energy of a pure fluid. They use the successful perturbation theory of
Barker and Henderson (see for instance ref. {2]) and a square-well potential
with ¢/ =1.5. For the same pair potential Carley and Dotson [15,16]
computed thermodynamic properties in liquid and vapour regions. Their
results appear to be reasonably accurate.

Figs. 5 and 6 show calculated values for the compressibility factor of
square-well fluids of the 3 versions of the micro potential method and other
theoretical approaches [15-17]. The exact simulation data [18-20] are given for
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0 02 04 , 06
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Fig. 4. Reduced excess free energy versus reduced density for the square-well system with

clo=1.5. MPM3 results; —+— results from ref. [17]: ---- results from eq. (50); xxXx
four-term series approximation results from ref. [18].

comparison. Fig. 7 shows he dependence of the excess internal energy
(U, — Uy)/Nle| on the reduced temperature T* for different V,/V via eq.
(48) and the parameter sets used above. As we see in fig. 8 the results of the
MPM3 reproduce the simulation data of refs. [18, 19, 37] more accurately than
the results of some other theories. They are comparable in accuracy with those
of Carley and Dotson [15, 16] for V,/V >0.354.

4. Discussion and conclusions

The thermodynamic functions of a fluid many particle system are estimated
in terms of the micro potential distribution function P(U)dU, that is, of the
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PV/NHgT

Fig. 5. Compressibility factor versus reduced density for the square-well system with c/o=1.5.
—— MPM3 results; ---- MPMI results; — —MPM2 results; X X X computer simulation data [18-20].

probability function to find system particles with a potential energy between U
and U + dU. Thereby, it is assumed that the total potential U, of the system is
the sum of pairwise additive interaction potentials (see eq. (4)). By intro-
duction of generating functions G and G, one can evaluate P(U) and P(U,)
exactly. The generating functions are related directly to the configurational
integral Q. Thus. it is not necessary to calculate the probability density
functions P(U,) or P(U) explicitly. P(U,) is proportional to expl{(S — S§,,)/kg]
with (§ — §,,) as the excess entropy of the canonical ensemble. It is interesting
to ask whether P(U,) and Q can be estimated in a similar way under more
general conditions than given by eq. (4). G+ also enables us to find an exact
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10

PV/NHgT

Fig. 6. Compressibility factor versus reduced density for the square-well system with c/o = 1.5.
—— MPM3 results; —- - results from ref. [17]: ---- results from refs. [15.16]; x x X computer
simulation data [18-20}.

relation between the configurational integral Q and conditional probabilities
P,(U;) dU; (eq. (20) in section 2.1).

The assumption that these probabilities are not conditional probabilities
permits an easy estimation of Q by means of G. Then we take into account the
fact that the particles have a finite volume and the P,(U;) dU; are conditional
probabilities by restricting the number of sites in V. Introducing a suitable and
simply chosen function A(r) the function G is modified and we get an
approximation for Q (section 2.2).

In this paper the MPM is applied to a square-well fluid providing analytical
expressions for Q (eq. (33)) and thermodynamic functions (section 3). For
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Fig. 7. Reduced excess internal energy versus reduced temperature for the square-well system with

c/o =1.5. —— MPM3 results; ---- MPM1 results; —— MPM2 results; X X X computer simulation
data (18, 19, 37].

T*— o the hard-sphere results are recovered. Eq. (33) contains three parame-
ters A,, f* and B,. We do not try to adjust the parameters in a formal way or
to introduce a larger number of parameters. Comparing the thermodynamic
functions for different parameters or several models we consider the prop-
erties, especially, at higher densities. Exact computer simulation results are
cited for comparison.

