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Abstract

Diffusion of guest molecules (CH4, C2H6, Xe) in zeolites (LTA-zeolites, silicalite) will be discussed under different thermodynamic
conditions for different intermolecular potentials. The macroscopic properties will be related to microscopic data using methods of
statistical physics and computer simulations (MD, NEMD). Comparisons with PFCI-NMR measurements are given. 1998 Elsevier
Science S.A. All rights reserved
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1. Introduction

Zeolites are highly porous media consisting of crystals
containing different cavities or channels connected bywin-
dows (e.g. eight-membered oxygen rings in A-zeolites) or
intersectionsin silicalites built up by oxygen, aluminium,
silicon and exchangeable cations (sodium, calcium) with
very different kind of lattices [1,2]. The size of the pores
relative to the diameter of the diffusing molecules is the
essential quantity for the diffusion behaviour. More and
more zeolites play an important role as well in understanding
the structural, thermodynamical and dynamical properties of
molecules in confined geometries as in applying in different
fields, e.g. as detergents, catalysts and ion-exchangers.

Kärger and Ruthven [3] published an excellent book
reviewing the methods to investigate diffusion processes
in microporous media, especially in zeolites, and discussing
their different experimental results up to three orders of
magnitude [3].

Statistical physics and computer simulations [4–7] are
valuable tools in researching first the structural and thermo-
dynamical properties (for a review see [8]). Since the paper
by Yashonath et al. [9], several groups started also the
investigation of diffusion processes in zeolites using com-
puter simulations. More detailed information is available in
the literature [10–17]. Two papers reviewing this field were
recently published [8,18].

Due to the different structures of the zeolites and depend-
ing on the size of the guest molecules the pattern of the
dependency of diffusivity on the mean number of guest
molecules (loading) is different [3,19].

The aim of the present paper is to summarize our recent
results, potential surfaces, density distributions, propaga-
tors, diffusion coefficients [20–31] in understanding the
diffusion of some special guest molecules in different zeo-
lites in microscopic detail using molecular dynamical simu-
lations (MD) and to compare the evaluated data with
measured data [19,28].

Starting with calculations for CH4 guest molecules in
NaCaA and its cation-free analogue (for short, not quite
exact: ZK4), additionally C2H6 in ZK4 is taken into account.
As another example the diffusion of guest molecules (C2H6

and a mixture of CH4, Xe, respectively) in silicalite is con-
sidered.

The structure of the LTA type zeolite is demonstrated in
Fig. 1. It shows (left) the general structure of zeolites of type
LTA used for the calculations. The sodalite units form a
cubic lattice with large cavities connected by so-calledwin-
dowsconsisting of eight oxygen atoms. In Fig. 1 (right) the
distribution of the lattice atoms around a large cavity in the
NaCaA zeolite is to be seen. Lattice atoms in front have
been removed in order to see the interior of the cavity.
Windows are marked by a smallw.

While the guest molecules move via windows from one to
the other large cavity in LTA zeolites, in the silicalites they
migrate through straight and so-calledzig-zag channels
from intersection to intersection [1–3].
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2. Statistical and numerical background

Statistical physics built a bridge between the macroscopic
properties of the systems considered and the microscopic
properties of the particles included in the systems [4–7].

2.1. Statistical quantities and relations

Equilibrium properties can be evaluated using the statis-
tical quantitiespartition function, or, in the case of com-
puter simulations, more appropriateradial distribution
functions, while transport coefficients can be calculated
usingcorrelation functions. Here we will give the relations
necessary to determine diffusion coefficients only.

2.1.1. Correlation functions
Using theensemble averagein theG-space

〈A〉G =
� �

A(q(t), p(t))r(N)(q(t), p(t))dqdp (1)

with the equilibrium phase space densityr(N)(q(t),p(t)) the
classicaltime correlation functions

KAB(t) = 〈A(t)B(0)〉G

=
�

…
�

A(q,p, t)B(q,p,0)r(N)(q,p)dqdp (2)

for the phase space functionsA{ q(t), p(t)} = A(t) and
B{ q(t), p(t)} = B(t) are defined by Eq. (2). With
A = B, KAA(t) is called auto correlation function; for A
= B = v

→
(velocity): velocity auto correlation function

Kvv(t).
The linear responsetheory of Kubo [32,33] relates trans-

port coefficients to the corresponding auto correlation func-
tions using Fourier transformations.

