Universität Leipzig Institut für Theoretische Physik

Prof. Dr. K. Kroy

Theoretische Physik III Thermodynamik und statistische Mechanik

11. Übungsblatt

Aufgabe 24: Liouville-Gleichung

(3 Punkte)

Leiten Sie die Liouville-Gleichung ab, indem Sie die Phasenraumdichte

$$\rho(\{\boldsymbol{q}_i\}, \{\boldsymbol{p}_i\}, t) = \prod_{i=1}^N \delta(\boldsymbol{q}_i - \boldsymbol{q}_i(t)) \delta(\boldsymbol{p}_i - \boldsymbol{p}_i(t))$$

eines Hamiltonschen N-Teilchensystems nach der Zeit differenzieren. Formulieren Sie diese als Kontinuitätsgleichung für die Phasenraumdichte.

Aufgabe 25: Kanonisches Zwei-Zustands-System

(3 Punkte)

Betrachten Sie ein diskretes System mit nur zwei Zuständen, den einem mit Energie E_1 und den anderen mit Energie $E_2 > E_1$. Das System sei schwach an ein Wärmebad der Temperatur Tgekoppelt.

- a) Berechnen Sie die Zustandssumme und die mittlere Energie des Systems. (1P)
- **b**) Geben Sie das Verhältnis ρ_2/ρ_1 der Gleichgewichtswahrscheinlichkeiten an, das System in den Zuständen zu finden. Geben Sie auch die Grenzfälle $T \to \infty$ und $T \to 0$ an.
- \mathbf{c}) Betrachten Sie nun N unabhängige solche Systeme als Gesamtsystem, und berechnen Sie die Größen aus Teilaufgabe a) für diesen Fall. (1P)

Aufgabe 26: *Maximierung der Gibbs-Entropie*

(5 Punkte)

Die Gibbs-Entropie ist gegeben durch

$$S = -k_{\rm B} \sum_{i} \rho_i \ln(\rho_i)$$

wobei die Summe über alle Mikrozustände i läuft und ρ_i deren Wahrscheinlichkeitsverteilung ist. Folgende Nebenbedingungen sollen gelten: (1) $\sum_i \rho_i = 1$ (Normierung) und (2) $\sum_i E_i \rho_i =$ $\langle E \rangle = U$ (mittlere Energie).

a) Bestimmen Sie die Wahrscheinlichkeitsverteilung ρ_i , indem Sie die Entropie unter den obigen Nebenbedingungen maximieren.

Hinweis: Verwenden Sie Lagrange-Multiplikatoren zur Berücksichtigung der Nebenbedingungen.

b)	Bestimmen Sie die Lagrange-Parameter aus den Nebenbedingungen und zeigen Sie,	dass ρ_i
	die Wahrscheinlichkeitsverteilung des kanonischen Ensembles ist.	(2P)

c) Formulieren Sie das obige Extremalprinzip mit Hilfe der freien Energie F. (1P)

gesamt: 11 Punkte

Abgabe: Mi. 13.01., vor der Vorlesung

Die mit * gekennzeichneten Aufgaben sind Zusatzaufgaben und

gehen nicht in die reguläre Wertung ein.