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OverviewThis diploma thesis deals with the anonial equilibrium behaviour of asemi�exible homopolymer near an attrative substrate within the frame of amesosopi oarse-grained model.Its outline is as follows:In hapter 1, the problem of polymers near surfaes is motivated. Some es-tablished knowledge about the bulk behaviour of self-avoiding self-interatingpolymers in solution, in partiular the θ-transition, is shortly reviewed. Andsome reasons to use a mesosopi oarse-grained model rather than an all-atomapproah are given.Chapter 2 introdues the studied model inluding intrinsi polymer intera-tions, surfae interation as well as the applied boundary onditions. Also themeasured observables are motivated and introdued.Chapter 3 deals with the Monte Carlo tehniques applied in this thesis. Aftera short overview of the Monte Carlo method in general and its appliations instatistial physis in partiular, the onept of Markov proesses is explainedand the di�erent updates used to generate new on�gurations are explained indetail. The main tehnique employed here is a generalised ensemble method:The multianonial method. It is introdued as well as the multianonial reur-sion that is used to generate the neessary weights. The onept of reweightinggenerated onformations in order to estimate anonial expetation values fordi�erent external parameters will also be outlined and expliitly desribed for
T , s and ǫs. Additionally the idea of �Replia Exhange Monte Carlo�, that wasused for some additional studies, and of the speially biased algorithm �EnergyLandsape Paving� to �nd global energy minima is given. The hapter is on-luded with some words on the applied Jakknife analysis for error estimation.Chapter 4 �nally presents the results obtained. Here, the main fous is on thebehaviour of a polymer near an attrative substrate (setion 4.1). The anoni-al expetation values over a wide range of surfae attration and temperatureare presented together with the density of states and low energy onformations.All gained informations are summarised in a pseudophase diagram and om-pared with lattie results. Similarities and di�erenes are disussed. In setion4.2, some additional results on the behaviour with varying solvent quality ispresented.Last but not least, the summary hapter 5 ompiles the main fats in a shortform.
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1 IntrodutionIn this hapter the problem of polymers near or at substrates is motivated andsome reasons to use a mesosopi oarse-grained modelling approah are given.1.1 MotivationPolymers near surfaes is a fasinating �eld for both physiists and hemists. Itprovides a rewarding playground for basi and applied researh. With the ad-vent of new sophistiated experimental tehniques with its enormous potentialin polymer and surfae researh the interest in the hybrid interfae of organiand inorgani matter has inreased. Suh tehniques at the nanometer saleare, e.g., atomi fore mirosopy (AFM), where it is possible to measure theontour length and the end-to-end distane of individual polymers [1℄ or toquantitatively investigate the peptide adhesion on semiondutor surfaes [2℄.Or optial tweezers that are an experimental tool with an extraordinary reso-lution in positioning (±1nm) a miron-sized olloid and in the measurement offores (±50fN) ating on it [3℄. It an be used to probe the behaviour of singlepolymer moleules suh as DNA, titin or myosin.Appliations for adsorption phenomena in polymeri solutions an be found insuh di�erent �elds as lubriation, adhesion and surfae protetion, steri stabili-sation of olloid partiles [4℄ as well as biologial proesses of membrane-polymerinteration. To understand the latter is important for the reonstrution of ellproesses. An understanding of interfaes is also a prerequisite for making miro-or nanostrutures beause their behaviour is dominated by surfae e�ets ratherthan gravitation or inertia.Despite muh e�ort, the problem of a dilute polymer solution of variable solventquality exposed to an adsorbing substrate is not fully understood. In the ase ofa long �exible single hain in a good solvent, and no other interations presentthan the exluded volume e�et, polymers are modelled by self-avoiding walks(SAWs) on a regular lattie. De Gennes showed, that their saling properties inthe limit of an in�nite number of steps N may be derived from a formal n → 0limit of the O(n) vetor model at its ritial point [5℄. Also the Ising model(n = 1), the XY model (n = 2) and the Heisenberg model (n = 3) belong tothis family. These models that do not intrinsially ontain any boundary ondi-tions, as is, e.g.,introdued by a substrate, have been investigated intensively byvarious di�erent methods inluding mean �eld approahes, perturbation theory,transfer-matrix methods but also by exat enumerations and Monte Carlo simu-lations. So it is, e.g., well established that the radius of gyration of SAWs sales