Here we need only the relation for the (self-) diffusion
coefficient, given in the long-wave limitq → 0, k → 0,

D =
1
3

�∞

0
〈v

→
(t) ⋅ v

→
(0)〉dt (3)

Equivalent to Eq. (3) the diffusion coefficient can be cal-
culated either by the mean square displacements which are
available from MD simulations and pulsed field gradient
nuclear magnetic resonance measurements (PFG-NMR) as
well [3,6]

2tD =
1
3
lim
t→∞

〈(r
→

(t) − r
→

(0))2〉 (4)

or using the decay of the self-partFs(k,t) of the intermediate
scattering function(see Eq. (18) below).

2.1.2. Propagators
The so-called propagator gives additional insights into

microscopic details of diffusion processes. It serves more-
over, together with the scattering function, as an additional
possibility in determining diffusion coefficients.

The propagatoris defined as the conditional probability
density to find a particle at timet at the placer

→
if it has been

Fig. 1. Structure of zeolites of type LTA (left: general sight; right: internal view).

Fig. 2. LJ potentials (CH4-O interaction from literature [10–14,36–45]).
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at timet = 0 atr
→

0. For a pure random walk the propagator is
a Gaussian distribution

P(~r, t) = (4pDt) − 3
2exp −

(~r −~r0)2

4Dt

� �
(5)

For the validity of the diffusion equation, it is necessary
and sufficient that all moments〈 f(~r)v 〉 of f(~r) = (~r−~r0)
(Eqs. (5) and (6)) will give the same diffusion coefficient.
Using the first four moments (v = 1, 2, 3, 4) it was shown
that the diffusion equation is valid even for few particles in
narrow pores after a certain time [35]. Applying the defini-
tion

〈f ~r� �v〉 =
�

P(~r, t)f (~r)vd~r (6)

we find for the second moment (v = 2) of this distribution
again Eq. (4)

〈(~r −~r0)2〉 = 6Dt (7)

2.2. Intermolecular potentials

In comparing simulation results with experimental data
the intermolecular potentials used in the simulations are of
fundamental importance. Here we choose Lennard-Jones
[12,6] potentials)

U =4e
j

r

� �12
−

j

r

� �6
� �

(8)

with e denoting the minimum value of the potential energy
and j defined byU(j) = 0 for the short-range interaction
[7]. Often this one and other empirical potential functions
are used, because quantum-chemical calculations of poten-
tial surfaces are restricted to not too complex systems
although they made large progress [34].

In the case of the NaCaA zeolite where exchangeable
cations Na+ and Ca2+ are taken into account (see Fig. 3)
another term for the polarization energyUp is added for
each guest molecule

Up(~r) = −
a

2
~E(~r)2 (9)

a is the polarizability of the guest molecule and~E(~r) the
electric field at the site~r. This term gives the interaction
energy of the induced dipole with the electric field while
the dipole-dipole interaction of the induced dipoles of dif-
ferent guest molecules is considered to be a second order
correction as well as back-polarization effect. The aim of
this investigation was to show the strong influence of the
induction energy on diffusion of a small neutral molecule
in a zeolite. Higher accuracy could not be expected since
the simple model proposed by Ruthven and Derrah [36]
was used to get effective cation diameters. Hence higher
order terms have been neglected. It is worthwhile to notice
that even this simple treatment involves three body inter-
actions because~E is a sum of contributions from different

cations and lattice oxygens so that the square contains
mixed terms. For the charge distribution in the lattice the
model proposed in [36] is used that asigns a charge of
−0.25e to each oxygen and treats the other lattice atoms
as uncharged.

The potential data for the diffusion of CH4/Xe mixtures in
silicalite are taken from [14] for methane (to have a com-
parison for pure methane with the literature data) and from
[15] for xenon. For the interaction of xenon with methane
they are calculated using the rule of Lorentz-Berthelot [7].

Fig. 2 (right) shows the contributions of the different
interactions.

