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W h e n  one writes AS 1 q / T ,  what differ- 
entiates the circumstances in which the equality applies 
from those governed by the inequality? The standard 
answer is that the equality applies only to changes con- 
ducted reversibly, and the inequality to all other 
changes. Quite apart from the notorious difficulties 
that beginners find in the concept of reversibility, the 
standard answer is far from satisfactory: we do, after 
all, apply the equality to a great many highly' mevers- 
ible changes. For a liquid in vigorous ebullition nuder 
atmospheric pressure, we calculate AS,., as AH,,/T,,; 
when a system undergoes some irreversible alteration, 
we still calculate the resultant entropy change in the 
surroundings as AS ,,,, = -q ,,,, / T  ,,,,; and so on in 
numerous other instances. To be sure, such pro- 
cedures are supported by excellent justifications, but 
the justifications are not always clear to students who 
may, in consequence, come to the disastrous conclusion 
that the two cases comprised in the expression AS 2 
q / T  are differentiated only by some subtle qualitative 
distinction. Giving rise to much of the mystique 
commonly associated with q,,,, this conclusion is dis- 
astrous also because it directs attention away from the 
completely unmysterious quantitatzwe distinctions that 
differentiate the two cases. 

necessarily that q,,, 2 q. This is the first and most 
obvious quantitative difference between the circum- 
stances referred to by the bimodal relation AS > q / T .  
For if by definition A S  = q,,,/T then, in any circum- 
stances where q,, > q, clearly AS > q / T .  

The second quantitative difference, scarcely less 
obvious but usually much less emphasized, arises when- 
ever the operative circumstances ensure that the quan- 
tity of work performed shall be independent of the 
degree to which the specified change is conducted re- 
versibly or irreversibly. In such circumstances q 
can he equated to q,,,, but of course the reversible and 
irreversible changes remain associated with quite 
different values of AS. Though the q's are equal, the 
values of AS still reflect quantitative differences in the 
temperatures of any heat sources or sinks involved. 
Precisely how the variation in AS arises from these 
temperature differences is illustrated in the following 
analysis of a very simple specific case: the cooling (or 
warming) of an object in a manner that is, to any de- 
sired degree, reversible or irreversible. This analysis is 
conceived as demonstrating for transfers of heat just 
what Eberhardt's experiments demonstrate for work 
transfers. 

In very essence a quantitative concept, the idea of 
Cooling in reversibilitv derives its meaninefulness solelv from the 

systernatic"extrapo1ation that fnks an ideaclimit with 
events of the real world. This view of reversibility is 
brilliantly highlighted in two simple lecture experi- 
ments described by Eberhardt.',= Through measure- 
ments of mechanical and electrical work, respectively, 
these experiments demonstrate the progressive ap- 
proach of work inputs and outputs toward a common 
limiting magnitude (w,,,) which, though it refers to a 
wholly unrealizable ideal experiment, is nevertheless a 
quantity fully established by way of real experiments. 
In  these cases one thus shows that, when the eiven 

By successive contact with some number (n) of large 
heat reservoirs or baths, let an object be cooled from 
some initial temperature T i  to some final temperature 
T, Over the temperature range T ,  to T,, let the object 
have an effectively invariant heat capacity of C cal/g- 
representing either C ,  or CV, according to the condi- 
tions of the experiment. Whether the cooling is con- 
ducted reversibly or irreversibly, with entropy es- 
tablished as a function of state we know that the en- 
tropy change (AS.,) of the object will remain constant 
a t  

change proceeds along the given path, w,,, 2 w; and, ASr = C ln (T,/Ti) = -C  ln (Ti/T,) 
with AE a constant for the given change, it then follows (1) 

What is the corresponding entropy change (ASB) in 
the n l a r ~ e  baths used to cool the object from T ,  to 

' EBERHARDT, W. H., J. CHEM. EDUC., 41,483 (1964). 
EBERHARDT, W. H., J. CHEM. EDUC., 47,362 (1970). 

