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STOCHASTIC MASS TRANSPORT

In stochastic mass transport models the focus is
typically on the dynamics in order to understand
generic properties of realistic instantiations. In this
work we study the steady state of a transport model
that is based on a process generalized from the
zero-range process (ZRP) [1, 2], but with a pair-
factorized steady state. It most notably features
extended condensates with a qualitatively tunable
envelope shape.

PAIR-FACTORIZED STEADY STATES

The model consists of a number of indistinguish-
able particles distributed on a peridoc ring lattice.
In the discrete time stochastic process a parti-
cle may leave a randomly selected site at every
time step with a hopping rate u(mi|mi−1,mi+1) and
move to either direct neighbour. This dynamics is
the same as in the ZRP with an added nearest-
neighbour interaction.

This also leads to a steady state that is similar to
that of the ZRP, but factorizes over pairs of sites
instead of single sites:

P (~m) = P (m1, . . . ,mN) =
1

Z

N∏
i=1

g(mi,mi+1)

The hopping rate given by the weight functions:

u(mi|mi−1,mi+1) =
g(mi − 1,mi−1)

g(mi,mi−1)

g(mi − 1,mi+1)

g(mi,mi+1)

The weights are assumed to separate into zero-
range and local-range interactions:

g(m,n) =
√
p(m)p(n)K(|m− n|)

Well-behaving weight functions, where the zero-
range interaction approaches a constant for large
m and the short-range interaction falls off faster
than any power law lead to an analytically known
condensate shape and scaling.

To produce interesting behaviour these conditions
are deliberately broken by introducing weights with
tunable fall-off:

K(x) ∼ e−a|x|
β

, p(m) ∼ e−bm
γ

PREDICTED PROPERTIES

Using a large-volume limit approximation for this
model B. Waclaw et al. predict four regimes of
qualitatively different condensates in this model:
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In the respective regime the condensate emerges
as a peak occupying a single site or as an extended
condensate with either rectangular or smooth bell-
like envelope shape. Furthermore the scaling of
the width was derived for the extended condensate
shapes although these were not derived [3].

CHARACTERISTIC CONDENSATE SHAPE

The average condensate shape is measured by
adding the individual shapes after aligning them
with their respective centers of mass.
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For large system sizes the condensate shape
rescaled to unit width and volume converges to a
characteristic shape for a given parameterization.
This allows to employ more precise methods to es-
timate its scaling properties.

DETERMINING THE CONDENSATE WIDTH
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The width is easily determined by the points where
the condensate drops below the background level.
However, this method is prone to fluctuations at the
condensate boundary. This influence is avoided by
measuring an effective condensate width by com-
puting the center of mass of the left and right con-
densate parts from its main center of mass.

COLLECTIVE UPDATES

Purely local simulation methods become ineffec-
tive in the rectangular condensate regime, where
regions of high probabilities (corresponding to rect-
angular condensates of different widths) are sepa-
rated by highly suppressed transitional states. We
illustrate this by taking the shortest path through
state space between these regions.
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Small systems with about 3000 masses can al-
ready be infeasible to simulate, which is why we
propose an update method that directly extends
or reduces the condensate width, thereby avoiding
the transitional states.
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Combined with local updates, this method not only
reduces the mixing time of the system, but the scal-
ing behavior with an increasing number of masses
drastically improves as well. Systems with more
than 106 masses become feasible to simulate.

TUNABLE CONDENSATE SHAPES

We measured the characteristic shapes for a sys-
tem with 10000 masses over a grid of β and γ pa-
rameters. We can identify the three distinct con-
densate shapes in about the same regions as they
were expected. The boundary between smooth
and rectangular condensates is smeared out with
smooth condensates for small γ for β ≤ 1 and con-
densates with broad tips for large γ and β ≥ 1.
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CONDENSATE WIDTH SCALING

We numerically determined the condensate width
scaling exponents and compared them with the
predicted values for many parameterizations.
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Our results confirm the predictions in most pa-
rameterizations However, as with the condensate
shapes a systematic deviation is observed at the
phase boundary β ≈ 1 for decreasing values of γ
as well as for the combination of small values of γ
and β.

CONCLUSIONS

We measured the shape and width scaling of
extended condensates in pair-factorized steady
states for finite yet large systems using many
parameterizations. In the rectangular conden-
sate regime we were only able to simulate large
systems by introducing a new collective update
method. The predicted regimes are easily iden-
tified. For most parameterizations, our data con-
firms the predictions.
We could not reproduce the sharp regime bound-
ary at β = 1, which may indicate large finite-size
effects or higher-order corrections.
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