In Fig. 2 LJ potentials with different potential parameters
used in the literature for the methane-oxygen interaction in
LTA-zeolites [10–14,36–45] are given (labels A, B for the
j-values at the abscissa), given in Table 1. Test calculations
showed that the interaction of the guest molecules with the
other lattice atoms can be neglected. In order to check the
importance of the variation particularly of thej-parameter
in the literature we introduced parameter sets A and B which
are representative for the two groups of potentials to be seen
in Fig. 2 (here there is no difference between the potential of
Demontis et al. [12,37–41] and set B to be seen). Even more
important was the goal to examine whether and how the
diffusion mechanism is influenced by details of the pore
geometry (Fig. 3).

Figs. 4 and 5 compare the used potential sets A and B for
methane guest molecules in ZK4. It is to be seen that for set
A a potential minimum is practically in the window (Fig. 5,
left), while for set B the minimum is in front of the windows
(Fig. 5, right), which means that the diffusing particle must
get over a potential barrier to migrate to the next large
cavity.

3. Results

3.1. Propagators

The form of the propagators (Eq. (5)) give some hints
about the diffusion. Fig. 6 (left) gives the ideal Gaussian
form (see Eq. (5)), while for the migration of methane guest

Table 1

Parameter sets used for the LJ potential (Eq. (8))

Zeolite j (Å) e (kJ/mol)

LTA CH4–CH4 3.817 1.232
LTA CH4–Si 2.14 0.29
LTA CH4–O (set A) 3.14 1.5
LTA CH4–O (set B) 3.46 0.81
LTA C2H6–O 3.775 1.536
Silicalite CH4-CH4 3.730 1.230
Silicalite CH4–O 3.214 1.108
Silicalite CH4–Xe 3.897 1.517
Silicalite Xe–Xc 4.064 1.870
Silicalite Xe–O 3.296 1.679
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molecules through ZK4 characteristic changes arise due to
the structure of the zeolite (light).

Fig. 7 describes the time development of the propagator
P(x,y,t) of ethane in ZK4 and shows a structural behaviour
equivalent to that for methane in Fig. 6 (right).

Up to now the experimental determination is restricted

due to the limited resolution of the PFG NMR experiments
which is shown in Fig. 8. The calculated values may serve as
challenge for the experimentalists to improve their methods
using, e.g. neutron scattering.

More general relations can be derived connecting the pro-
pagator with the self-part of van Hove’s correlation function
[24,25]. We denote (in the one-dimensional case) byP(x, t)
the probability density of finding a particle near the position
x at timet, byP(x1, t1; x0,t0) the probability density of finding
a particle nearx0 at timet0 and nearx1 at timet1, and byp(x1,
t1lx0, t0) the correspondingtransition probability, also
known as thepropagatorof P(x,t) due to the relation

P(x1, t1) =
�

p(x1, t1lx0, t0)P(x0, t0)dx0 (10)

The self-part of the van Hove function,Gs(x,t), is defined as
the probability that a particle moves within the timet by
the distancex. For instance the mean value ofP(x1,t1; x0,t0)
over all initial positionsx0 under the constraintsx1 − x0 = x
and t1 − t0 = t is given by

Gs(x, t) = lim
L→∞

1
2L

�L

−L
P(x0 +x, t0 + t; x0, t0)dx0 (11)

Fig. 3. LJ potentials for different isolated pairs.

Fig. 4. Potential surface (left: set A; right: set B) cut through the center and four windows of the cavity (U in kJ/mol).

Fig. 5. Potential surface (left: set A; right: set B).
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Using the relation

P(x1, t1; x0; t0) =p(x1, t1lx0, t0)P(x0, t0) (12)

we find

Gs(x, t) = lim
L→∞

1
2L

�L

−L
p(x0 +x, t0 + tlx0, t0)P(x0, t0)dx0 (13)

In the case of a homogeneous medium (e.g. a liquid) in a
stationary state,P and p become independent ofx0 and t0
yielding

Gs(x, t) =p(x, tl0, 0) (14)

If the diffusion equation holds one gets

p(x, tl0,0) =
1�����������

4pDt
p exp −

x2

4Dt

� �
(15)

