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1 Introduction

The Monte Carlo method is usually used to simulate systems of finite size. The
results from these simulations depend on the size of the system. One needs to
do finite size scaling in order to obtain results for infinite systems, provided one
knows the correct scaling laws. It is therefore sometimes necessary to be able
to obtain data for systems where the scaling laws are not known. An algorithm
that gives direct results for infinite systems and thus overcomes the limitations
of simulations on finite systems has been proposed recently in [1]. The authors
claim that it produces results for infinite systems using observables in the bond
representation of the Ising model on a 2-dimensional square lattice without
external magnetic field. This work describes an implementation of the proposed
method and compares the obtained results with exact analytic solutions from [2]
and simulations on finite systems. A discussion is made about the dependence
of the results on the system initialisation, the temperature and the number of
Monte Carlo steps.

2 Theoretical background

2.1 The Ising model

The Ising model is a simple model of a magnet. The model consists of discrete
objects called spins which can take one of two different states. The spins are
placed on a lattice or graph and each spin interacts only with its nearest neigh-
bours. The energy E of the system without an external magnetic field is defined
as

E = −
∑
<ij>

Jijsisj , (1)

where the sum is over nearest neighbours i and j, Jij are the coupling con-
stants and si = ±1 are the spin states. The partition function Z is defined
as

Z =
∑
{s}

exp (−βE) , (2)
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where the sum is over all possible spin configurations s and β is the in-
verse temperature (β = 1/kbT ). The model considered in this work is on a
2-dimensional square lattice with the isotropic case Jij = J . In this case the
partition function can be rewritten in the form:

Z =
∑
{s}

∑
{nij}

∏
<ij>

eβJ [(1− p)δnij ,0 + pδsisj δnij ,1] (3)

with

p = 1− e−2βJ (4)

where nij are bond variables which can take values 0 or 1, interpreted as
“deleted” or “active” bonds. One can use this Fortuin-Kasteleyn [3] represen-
tation to construct bonds between equal neighbouring spins with probability
p, thus forming a cluster, and then flip the whole cluster. This is the basis of
multiple cluster update algorithms. For temperatures T near the critical tem-
perature Tc this update results in a greater phase space move than the one of
the Metropolis algorithm, where single spins are flipped. This results in almost
complete elimination of the critical slowing down observed with the Metropolis
algorithm.

2.2 The Wolff cluster update algorithm

Wolff [4] has proposed a cluster update algorithm based on the work of Swendsen
and Wang [5]. Using his simpler method one constructs and flips only one cluster
at a time, therefore it is often called single-cluster update. The algorithm works
as follows:

1. Start with an empty cluster.

2. Choose a random spin si.

3. Add every neighbour sj of si to the cluster with probability

Padd = 1− e−2βJ (5)

if sj = si and sj is not in the cluster.

4. For each spin sj added to the cluster repeat step 3.

5. Flip all spins in the cluster.

Using this simple update procedure, one can generate different configurations
on every Monte Carlo (MC) step. An example of such update is shown on fig.
1. Observables can be measured on every iteration using either the spin or the
bond representation.
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(a) Initial configuration (b) Wolff cluster

(c) Configuration after cluster flip (d) Coloured

Figure 1: An example spin configuration is shown in fig. 1a - white and dark dots
represent the two different spin states. A cluster (fig. 1b) has been constructed
using the Wolff algorithm. The resulting configuration after the cluster has been
flipped is shown in fig. 1c. A coloured picture of the system is shown on fig. 1d.
The change of the system (the cluster being flipped) is represented with blue
and the two different spin states are represented with white and red colour.
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2.3 The proposed cluster method

A new method for obtaining quantities in the infinite size limit has been pro-
posed in [1]. It introduces a small modification to the Wolff cluster update
algorithm:

1. Start with an empty cluster.

2. Choose random spin si Always choose spin si = sseed.

3. Add every neighbour sj of si to the cluster with probability

Padd = 1− e−2βJ (5)

when sj = si and sj is not in the cluster.

4. For each spin sj added to the cluster repeat step 3.

5. Flip all spins in the cluster.

Using this modification one needs to store only the finite part of the lattice
around sseed that the cluster algorithm has reached so far and allows the system
to grow whenever new points are to be reached. The stored system grows with
the number of MC steps and the growth rate depends on the cluster sizes, hence
β. An example update is shown on fig. 2 where one recognises the circular
shaped area that the clusters have reached.