4 CHAPTER 1. INTRODUCTIONwith N as 〈R2
〉
∼ N2ν , where ν ≈ 0.5874(2) for N → ∞ or that in a solvent thehain exhibits a transition from a ompat globule to an expanded state whenthe temperature is inreased. This transition is alled ollapse, oil-globule or

θ-transition and is indued by an e�etive attrative monomer-monomer inter-ation that is mainly due to van der Waals fores.An illustrative lattie argument on what happens at this transition an be foundin the book of M. Doi [6℄. First, for an ideal hain on a lattie that has nointrinsi interation whatsoever and an be mapped onto a random walk, theradius of gyration has to be derived for omparison. It is de�ned as
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Figure 1.1: Lattie model of the ex-luded volume hain. The solid irles arethe segments of the polymer and the hol-low irles are the solvent moleules. Pi-ture adapted from [6℄.

Here ~Rn denote positions of monomersand ~rn = ~Rn−~Rn−1 are bond vetors suhthat ~Rm − ~Rn =
∑m

i=n+1 ~ri and it wasused that there are no orrelations be-tween the diretions of di�erent bond ve-tors: 〈~ri · ~rk〉 =
〈
~r2
i

〉
δik = b2δik, where

b is the bond length. Thus the typialpolymer size of an ideal hain sales as
〈Rgyr〉 ≃ Nνb, with ν = 1/2.For real polymers two e�ets have tobe taken into aount: the exluded vol-ume e�et and the solvent e�et. Theideal hain model permits widely sepa-rated segment along the hain to oupythe same region in spae. This physialimpossibility is aounted for in an ex-luded volume hain (Fig. 1.1) that or-responds to a self-avoiding walk by im-posing the ondition that two segments



1.1 Motivation 5annot oupy the same lattie site. It is intuitively lear, that this onditionshifts the size distribution to higher values sine it is mainly the dense onfor-mations that are forbidden now. To quantify this e�et, one onsiders W (R)dR,the total number of exluded hains with the Nth step a distane between Rand R+dR away from the origin. W (R) has to be proportional to the distribu-tion funtion of R sine all possible paths have the same weight. One estimatesit by onsidering W0(R)dR for an ideal hain and multiplies it with the prob-ability that an ideal hain on�guration is also allowed under exluded volumeondition p(R) to get W (R) = p(R)W0(R). Sine the distribution funtion forlong ideal hains is known to be Gaussian and the overall number of ideal hainswith N steps is zN , where z is the oordination number, it holds
W0 (R) = zN4πR2P (~R,N) = zN4πR2

(
3

2πNb2

)3/2

exp

(

− 3~R2

2Nb2

)

. (1.2)
p(R) an be estimated under the assumption that the polymer segments areevenly distributed in a region of volume R3. If the volume of one lattie elementis denoted as νc the number of lattie sites in R3 is R3/νc. Subsequently, if oneplaes N segments on the sites the probability that one partiular segment doesnot overlap with any other one is given by 1−νc/R

3. The probability that noneof the N(N − 1)/2 possible overlaps ours is now
p(R) =

(
1 − νc/R3

)N(N−1)/2
= exp

[
1

2
N (N − 1) ln

(
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R3

)]
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,(1.3)whih together with eq. (1.2) gives
W (R) = p(R)W0(R) ∝ R2 exp

(

− 3R2

2Nb2
− N2νc

2R3

)

. (1.4)Being interested in the behaviour of the radius of gyration and knowing that
W (R) is proportional to the probability that the end-to-end distane of theexluded volume hain is R, one an use this expression to see how the maximaof W (R) and W0(R) relate to eah other. W0(R) has its maximum at R⋆

0 =
(2Nb2/3)1/2. Denoting the maximum of W (R) by R⋆ and di�erentiating thelogarithm of eq. (1.4) one gets (R⋆/R⋆

