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INTRODUCTION

Stochastic transport processes such as the one proposed
by Evans et al. [1] can be tuned by their generating weight
functions to exhibit a steady state with a condensate of
particles that is separate from a fluid background phase. We
study the dynamics of the relaxation process into the steady
state of such driven transport systems using numerical
simulations to determine the condensation time scale and
discuss the corresponding phenomenological mechanisms.

Despite the existance of short ranged interactions in the
studied system, the condensation behavior is found to be
quite similar to that of the zero range process on one- and
two-dimensional lattices.

MODEL

Consider M particles initially distributed at random on N
sites of a periodic chain. At a time step of the stochastic
process, a random particle leaves a site i with probability u
proportional to the hopping rate u(mi) to the left or right with
probabilities p or 1− p respectively.
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The model system is specifically set up to have a known pair-
factorized steady state (PFSS) partition function

Z(M,N) =
∑
{~m}

∏
〈i,j〉

g(mi,mj)

that is a product over the generating weights g(m,n). The
specific choice of these weights

g(m,n) = K(|m−n|)
√
p(m)p(n), K(x) = e−Jx, p(m) = eδm,0

leads to the hopping rates

u(mi|mi−1,mi+1) =

eU0δmi,1

e−2J+U0δmi,1

e2J+U0δmi,1


mi mi−1

mi+1

Above a critical density of particles, the steady state exhibits
a background “fluid” background phase at critical density and
a condensate containting the excess particles.

fluid condensed

ρρc

CONDENSATION TIME SCALE

The condensation time is the typical time that the relaxation
process into the condensed steady state takes, starting
in an disordered configuration of the system. Then, the
condensation time scale is the relation of the condensation
time to the size of the system.
From comparison with the zero range process (ZRP, see [2, 3]
for discussion), the condensation time scale is expected to
have the power law form

τ ∝M ′δ ,

with the scaling exponent δ.

METHOD

Monte Carlo methods are used to simulate the non-
equilibrium dynamics of the described system and study the
condensation time scale.
To estimate the scaling exponent, the condensation time is
estimated for various system sizes and symmetric as well as
total asymmetric dynamics.

To analyze the condensation time scale from the numerical
simulations multiple methods were used to complement each
other.

• Using the time dependent growth of the largest
condensates mass to determine the condensation state.

The scaling exponent can be estimated by rescaling time
to match multiple such curves (see first and third plot in
results).

• Tracking the number of condensates in the system versus
rescaled time and using this data to get the scaling
exponent (similar to above).

To count the condensates, one has to distinguish between
droplets in the background and stable condensates. This
is achieved using a mass threshold of 5/2

√
M (coefficient

tuned using data).

• Performing a scaling analysis using a first passage time
method using the number of condensates as a threshold.

Record a histogram of times, when only one large
condensate remains in the system. The estimated
first passage times are then used to obtain the scaling
exponent (see second plot in results).

To allow simulations on regular graphs, square lattices were
randomly rewired und consecutive runs of the dynamics were
performed on different disorder configurations each.
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Typical evolution of the condensation process on different
time scales for the totally asymmetric (p = 1, particles hop
in negative i direction) model. The displayed time series
were recorded in a system with N = 1000 sites and M =
3000 particles prepared with a homogeneous distribution of
particles. In the plot at the top, the emergence of a finite
number of small droplets is observed in the early stages
of the condensation process, which is refered to as the
first regime. These droplets have a range of widths of 10
to about 50 sites and mass of 20 to 200 particles at the
time of 105 MC sweeps. In the middle plot, this situation
is seen at the left before the coarsening process begins.
In a first stage droplets grow to larger condensates due
to the fast evaporation of smaller droplets. However, the
coarsening regime is dominated by the last stage, where only
two condensates remain. It is also quite notable, that an
effective long range interaction between large condensates
affecting their movement is observed.

RESULTS: 1D, 2D LATTICES

The scaling obtained for 1D (upper) and 2D lattices (lower)
yield a good estimate of the scaling exponent δsym = 2 in
the symmetric case and δ1D, asym = 3 which are surprisingly
identical to those of the ZRP.
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δ1D,sym 2.1± 0.2 2.0± 0.1 2.04± 0.07

δ2D,sym 2.0± 0.1 1.9± 0.1

While studying the dynamics of the coarse graining
process we could eliminate mechanisms such as movement
and collision and mass-dependent evaporation of the
condensates as causes of the time scale and remained
with the fluctuation of the condensate masses as the main
mechanism: The mass of the condensates in the coarsening
regime performs a random walk, leading to a time scale of
mass exchange as in the first passage time of a random
walker to reach a given point.

RESULTS: REGULAR GRAPHS

On regular graphs, no scaling of the condensation time scale
could be observed.
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The observed absence of scaling is possibly a result of
shortcuts in the regular graphs. However, this and the
peculiarity of the condensation behavior are subject of
current research.
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