2.4 The two-point correlation function

Due to the translation invariance of the Ising model the two-point correlation
function < sisj > can be considered as a function C(~r) with ~r being the vector
connecting si and sj . It has been exactly solved for the 2-dimensional Ising
model on a square lattice without external magnetic field. The expressions for
the axial and diagonal directions, namely < s0,0s0,N > and < s0,0sN,N >, have
been given for large N in [2, 6]. Here s0,0 is the spin sitting on the lattice point
(0, 0), respectively s0,N is the spin sitting on the lattice point (0, N) and sN,N

sits on (N,N). The following equalities have been obtained from [2]:

lim
M→∞
N→∞

< s0,0s0,N >M,N=< s0,0s0,N > (6)

lim
N→∞

< s0,0s0,N >= lim
N→∞

< s0,0sN,N > (7)

where M×N are the dimensions of the lattice. For T > Tc the expressions
computed in [2] are given as:

< s0,0s0,N > ∼ 1
(πN)1/2αN

2

(
1− α2

1

1− α−2
2

)
1

(1− α1α2)1/2

×
[
1 +

1
4

A1>

N
+

3
16

A2> − 5
6

N2
+

15
64

A3> − 7
6A1>

N3
+ ...

]
(8)
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(a) Initial configuration (b) Cluster

(c) Configuration after cluster flip (d) Coloured

Figure 2: An example spin configuration is shown in fig. 2a - white and dark dots
represent the two different spin states. A cluster (fig. 2b) has been constructed
using the proposed algorithm. The resulting configuration after the cluster has
been flipped is shown in fig. 2c. A coloured picture of the system is shown on
fig. 2d. The change of the system (the cluster being flipped) is represented with
blue and the two different spin states are represented with white and red colour.
The circular area in the centre represents spins that have already been reached,
hence flipped, at least once by a cluster update. The outer area represents the
initial spin configuration, which in this case is a chess board.

5



< s0,0sN,N > ∼ 1
(πN)1/2

[sinh 2βJ1 sinh 2βJ2]N

(1− (sinh 2βJ1 sinh 2βJ2)2)1/4

×
[
1− 1

8
x′3
N

+
1

128
9x′23 − 8

N2

+
5

1024
x′3(−15x′23 + 16)

N3
+ ...

]
, (9)

with

A0> = 1, (10)

A1> = −1
2
(x1 − x2 + x3), (11)

A2> =
3
8
(x2

1 + x2
2 + x2

3)−
1
4
(x2x3 − x3x1 + x1x2), (12)

A3> = − 5
16

(x3
1 − x3

2 + x3
3) +

3
16

(x2
1x2 + x1x

2
2 − x2

2x3 + x2x
2
3 − x2

3x1 − x3x
2
1)

+
1
8
x1x2x3, (13)

x1 = cosh 2βJ1, (14)
x2 = coth 2βJ2, (15)

x3 =
α2

2 + 1
α2

2 − 1
, (16)

α1 = tanhβJ1 exp(−2βJ2), (17)

α2 = tanh−1 βJ1 exp(−2βJ2), (18)

x′3 =
(sinh 2βJ1 sinh 2βJ2)−2 + 1
(sinh 2βJ1 sinh 2βJ2)−2 − 1

. (19)

J1 and J2 are the coupling constants between sj,ksj,k+1 and sj,ksj+1,k respec-
tively. The values of < s0,0sN,N > for small N deviate from what is expected,
namely the curves should go to 1 for N = 0. Moreover as β → βc:

βc =
1
2

ln(1 +
√

2) ≈ 0.440686, (20)

the range for which the function produces wrong values for small N gets
longer (see fig. 3).

The difference O1(N) between < s0,0sN,N > and < s0,0s0,N > plotted in
fig. 4 gets smaller when approaching the critical point (β → βc). In the range
N ∈ [0; 150] that is being considered in this work, the relative difference O(N)
is less than 1%, therefore only one of the functions will be be discussed later.