0)
5 − (R⋆/R⋆

0)
3 = (9

√
6νc)/(16b

3)
√

N ,whih yields for N ≫ 1

R⋆ ≃ R⋆
0

(

N1/2νc

b3

)1/5

∝ N3/5. (1.5)This on�rms the expetation that an exluded volume hain extends fasterwith N than an ideal hain. Extensive simulations found 〈Rgyr〉 ≃ Nνb, with
ν ≈ 0.588.., whih is lose to the estimated value.The presene of a solvent has a onsiderable in�uene on the on�guration ofthe polymer that has not been taken into aount yet. If the polymer has a high



6 CHAPTER 1. INTRODUCTIONa�nity with the solvent, the polymer is easily dissolved and in suh a good sol-vent polymer onformations are extended random oils. On the other hand, in abad solvent ompat onformations are favoured. This solvent e�et is modeledwith a parameter s in this thesis, but is mainly onsidered to be onstant. Inthe lattie model one an aount for this e�et by introduing a solvent thatonsists of single partiles oupying all lattie sites that are not oupied by thepolymers. Neighboring sites are assigned the energies −ǫpp for two polymer seg-ments, −ǫss for two solvent moleules and −ǫps for a solvent moleule-polymersegment interation. Sine these interations are van der Waals energies, ǫpp,
ǫss and ǫps are positive. This leads to an overall system energy for any on�g-uration with Npp polymer-polymer ontats, Nss solvent-solvent ontats and
Nps polymer-solvent ontats of

E = −Nppǫpp − Nssǫss − Npsǫps. (1.6)Sine this hanges the probability of an exluded volume hain in solution tohave size R to
P (R) ∝ W (R) exp

(
Ē(R)

kBT

)

, (1.7)one is interested in the average energy Ē(R) of a polymer of size R. Assumingagain that all polymer segments are uniformly distributed in a volume R3 anddenoting the probability that a lattie site in this region is oupied by a polymersegment by φ = Nνc/R
3 one an estimate the average number of ontats tobe N̄pp ≃ zNφ/2, N̄ss ≃ N0

ss − [zNφ/2 + zN(1 − φ)] and N̄ps ≃ zN(1 − φ)respetively, where N0
ss is the number of neighboring solvent pairs if there wouldbe no polymer in the system. Substituting this into eq. (1.6) gives

Ē(R) ≃ −1

2
zNφ(ǫpp + ǫss − 2ǫps) + terms independent of φ

= −zN2νc

R3
∆ǫ + terms independent of R,

(1.8)where ∆ǫ = 1
2(ǫpp + ǫss) − ǫps is the derease in energy when two polymersegments touh. Hene for ∆ǫ > 0 ompat onformations are energetiallyfavourable and ostly for ∆ǫ < 0. Plugging eq. (1.8) into eq. (1.7) �nally yields
P (R) ∝ R2 exp

(

− 3R2

2Nb2
− N2νc

2R3
(1 − 2

z∆ǫ

kBT
)

)

. (1.9)Using the same trik as before, one �nds that eq. (1.5) is valid again if onesubstitutes νc by ν = νc(1 − 2z
kBT ∆ǫ), suh that the saling is the same.Comparing eq. (1.9) with eq. (1.2), one an see now that the polymer behaveslike an ideal polymer if ν = 0. The temperature at whih this is the ase isalled the θ-temperature given by

θ =
2z∆ǫ

kB
. (1.10)