For a crystal of perioda, under special conditions regarding
the time scales of motion,Gs(x,t) may be approximated by

Gs(x, t) =p(x, tl0, 0)
1
a

�a

0
P(x0 +x)P(x0)dx0 (16)

A detailed discussion ofGs for intra-zeolite diffusion can
be found in [24,25] (Figs. 9 and 10. Its spatial Fourier trans-
form yields the self-partFs(k,t) of the intermediate scatter-
ing function. For fluids or in the hydrodynamic limit,Fs

decays exponentially

Fs(k, t)∼ exp( −k2Dt) (17)

Consequently, in that time region is valid:

D =
lnFs(k, 0) − lnFs(k, t)

k2t
(18)

In Table 2 self-diffusion coefficients for methane guest
molecules calculated in this manner are given for
T = 300 K.

3.2. Density distributions

The density distributions of methane in a cation-free LTA
in Fig. 11 demonstrated in a plane through the center of the
large cavity, show a remarkable structure too. Correspond-

ing to the potential surface these distributions are different
from zero practically only near the cavity wall and these
densities have maxima in the window (left: set A) andin
front of them (right: set B), respectively.

The density distribution of methane in the cation-free
LTA zeolite may well be understood by the potentials
(see Figs. 4 and 5) and [47]. These different density profiles
will yield different diffusion behaviour for both cases of
course (see Figs. 13, and 15). A similar situation was
found for ethane in ZK4 (see Fig. 12).

3.3. Diffusion coefficients

3.3.1. Methane in LTA-zeolites
Fig. 13 (left) shows that the diffusion coefficientD

increases with increasing mean number of guest molecules
per cavity and temperature for set B (smaller window) while
this dependence for set A (larger window), demonstrated for
T = 173°K, is reversed (right)1. This is understandable tak-
ing into account the probability, and its different depen-
dence on loading and window size, for a guest molecule,
firstly to find the way through the window and secondly to
be pushed back by other guest molecules. These effects
result in increasing diffusion with increasing loadings in
the case of smaller windows (set B). Such behaviour, in
contrast to the well-known density dependence of diffusion
coefficients in bulk fluids, which is still under examination,
was found experimentally by pulsed field gradient (PFG)
NMR experiments and compared with other patterns of con-
centration dependencies and can be explained by the differ-
ent spatial conditions for different guest molecules in
different zeolites [3] (Fig. 14).

For higher loading this figure shows an interesting cross
over of both curvatures which is under examination in
detail. Increasing diffusivity with increasing concentration
is in fact the behaviour found for paraffin in A type zeolites
experimentally by PFG-NMR [3].

Fig. 6. PropagatorP (~r, t) as a function of~r and t (set B, I= 3, T = 300 K) in ideal bulk systems (left) and ZK4 (right).

1 Additional calculations with the samee-values have shown that for
diffusion coefficients for zeolites with such small window changes inD
caused by variations ofe are small compared with those caused byj-
variations [21]. This is obviously not valid for adsorption.
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For extreme high loadings the diffusion will be restricted
by the steric hindrance of the large number of the guest
molecules in the narrow pores (R. Haberlandt, S. Fritzsche,
1992, unpublished data) [49] (see Fig. 17 (right) for ethane
molecules in ZK4).

3.3.2. Influence of lattice vibrations on the diffusion
coefficients

In contrary to the initial results of Demontis and Suffritti
[49] the influence of lattice vibrations on the diffusion coef-
ficient in the cation-free LTA zeolite is not very large for
both of the parameter sets under consideration [20,21]
which is shown in Fig. 15 for differentj (left) and different
temperatures (right).

3.3.3. Influence of cations on D
The dynamics even of small neutral molecules with satu-

rated bindings is strongly influenced by the presence of
exchangeable cations [50,52]. This is investigated for the
NaCaA zeolite with 4 Na+ and 4 Ca2+ ions. In this case the
windows, marked byw in Fig. 1 (right), are free from
cations. The unexpected [52] strong effect can clearly be
seen in Fig. 16 (left) and has been confirmed experimen-
tally, meanwhile [53]. In comparison with the cation-free
LTA the self-diffusivity decreases up to two orders of mag-
nitude. It should be noted that the computational effort is
much larger in this case than in the simulations for the
cation-free form since much longer trajectories (up to 5–
10 ns) are necessary to evaluate such small diffusivities.