Three versions of the MPM are considered. The original version MPM1
leads to good results for the reduced excess free energy and the compressibility
factor for a hard-sphere fluid (7*— =) as shown in figs. 1 and 2. For T* <2
the MPM2 (B, = 1) provides better values for these quantities (see figs. 3-5)
than the MPM1. But all parameters of the MPM1 (B, =1) are derived by
physical arguments. Choosing B, > 1 one can improve our results (MPM3). By
means of eq. (49) we suggest for T*— < and ¢/o = 1.5 the value B, =1.124. A
comparison with Alder and Hecht [38] confirms this value. The effect of
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&=

V|V = 0625

Fig. 8. Reduced excess internal energy versus reduced temperature for the square-well system with
c/o = 1.5. —— MPM3 results; ---- results from refs. [15, 16}; — - results from ref. [21]; - - - results
from ref. [17]; XX X computer simulation data [18. 19, 37].

attractive forces is now taken into account to adjust the parameter B,. The
version MPM3 is a clear improvement of the MPM1 (see figs. 3, S and 7). The
parameters A, and f* are explained in the same way as in the MPM1. Of
course, a corresponding determination of B, in eq. (49) at the density of a
random close packing would be desirable. Nevertheless, the version MPM3 is
likely the best version of the MPM for square-well fluids. However, in this
paper we do not intend to find the optimized value of B,. In our opinion it is
more important to improve the MPM model itself.

Comparisons with the values of thermodynamic functions estimated by
Carley and Dotson [15, 16], Ponce and Renon [17], Lee and Chao [21], and
with corresponding computer simulation data [10, 18-20, 37] show that the
micro potential method Ieads to results of about equal accuracy for square-well
fluids (see also table I, figs. 4, 6 and 8). Our model is fairly simple and yields
reasonable results. The description of more general hard-core fluids by means
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of the MPM is straightforward. Summarizing we state that generating functions

are a successful approach to estimate partition functions and thermodynamic
quantities.

Acknowledgement

We would like to thank Dr. H.-L. Vortler, Leipzig, for helpful comments
and discussions.

Appendix A

The detailed expression of eq. (15) is

— Nl/‘/l N—j=0nj_1 Al

Pi= NlVyy ~ No—i+1 9 (A-1)

where V. =V,,, g, = l for all small regions i (i =1,2,..., M), n; is equal to 0
orl,n +n,+--- =N, and M = N,.. Of course, p, =0 for all i, if

anBN, and ¢,=0 foralli, ifN(,—i+Enj<N.
j=0

j=0

Thereby, n, =0 and g, =0. Choosing g, =1 in all regions i (N, = M) one gets
from eq. (14)

(sN) z E 2 p"'(l - pl l 'I'S,:,"'('lz"';3+"'+”M“'iu)

ny ns

ny

Xpy

_ 1-n 5 (n “'- +oeetny wir)
(1 pz) 7N’373 MWam?) ...

Pi(1=py)' sy
= f PU) sV dU, . (A.2)

We estimate the generalized generating function G v in eq. (A.2) by means of
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the probabilities defined by eq. (A.1). This gives

Gis) =S o S (7T R, ),

iy I iy
G <i,<--<iy, (A3)
with
=1 -1 in-1
A =11 IT - T (" ay)> (A.4)
i=1 ky=ig+1 ky=iy_+1

where k;<k;,, —1for j=1,2,..., N. The following equations hold:

PiPi," " Pi, =[NI(Ny =i, + DII(N=1)/(Ny =i, +1)]---
< [U/(N,— iy +1)] (A.S)

and

ip—1

1 g, =INy = MY INJINo = N = DN = D] -+
o [(Ng = N—=i; +2)[(Ny — i; +2)] ,
h qx, =|(Ny— N— i, + D)/(Ny = i))[(Ny = N~ i) (N, =i, = )]

ky=ig+1
oo [(Ny = N =iy +3)/(N, — i, +2)],
(A.6)

i_l qk3=[(N(,—N—i2+2)/(N0—iz)][(N(,—-N--i2+1)
N /(Nn—iv_1)]"'[(N0—N—i3+4)/(N0—i3+2)]»

in—1
Ay = [(Ny =iy = 1)/I(Np — iN_ DNy — iy — 2)

[l

ky=in_y+l
/(N()_ Inoy — 1)] : '[(Nn“ Iy + 1)/(Ny — iN+2)] .