1.2 Coarse-graining 7Espeially for large N , lose to the θ-temperature only a small hange in tem-perature leads to a big hange in the size of the polymer, e.g., below the θ-temperature, the size is muh smaller than that of an ideal hain. In parti-ular, an interating self-avoiding polymer below the θ-temperature sales as
〈Rgyr〉 ∼ N1/3.However, the behaviour of the system is strongly a�eted by the presene of anattrative surfae. In its viinity the monomer-monomer attration responsiblefor the ollapsed state below the θ-transition and the surfae-monomer attra-tion responsible for the adsorption will ompete. This ompetition gives rise toto a variety of interesting new onformations. The polymer will adsorb to thesurfae, if the temperature is lowered, but at high temperatures only a �nitenumber of monomers lie on the surfae, even if the polymer is grafted to it. Thisis due to the lower entropy of onformations spread out on the surfae omparedto those �oating freely in solution.Numerous detailed studies have been performed to eluidate the onformationalbehaviour lose to and on a substrate for homo- as well as for heteropolymers.Compared to experiments omputer simulations have the advantage that om-binations of parameters an be varied at wish. Also, in many experiments it isnot ompletely lear, if the system is entirely thermodynamially equilibratedor if, e.g., polymers that were initially in solution get irreversibly adsorbed atthe substrate. The struture found an di�er onsiderably [7℄. In simulationsthese onditions an be adjusted at will.Theoretial studies have, e.g., been performed analytially with saling the-ory [8; 9℄, mean-�eld density funtional theory [10℄ and series expansion [11;12℄ and numerially with o�-lattie models suh as a bead-spring model of asingle polymer hain grafted to a weakly attrative surfae [13℄, multisale mod-elling [14℄, Monte Carlo studies of self-avoiding walks [8; 15; 16; 17; 18; 19;20℄, moleular dynamis ombined with a strething of an adsorbed homopoly-mer [21℄ or exat enumeration [22℄. Also adsorption-desorption dynamis wereinvestigated with moleular dynamis of oarse-grained models [23℄.1.2 Coarse-grainingThe notieable frequeny with whih oarse-grained models, that inlude lat-tie models, are applied has good reasons. First, one has to understand theomplexity of the problem posed by naturally ourring maromoleules withup to ten thousands of atoms. Although the physial interations present arein priniple known, the long-range overlap of many-body orbitals, the sreeningby the positively harged ores, the interation with the solvent et. make apreise predition of the behaviour of the system based on ab initio quantum-mehanial alulations pratially impossible. For the related problem of pro-tein folding, lassial models with many e�etive parameters (�fore �elds�) havebeen developed in the past deades to study folding dynamis or to predit na-tive strutures in omputer simulations. So, e.g. the SMMP (Simple Moleular



8 CHAPTER 1. INTRODUCTIONMehanis for Proteins) [24℄ implementation of the ECEPP/3 (Empirial Con-formational Energies for Proteins and Polypeptides) fore �eld has seven di�er-ent parametrisations of hydrogen, depending on the hemial group it belongsto. In a di�erent approah one starts with a simple ansatz for the interationpotential and alibrates against pertaining data to folding properties of wholehains. This is implemented in the pakage PROFASI (PROtein Folding andAggregation SImulator) [25℄.But even those simpli�ed models are still hard to manage even by sophistiatedalgorithms and powerful apability omputers. And if one does, it turned outthat the folding behaviour sensitively depends on the hoie of the fore �eldparameters, suh that preditions of di�erent models do not frequently oinide.Despite the exiting development and the suesses in this �eld and its need ifone wants to look loser at detailed strutures, for our purposes it is su�ientto work on even oarser grains.A linear polymer is a hain of moleular subunits alled monomers. These anbe idential (homopolymer) or vary along the polymer (heteropolymer). Here,we are only interested in general properties of semi�exible homopolymers andtheir adsorption properties on a substrate. General properties are those thatare independent of the detailed hemial struture of the polymer. Hene alsothe model applied an be redued to the basi properties of the system and thepolymer is regarded as a hain of point-like e�etive monomers. This parametriredution is alled oarse-graining [26; 27℄. In partiular, in a oarse-grainedmodel, the number of monomers and the degree of polymerisation are not ne-essarily the same thing. In fat, several hain segments are merged to form onee�etive monomer (Fig. 1.2). Hene the oarse-grained model has fewer degreesof freedom than those atually present in the system and the relevant lengthsales are inreased. To work with a oarse-grained model has thus two advan-tages: Unneessary details are disregarded and the omputational analysis ismuh faster.
Figure 1.2: Transition from the hemial poly-mer to the oarse-grained model.