T,? ~ e t t h e  baths be numbered in order of tempera- 
tures decreasing from Ti:  namely, in the order T, ,  
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TI, T,, . . . T., where T, represents the temperature 
(T,) of the last bath used in cooling the object. And 
let us now suppose that the temperatures of the suc- 
cessive baths descend in a geometric series. That is, 
let the temperature of each bath represent a constant 
fraction of the temperature of the object as it comes 
to that bath. Then 

Thus 
T</T2 = aZ 

Each bath at temperature T, receives the heat Cis- 
charged by the object as it is cooled from the tempera- 
ture T, of the preceding bath, so that AS, = C(T, - 
T,)/T,. The aggregate entropy change (Ma)  for the 
entire set of n baths is then 

Since the summation evidently comprises n identical 
terms, it follows that 

Equation (2) at once permits us to express a in terms 
of the particular T, and T, specified in the problem at 
issue, and the last equation can then be rewritten with 
n as the only free variable 

This equation permits a very simple computation of 
ASB as a function of the number of baths employed. 

How shall we evaluate the total entropy change 
(ASB*) when the number of baths n -+ m ?  Rear- 
rangement of eqn. (4) yields for this limiting case 

A change of variable is now affected by defining y = 
nC/ASB*. This entails that y -+ m as n - m , and we 
can express n in terms of r, as n = yASB*/C. Substi- 
tuting in the last equation above, we find 

But in the limit 7 - m we well know that the function 

(1 + l /y)  - e,  where e symbolizes the base of natural 
logarithms, 2.718 . . . . Consequently 

eASa'/C = Ti/Tf 

and 
AS,* = C ln (TilTf) ( 5 )  

Comparing this finding with eqn. (I), we see that, in the 
limit of a number of baths n - m ,  the aggregate en- 
tropy increase of the baths perfectly matches the en- 
tropy decrease of the ohject cooled! And in this limit 
alone we encounter the truly reversible cooling for 
which we can write as the net effect 

AS,., = AS,.,, + AS,,,, = ASJ + A s s *  = 0 

Healing in Geometric Series 

When an ohject with heat capacity Cis  heated from 
some initial temperature T, to a higher final tempera- 
ture TI, we have as before 

A S r  = -C ln (Ti/Tf) 

Here, with Tt < T,, -Cln (Tt/T,) represents a positive 
quantity (rather than the corresponding negative 
quantity found in a cooling experiment). Let the 
object be warmed from Tt to T, by a series of baths we 
now number in order of increasing temperatures, as 
T,, TI, Tz, . . . T., where T, now represents the tem- 
perature (T,) of the last bath used in warming the 
object, Again supposing that the temperatures of the 
successive baths constitute a geometric series, we find 
exactly as before that 

Ti/Tl = Ti/T. = a" 

The only difference is that in the cooling experiment, 
with T, > T, we have a > 1; while in the present 
heating experiment, with T, < T,, we have a < 1. 
The rest of the analysis of the heating operation is also 
formally identical with that earlier made for the cooling 
operation. In the heating experiment each bath at 
temperature T, gives up to the ohject the heat required 
to warm it from the lower temperature T, of the pre- 
ceding bath. The earlier relation, AS, = C(T, - 
T,)/T, then remains perfectly correct, since (T, - T,) 
is now a negative quantity properly corresponding to 
the necessarily negative value of AS,. Thus the 
analysis proceeds unchanged, and again yields eqn. (4). 
With T, < T ,  the right side of the equation yields for 
ASa an appropriately negative value. And the limiting 
negative value assumed by ASB will be calculable as 
before from eqn. (5). 

Healing and Cooling in Arithmetic SeriesB 

We turn now to brief consideration of how an ohject 
will be cooled by successive immersion in a series of n 
baths with temperatures equally spaced between the 
extremes of TI and TI, i.e.! bath temperatures that 
constitute an arithmetic senis with spacing equal to 
(T, - T,)/n. Each hath at temperature T, then re- 
ceives the heat discharged by the object as it is cooled 
from the temperature (T,) of the preceding hath. 
Therefore 

See DUGDALE, J. S., "Entropy and Low-Temperature Phys- 
ics," Hutehinson, London, 1966, pp. 66-67; or NASH, 1,. X., 
"Elements of Chemical Thermodynamics," (2nd ed.), Addison- 
Wesley, Reading, Mass., 1970, p. 168. 
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AS.  = 
C(Ti - Tl)/n 

T. 

and the numerator will clearly be the same for all baths 
in the series. The aggregate entropy change (ASb) for 
the entire set of n baths is then 

where the denominator of the last term duly reduces to 
T,, as it should. The indicated summation can now be 
formulated more compactly in terms of an index number 
j, which is all that differentiates any term from those 
that precede and follow it. 

j=n 
C(T+ - TI) 

j=, 

AS, = C = e x i  1 
j=l nTi -AT; - TI) nTi/(Tj - TI)] - j 

From this summation we can calculate A& for small 
numben of baths, and when the number of baths n-t m 

we can estimate the limiting aggregate entropy change 
of the baths (ASb*) by the following argument4 

As before, when the object is heated by baths with 
temperatures that ascend in arithmetic series, the re- 
sultant expressions remain formally identical with those 
just found for the corresponding cooling operation. 
And in either case the limit established by eqn. (7) re- 
mains identical with that established for baths with 
temperatures that stand in geometric series. 