Fig. 7. Two dimensional graph of the time development of the propagatorP(x,y,t) – Dx, Dy in Å; t in ps – calculated from a trajectory (set A, I= 3, T = 300
K).
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Additionally, the calculation of the forces resulting from
the polarization energy is very time-consuming although
the full Ewald sum can be replaced by a correctedr
space part of this sum [21]. Fig. 16 (left) demonstrates
MD results for the NaCaA zeolite and its cation-free
analogue which has the same structure and compares
these data with experimental results from PFG-NMR
measurements [19] of methane diffusion in the NaCaA
zeolite. The comparison shows that the simulation results
for D are strongly influenced by the presence or lack of
cations. They furthermore show that the calculations that
employ set A and take into account the polarization inter-
action fit the experimental results better than the other inter-
actions used in this examination. The agreement is good
at high loadings but it is less satisfactory at low loadings.
Meanwhile, experimental in-vestigations which where
initiated by our first results have confirmed this strong
influence of the polarization interaction on the diffusion
even of neutral molecules which have no unsaturated bind-
ings [53].

3.3.4. Transport-diffusivity, corrected diffusivity and self-
diffusivity

While the self-diffusion coefficientD according to the
Kubo theory may be obtained from [4,6,33,54] (Eq. (19))

D =
1
3

∑
J

�∞

0
dt 〈~vj(0)~vj(t)〉 (19)

the so-called corrected diffusion coefficientDc includes
the cross-correlations between velocities of different parti-
cles

Dc =
1
3

∑
j

∑
K

�∞

0
dt 〈~vj(0)~vk(t)〉 (20)

The diffusion coefficient that appears in Fick’s law is often
called transport diffusion coefficientDT [3],which is not
only from a scientific but from a practical interest too [46]

J = −DT
dn
dx

(21)

J is the flux andn is the density connected with the stream
velocity v by J = nv. If the force F in the well-known

Fig. 8. Propagator representation of the self-diffusion of ethane in NaCaA zeolite for two different size fractionsrc of the crystals: (a) 40 mg/g,rc = 8 mm; (b)
58 mg/g,rc = 0.4 mm (with permission from [3]).
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relation (Eq. (22))

v=BF (22)

is substituted by gradient of the chemical potentialm one
has

J = −nB
dm

dx
(23)

whereB is the mobility. According to Kubo’s theoryB is
connected with the corrected diffusivity by the relation

Fig. 9. Gs(x,t) for a liquid (arbitrary units).

Fig. 10.Gs(x,t) for methane CH4 in ZK4.

Fig. 11. Density distribution (in arbitrary units) of methane in a cation-free LTA (left: set A; right: set B).
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Dc =BkBT (24)

wherekB is the Boltzmann constant. Comparison of Eqs.
(21) – (24) leads to (Eq. (25))

DT =Dc
n

kBT
dm

dn
(25)

which is a form of the well-known Darken equation [3]. In
Fig. 16 (right) these different diffusivities obtained from
equilibrium and non-equilibrium MD simulations are com-
pared with each other. The self-diffusion coefficients have
been obtained from the mean square displacement.DT

results from non-equilibrium simulations in which a den-
sity gradient in six layers of cavities is created by ran-

Fig. 12. Density distribution (in arbitrary units) of ethane in a cation-free LTA (left: set A, right: set B).

Fig. 13. Diffusion coefficientD for different loadings of methane in the cation-free LTA zeolite (left: different temperaturesT, set B; right:T = 173°K, set A,
B).