O1(N) =
| < s0,0sN,N > − < s0,0s0,N > |

< s0,0s0,N >
(21)

6



 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  50  100  150  200

<
s 0

,0
s N

,N
>

N

β = 0.40
β = 0.41
β = 0.42
β = 0.43

Figure 3: Dependence of < s0,0sN,N > on β, the arrow indicates increasing
values of β.
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Figure 4: Dependence of O1(N) on β, the arrow indicates increasing values of
β.
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3 Simulations

3.1 Wolff cluster update and effects on finite size lattices

When simulating the Ising model, one takes a finite size lattice with dimensions
L × L and uses toroidal periodic boundary conditions. Under these conditions
one can measure the correlation functions < s0,0s0,N > and < s0,0sN,N > only
for N ∈ [0, L]. Moreover, because of the boundary conditions, the measured
functions become symmetric around the point N = 1

2L as one can see on fig.
5. They is symmetric at r = 1

2L for the axial directions and at r = 1√
2
L for

the diagonal direction. Here ~r is the vector connecting the two spins si and
sj for which the correlation function < sisj > is being considered and r = |~r|
is the length of the vector. The values for the simulated < s0,0s0,N > and
< s0,0sN,0 > lay on top of each other as expected due to the 90◦ rotational
invariance of the 2-dimensional Ising model. Their difference O2(N) (plotted in
fig. 6) is about 1% and indicates that there is no error in the implementation
of the Wolff algorithm.

O2(N) =
| < s0,0s0,N > − < s0,0sN,0 > |

< s0,0sN,0 >
(22)
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Figure 5: Measured correlation function C(~r) in different lattice directions,
namely column < s0,0s0,N >, row < s0,0sN,0 > and diagonal < s0,0sN,N > vs.
r on a 40×40 lattice with periodic boundary conditions at β = 0.42 (note: data
points for directions (0, N) and (N, 0) lay on top of each other).

In order to get proper values of < sisj > for infinite systems one has to do
finite size scaling. Extrapolation is generally straight forward as one sees in fig.
7 because the data points deviate for large r (r ∼ 1

2L) due to finite size effects.
In the following part the proposed algorithm for obtaining results for infinite

systems is implemented and the obtained values are compared with the exact
solution and the results on finite size systems.
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Figure 6: Difference O2(N) between measured < s0,0s0,N > and < s0,0sN,0 >
from simulation on a 40× 40 lattice at β = 0.42.

3.2 Algorithm

1. Generate an initial configuration.

2. Construct a cluster using the proposed method and expand the system if
necessary.

3. Measure observables:

C(~r) =< sisi+~r >=

〈
1

Vcl

∑
i in cluster

δ(i + ~r in cluster)

〉
. (23)

4. Flip the cluster.

5. Go to step 2

3.3 System initialisation

The first point of consideration is the initial lattice configuration - choosing
all spins equal results in the system growing infinitely with the first few clus-
ters. Therefore, one needs a configuration that limits the growth rate. I have
considered two different initializations:

• the chessboard configuration - it suppresses the system growth (in units
of MC steps) at most because every spin needs to be flipped at least once
before its neighbours can be considered for insertion in the cluster,

• the random configuration with equal distribution of spin states.
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Figure 7: Measured correlation functions C(~r) for the axial direction on lattices
of size L = 10, 20, 40, 80, 100 at β = 0.42. Values have been considered only for
distances r < 1

2L.

3.4 System growth and implementation

In the beginning I create a lattice A with dimensions Ax ×Ay and initialise it.
After some MC steps the cluster wants to reach a point outside of A, therefore
the lattice needs to expand. I have implemented is as follows:

1. Generate a new lattice B with dimensions Bx×By, where Bx = Ax +2dx,
By = Ay + 2dy (fig. 8). Here dx and dy are the chosen growth steps,
typically about 10.

2. Initialise the new lattice B.

3. Copy the spin configuration from A onto B.

4. Discard A and use B.

I use recursion to implement the Wolff cluster update algorithm, therefore I
use a coordinate system that maps coordinates (x, y) to spins si and preserves
the mapping upon lattice growth. The mapping sx,y ↔ si that I use is:

i = x− yx + Ac (24)
x = i mod Ax −Ac mod Ax (25)
y = Ac div Ax − idiv Ax (26)

with Ac being the spin sAc mapped to (0, 0). The cluster is then represented
as an array of coordinates that always point to the same spins using the mapping
Ac 7→ Bc:

Bc = Ac + 2dxdy + Axdy + dx + 2dx(Ac div Ax) (27)
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Figure 8: Lattice A expands by placing it onto a new larger lattice B such that
the origins (0, 0) of both coordinate systems coincide.

3.5 Measurements of C(~r)

The measurements are taken using the bond representation: after the cluster has
been created but before it has been flipped. A spin is considered equilibrated
if it has been flipped at least neq = 20 number of times. This means that a
measurement is done only if all the required spins have been flipped at least neq

number of times. For the correlation function C(~r) these are all the spins i in
the cluster and all the spins i + ~r reached by the correlation vector.