A Sample Calculation 

Throughout the foregoing entropy evaluations, the 
heat capacity (C) enters only as a constant multiplier 
in all the functions involved. Interest thus centers on 
the other parts of those functions and, in our example, 
C will be altogether suppressed-simply by setting it 
equal to 1. And for this example let us take T J T ,  = 2 
in the cooling experiment and TJT, = in the warm- 
ing experiment. 

For the object, in warming and cooling, respectively 
ASJ = -C In (T,/Tf) = *In 2 = *OX93 

The aggregate entropy change of the baths is then 
as shown in the accompanying table for sets of baths in 
which n = 1, 2 , 4 ,  8, or 16. Reading outward from the 
central column, which indicates the number of baths 
involved, we find immediately to the left the cor- 

' In a much more elegant but rather lengthier analysis suggested 
to me by Attila Ssabo, the same limit is derived by first showin% 
that thedesired summation can be equated to Z~/bplln [ ( B  - I)!/  
(0 - I - n)!] l ,  where p = nTi/(Ti - TI). Since as thus de- 
fined (3 must become very large as n increases without limit, 
Stirling's approximstion can then be brought to bear in evalu- 
ating t,he limit,ing vslne of the derivative, which is simply In 
(T;IT,). . .. ., 

PYUN, C .  W., J .  CAEM. EDUC., 46,677 (1968). 

Plot of ASa versus 1 In 

responding value of ASB calculated from equ. (4), and 
immediately to the right the value of ASb calculated 
from eqn. (6). In the outermost columns appears the 
net entropy change (AS,o,) in each cooling or heating 
operation-calculated on the left as ASB + AS.,, and 
on the right as ASo + AS,. Observe how very little 
the values of AS,,  are affected by whether the bath 
temperatures stand in geometric or arithmetic pro- 
gression. But incomparably the most important aspect 
of the AS,o, values is their obvious convergence toward 
zero as n + m . That is, as n increases without limit, 
ASB + ASJ  - 0, SO that ASB + - ASJ.  The figure 
displays the surprisin/: rapidity of this convergence. . 

Like the analogous graphs presented by Eberhardt, 
this figure illustrates the progressive approach of re- 
sults calculated for feasible experiments, mith finite n,  
to the limiting value characteristic of an unattainable 
reversible operation with TL  - m . The hypothetical 
ideal operation in which A S  = p/T is th"s seen to 
emerge as a limit fully definable in terms of results 
calculable for actual operations in which A S  > q /T .  
No more vivid illumination of the relation of the two 
cases joined in the expression A S  2 q / T  is readily 
imaginable. Ailoreover, though logically equivalent, 
the result here obtained is psychologically quite different 
from that stressed in a very recent paper by Pyun." 
To say that a transfer of heat can proceed with AS,o,  = 
0 only when the two bodies involved stand at the very 
same temperature, which is Pyun's conclusion, is to 
leave one wondering how any strictly reversible (isen- 
tropic) cooling or heating could possibly be brought 
about, or even imagined. This doubt simply does not 
arise from the present analysis-which concludes that 
any amount of strictly reversible cooling or heating 
would be readily achievable in the limit where the 
number of baths n -+ m.  And a significantly close 
approach to this limit can be found in actual practice, 
e.g., in the operation of Stirling-cycle refrigerators." 

A Closed Cycle 

To complete the analysis, we now examine a closed 
cycle of changes. By use of n baths, let an object 
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Calwlated Aggregate Entropy Change for Various Series of Baths 