Thus we can write
_N!(NO—N)(NO——N—l)---(NO—iN+1) A7)

A, = - :
9 Ny(No—1):-+(Np— iy +2)(Ny—iy—1)

Pi, " Piy
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and according to eq. (A.3)

Y
’N-l'N)

Gulsn) =22 (on " ™
g N
I[(Ng— N+ 1)(Ny— N +2)--- N
=2 2sy T et N — NYLN,!, (A.8)
iy in
where i,,i,,..., iy are now any different numbers from 1 to M = N,. But
because the limit of the quotient of any given function f(N, T*) and N, is zero
as N, tends to infinity (N/N, <1), n! = (n/e)"(2wn)"’? for large n, (1 —x)""* =

e for x—0, s, =exp(1/T*), w,, = for all i and AV = VIN,, one gets the
exact equations

Gy(sy)=V~V f fe f exp(—U/kzT)dgq, ...dgy=V"Q (A.9)

and
Q=v" f P(U,) exp(— U/ kg T) dU,. (A.10)

Egs. (A.9) and (A.10) are the relations (16) and (17) of section 2.1 in this
paper.

Appendix B

Using eq. (14), settingg,=1foralli=1,2,..., M (N,= M and all n, are 0

or 1), and taking the p; from eq. (15) (that is, eq. (A.1)) we get the generating
function

G:,(S) = z 2 .- z p’;l(l _ pl)1—n,s—nl(nzwf2+n3w;‘3+,..+nMw;M)

ny ny Npg
nyrq I~ny —ny(nywi, +nywiqa+ - +npwi,)
sz(l pz) 2¢ T M2y War T3N3 MWanr) oL,

cae p' . 1=ny ~ny(nwh,, + Ry Wi
pMM(l pM) Mg~ MU Wa oW Par 1Wagnr-1) , (B.l)
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with s = s> =exp(1/27*). The terms with w, do not contribute to G &. It is
ntnyteo+n, =N U = |e|U,andweﬁnd

i <iy<---<iy, (B.2)

where P, is the probability that the sites i;_, +1,i,_,+2...., i;— 1 are not
occupled and the site i; is occupied by by any particle. U is the potential

energy of this partlcle and U, +U, +---+U, =2U,. Eq (B.2) can be
written in the form :

Gi=3 3 - Z 37 PP Pys s (B.3)

in
h=11i=1 iy=1 !

Thereby P, is the probability that the sites i kot 1, kot 2,. » iy — 1 are
not occupled and the site zk =1, is occupled by any partxcle It is iy < i, for
allk,=1,2,...,N. Introducmg P, =P, [N (j—1)] one gets from eq (B 3)

M M
® ‘U.'“U.', -U;
Gis)=2 2 - 2 P} P; Y B (B.4)
iy =1iy=1 iy=1
where P is the probability that the sites i kot 1, It 2..... — 1 are not

occupled and the site i K= =i, is occupied by the particle of number Jj. And this
particle of number j has the potential energy U Now we use conditional
probabilities P(U,|U;_,|...|U,)dU;, which are "the probabilities that the
particle of number j has the potential energy U, in dU, about U, if the particle
of number 1 has the energy U,, the particle of number 2 has the energy U.,
etc., and the particle of number j—1 has the energy U,_,. Thus, eq. (B.4)
leads to the exact equation (N/M = N/N,<1)

G,";(s)=fj-~-f(i=IIY[1 [P,.(U,.(U,_J---(Ul)s‘“f])du1 ... dU,
=v-NQ (B.5)

with U, = |¢|U; . Eq. (B.5) is relation (20) in section 2.1 of our paper.
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