Figure 9 shows that the results obtained from the proposed simulation
method fit quite well the data obtained from simulations on finite lattices. The
results for finite lattices have been obtained using the spin representation.

3.5.1 Dependence on system initialisation

Simulations have been done with the two different initialisation algorithms:
chess board and random with equal state distribution. As expected, the random
initialisation lets the system expand faster (in MC steps) than the chess board
initialisation (see fig. 10). Although it shows the same exponential behaviour
for large r, it is a bit better than the chess board for measuring the correlation
function with the estimator from eq. (23). As the system expands faster one
needs less computational time (MC steps) to get more measurements for some
r than when using the chess board initialisation.

3.5.2 Dependence on the number of MC steps

The results of the simulations converge to the exact solution as the number
of MC steps (cluster flips) increases. Moreover the accuracy of the measured
values depends on the distance r from the origin sseed as one sees on fig. 11. The
resulting curve deviates more from the exact solution for larger r, therefore one
needs to perform more MC steps N2 > N1 in order to get the same accuracy
of C(r1) and C(r2) for r2 > r1. This is a result of the construction of the
estimator for C(~r), since it converges from below due to the zero contributions
to the expected value (23) from clusters with no point at distance r from the
origin sseed. Therefore the number of MC steps one needs to get good values
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Figure 9: C(r) vs. r obtained from simulations at β = 0.42 (about 3e7 MC
steps) on finite size lattices and the proposed method, ~r is an axial vector.
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Figure 10: The number of MC steps needed for the cluster to reach a point at
distance r from the starting spin sseed for the first time vs. r at β = 0.42. The
data points are from simulations with different random number sequences using
the two different initialisation algorithms: the chess board and the random with
equal distribution of states.
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Figure 11: Comparison of the measured correlation function C(r) with different
number of cluster flips and the exact solution with ~r being a diagonal vector at
β = 0.42. The arrow indicates increasing number of MC steps.

for C(~r) depends directly on the cluster sizes, hence β.
Moreover the accuracy

O3 =
C(~r)− < s0,0sN,N >

< s0,0sN,N >
(28)

of the measured C(r) does not depend linearly on the number of MC steps
as one sees on fig. 12. One needs to do about 10 times more MC steps in order
to reduce the deviation by a factor of 2.

3.5.3 Dependence on β

The results of the simulations deviate from the exact solution for larger values
of r as one approaches βc. This might be explained with the estimator for the
correlation function as follows: near βc the clusters get larger, therefore the
number of clusters that contain spins at distance r increases. This results in
more contributions to the estimator that are different from 0 and therefore in-
creases the expected value. It means that results obtained from the simulations
for a distance r get better as one approaches βc, which can be seen on fig. 13.

3.6 Comparison with the results from [1]

Finally, a comparison has been done between the results from my simulations,
the exact solution for < s0,0s0,N > and the plot from [1] in fig. 14. The sim-
ulations from [1] have obviously been done for r being an axial vector. The
results from the paper show the same systematic deviation for large r as de-
scribed above, namely that it lies a bit below the exact solution. A comparable
accuracy with the results from [1] has been obtained with 1e9 MC steps.
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Figure 14: Correlation functions C(r) vs r of the Ising model on a 2-dimensional
square lattice with L = 10, 20, 40, 80, 100 at β = 0.42 and the results from the
simulations on an infinite lattice from [1] (black), the results of my simulations
on top (colour) and the exact solution for < s0,0s0,N > (grey), r being an axial
vector and N = r.
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4 Conclusion

In this work I have successfully managed to reproduce the results for the cor-
relation function on the 2D Ising model without an external magnetic field and
also successfully implemented the algorithm proposed in [1]. A comparison of
the results from the simulations with the exact solutions for large N from [2]
for the axial and diagonal directions for different lattice sizes and at different
temperatures T showed that the estimator for the correlation function produces
increasing systematic deviation with the proposed algorithm. The deviation
increases as the distances r from the origin sseed increases. This deviation de-
pends also on the temperature, the system initialisation and the length (in MC
steps) of the simulation. Moreover the authors of [1] have the same systematic
deviation for large r. Nevertheless the proposed algorithm makes the estimator
for the correlation function converge from below to the exact solution and can
be used to obtain results from other models where one can make use of the bond
representation and the Wolff cluster update algorithm. Other estimators might
work better with this algorithm, but have not been discussed in this work.
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