Geometric Series--------. ---------Arithmetic Series . 
AS,., A s s  = n([Ti/T~l"" - 1 )  Number 

of baths, n 1 
= [nTi/(Ti - TI)] - 1 MtOi 

Cooling: Ti/Tl = 2 yields ASj = -0.693 

l ( 2  - 1)  = 1.000 1 
1 (-1 = 1,000 

l ( 2 )  - 1 

Z(1.414 - 1 )  = 0.828 2 
1 (i + 5 )  = 0.833 

4(1.189 - 1)  = 0.756 4 
1 1 (i+6+...+4) = 0 . 7 6 0  

8(1.0905 - 1)  = 0.724 8 
1 1 ( & + l a + . . . + s )  = 0 . 7 2 5  

16(1.0443 - 1 )  = 0.709 
1 1 

16 (.&fm+ ...+-) = 0 . 7 0 9  
16 

Warming: Ti/T1 = ' / n  yields ASJ = 0.693 

1 ( ;  - 1 )  = -0.500 1 -(') = -0.500 2 

2 ( k 4  - 1 )  = -0.586 2 -(a + $) 1 = -0 .583 

4(' - 1 )  = -0.636 4 1 1  1 
1.189 

-(:+-+ - +  -) = -0.635 
6 7 8  

8(& - 1 )  = -0 .664 8 -({+lo+...+16) 1 1 = -0 .663 

1 
16(= - 1 )  = -0.679 16 -($+18+...+-) 1 1 = -0.678 

32 

(with heat capacity C = 1) be cooled from some original 
temperature To to the temperature To/2, and let the 
object then be rewarmed by n baths to the original 
temperature To. When n - m , the perfectly reversible 
circumnavigation of this closed cycle will be completed 
with A S  = 0 for system and surroundings both indi- 
vidually and collectively. How does the situation differ 
when the cycle is traversed irreversibly with, say, n = S 
throughout? The object is itself surely returned to 
precisely its original state; hut a glance at the table 
indicates, as the overall net entropy change, AS,, = 
0.031 + 0.029 = O.OGO when the bath temperatures 
stand in geometric progression, and AS,o, = 0.032 + 
0.030 = 0.062 when they form an arithmetic progres- 
sion. What are the specific alterations reflected in 
these entropy changes? 

When the bath temperatures form a geometric series, 
the analysis is perfectly straightforward but not 
notably illuminating. For, save in the limit n -+ , 
all the baths used in cooling and warming the object will 
stand at the end in states different from those they 
possessed at the outset. The overall entropy change 
for the closed cycle then represents the sum of contribu- 
tions made bv all the diffuse multitude of individual 
changes. 

When the bath temperatures form an arithmetic 
progression, the analysis is even simpler, and far more 
illuminating. For in this case the residual effects of 
the closed cycle are sharply localized. Save in two 
instances, the quantity of heat delivered to each of the 
n baths used in cooling the object is precisely equal to 
the quantity of heat subsequently drawn from each of 
the n baths used to rewarm the object to its original 
temperature. Hence all but the two exceptional baths 

6 E ~ ~ ~ ~ ~ ~ ,  D. H., "Chemical Thermodynamios," John Wiley 
& Sons, Inc., New York, 1959, Appendix B; KOHLER, J. W. L., 
Sci. ArnekIn, 212,119 (April 1965). 

will stand at the end in the very same states that 
characterized them at the outset. The net increase of 
entropy for the entire closed cycle must then arise 
solely from changes in just those two exceptional baths. 
The two in question are: (1) the last bath used in 
cooling the object to its lowest temperature To/2, for 
from this bath no heat is subsequently withdrawn when 
the object is rewarmed to its original temperature; 
and (2 )  the last bath used in rewarming the object to 
its highest temperature To,  for to this bath no heat was 
earlier delivered in the course of the cooling operation. 

From the easily evaluable alterations in these two 
"end" baths, the net entropy change in the closed cycle 
can at once be determined. If n baths are used in the 
initial cooling operation, the heat released to each such 
bath is (To - T o / 2 ) / n  = +To/2n. The entropy 
change (AS,) of the last cooling bath, at temperature 
T0/2,  is then expressible as 

Similarly, if n baths are used in the subsequent re- 
warming operation, the heat drawn from each such 
bath is (To/2 - To) /n  = -To/2n. The entropy 
change (AS,) of the last heating bath, a t  temperature 
TO, is then 

For the two "end" baths together, the entropy change is 
thus 

With, say n = 8 baths, this equation yields AS,, = 
0.062, which is exactly the value earlier obtained from 
the entries in the table. That AS,,, = 1/2n must ap- 
proach zero in the limit of n - m is mathematically 
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perfectly evident. Why zero must be the limit is now but "end-effects" which must, as always, be reduced to 
intuitively perhaps even more evident-since the over- insignificance when a linear sequence is indefinitely 
a11 entropy increase has been shown to represent nothing prolonged. 
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