Fig. 16. Different diffusion coefficients: left, comparison ofD of methane in NaCaA and cation-free LTA with NMR-experiments; right, self-diffusion
coefficientD, corrected diffusion coefficientDc and transport-diffusion coefficientDT from non-equilibrium MD.
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domly inserting particles that leave the last layer into the
first layer and evaluating the flux in the intermediate region
[54]. Dxy, obtained from the mean square displacement
perpendicular to the density gradient, is equal of course
to the self-diffusion coefficientD (Equil.). It turns out that
the flux practically has no influence the self-diffusion in
the direction perpendicular to the flux.Dc is somewhat
larger thanD which might be attributed to the collective

effects expressed by the cross-correlation terms in Eq.
(20). Dc is obtained fromDT by the Darken equation and
compared with results from another non-equilibrium MD
experiment. In this experiment a flux is produced by an
external force field. Measuring this fluxDc may be
obtained from Eq. (24). Equivalent results are derived
using the Kubo theory [24].

3.3.5. Ethane in ZK4
The evaluated diffusion coefficients of ethane (set B)

increase with increasing loading (Fig. 17, left) as those
for methane (compare Fig. 13, left). Both show Arrhenius
behavior [30,47]. For extreme high loadings diffusion
coefficients of ethane will strongly decrease (Fig. 17,
right)).

Of course for very high loadings the diffusion coefficients
diminish rapidly due to the steric conditions [49], as demon-
strated here by Fig. 17 (right) for ethane guest molecules in
ZK4.

3.3.6. CH4/Xe in silicalites
The diffusion of binary mixture of methane and xenon in

silicalite was examined using MD-simulations and PFG-

Fig. 14. Patterns of concentration dependence of self-diffusivities (I:n-
hexane in NaX at 358 K; II: ortho (K), meta (M) and para (L) xylenes in
NaX at 393 K; III ammonia (W) and water (X) in NaX at 298 K; IV:
acetonitrile in NaX at:393 K; V: ethane (W) at 173 K and propane (L) at
413 K in NaCaA - with permission from [3]).

Fig. 15. Comparison ofD with rigid and vibrating lattice in dependences onj for two loadings (left) and in dependence on the temperature (right).

Table 2

D in ZK4 from the decay of the first components of the scattering function
(time recorded:t = 4095 ps)

nocc k Fs (k,t) D (10−9 m2/s)

3 Dk 0.430 8.17 (9.46)
6 Dk 0.508 7.14 (7.19)
9 Dk 0.865 3.87 (3.56)

2Dk 0.074 4.75
12 Dk 1.295 1.39 (1.42)

2Dk 0.696 1.30
3Dk 0.282 1.20

15 Dk 1.505 0.12 (0.12)
2Dk 1.216 0.11
3Dk 0.896 0.10

Values from mean square displacement are shown in parentheses.
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NMR experiments [28]. Of special interest are the changes
in diffusive behaviour in the presence of the other diffusing
species.

Fig. 18 allows the calculated diffusion coefficients for
different quotas of xenon and methane in good accordance
with the experimental values. The total loading of guest
molecules is held constant (eight guest molecules per unit
cells, but the ratio of methane to xenon is varied from
pure methane (at the left of each figure) to pure xenon (at
the right). In the case of one pure species in the zeolite
the diffusion coefficient of methane is about six times larger
than the one of xenon (simulation). With increasing xenon
quota the methane diffusion is slowed down until the dif-
fusion coefficient reaches nearly the value of xenon for
high xenon quotas. For the same range of different para-
meters there is nearly no change in the diffusion coefficients
of xenon, so we have an obviously asymmetric behaviour
in the mixture. That means, the xenon diffusion dominates
the diffusion of methane.

One reason for this strong influence of the xenon on the
methane lies in the topology of the silicalite. The channels
within the silicalite have a slightly eliptical cross section
with a diameter of about 5.3 A˚ . In these narrow tubes

there are no possibilities for the faster methane molecules
to pass the slower xenon atoms. Only in the cross sections
overtaking might be possible. Therefore at high xenon load-
ings the methane molecules can rattle within a cage of
xenon neighbours only.

4. Conclusions

Statistical physics and molecular dynamics provide a
good basis for the detailed understanding of the diffusion
processes in porous media. This was demonstrated by the
evaluation of diffusion coefficients of guest molecules in
zeolites and the good agreement with experimental data.
These results are a valuable basis to investigate more com-
plex processes in zeolites, as e.g. chemical reactions influ-
enced by catalysts.
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