l

Suitable potentials are needed thatgive rise to the self-avoidane ofthe polymer, i.e. di�erent parts ofthe hain should not be allowed tooverlap, and re�et the interationbetween di�erent monomers. Alsoa bending-sti�ness or torsional po-tential ould be taken into aount.The solvent is impliitly modeledby the interation between themonomers, whih again dereases the degrees of freedom and inreases thespeed with whih the simulation an be done. In real polymer solutions witha good solvent, the monomers and the solvent moleules attrat eah other.Consequently, solvent moleules aumulate between monomers and push themonomers apart. This an be modeled with a repulsive interation between themonomers. In a bad solvent, it is just the other way around: repulsive intera-



1.2 Coarse-graining 9tion between monomers and solvent moleules but also entropi fores at likean e�etive attrative potential between the monomers and the polymer shrinksto form a globular onformation. There are several models that satisfy theseonditions. The one applied here is desribed in more detail in the next hapter.
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2 The ModelIn this hapter, a omplete desription of the studied model inluding intrin-si polymer interations, surfae interation as well as the applied boundaryonditions will be given. Also the measured observables will be motivated andintrodued.2.1 De�nition of the PolymerThe model applied here is a oarse-grained model of a semi�exible homopolymer.It is adapted from the AB model [29; 30℄, an o�-lattie generalisation of the HPmodel [31℄, where the monomers are onstrained to the grid points of a simpleubi lattie and the polymer is modeled by a self-avoiding walk. But while ABand HP model are heteropolymer models with hydrophobi (A, H) and polar(B, P) monomers, we restrit ourselves to homopolymers, suh that only onekind of monomers is taken into aount that builds up the whole polymer bymere repetition of always the same unit.Our model is a oarse-grained model, that is not onstrained to a lattie. Theassoiated additional omputational ost is aepted in order to get rid of un-desired e�ets of the underlying lattie symmetries of lattie models. As on thelattie, the distane between adjaent monomers is �xed and set to unity ingood relation to the monomer-monomer-potential, but the angles are now freeto rotate. The energy funtion has three terms:
Etotal = Ebend + ELJ + Esur, (2.1)the bending energy Ebend, a Lennard-Jones interation energy ELJ and a surfaeattration energy Esur. A torsional potential is not onsidered. A sketh of a

Figure 2.1: A segment of the semi�exible polymer model. The distane between two adjaentmonomers is �xed and set to unity. The bonding angle at the (k + 1)th monomer is denotedby ϑk and the vetor between the kth and (k + 2)th monomer by ~rk+2,k ≡ ~rk+2 − ~rk.



12 CHAPTER 2. THE MODELpolymer segment of this model without the surfae an be seen in Fig. 2.1. Ifthe position vetor of the kth monomer, k = 1, . . . ,N , is denoted by ~rk, theondition of �xed monomer-monomer distane reads as
|~rk+1 − ~rk| = 1 ∀ k = 1, . . . ,N − 1. (2.2)A polymer with N monomers has N − 1 bonds between neighboring monomersand N − 2 bending angles ϑk, k = 1, . . . ,N − 2, that are de�ned by
cos (ϑk) = (~rk+1 − ~rk) · (~rk+2 − ~rk+1) . (2.3)
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With those de�nitions both intrinsi energy terms an be de�ned. The Lennard-Jones term that is always repulsive at short ranges is given by

ELJ = 4
N−2∑

i=1

N∑

j=i+2

(

1

r12
ij

− s
1

r6
ij

) (2.4)with s being a onstant inverse solubility parameter. For s ≤ 0 the monomersrepel eah other whih leads to spread out onformations as an be found ingood solvents (Fig. 2.2). On the other hand for s > 0 the monomers attrateah other whih for high enough attration leads to globular onformations likein a bad solvent. The minimum of the Lennard-Jones potential between twomonomers rmin = 6
√

2/s hanges with s and equals the distane of neighboringmonomers along the hain at s = 2. The depth of the potential goes with sas ELJ(rmin) = −s2. Hene, if one only wants to model attrative monomer-monomer interations, it might be just as reasonable to �x s and vary the wholeLennard-Jones interation ELJ linearly. We mainly hoose s = 1 to modelhydrophobi peptides, but also start to investigate the behaviour for s ∈ [−2, 5]for a short hain. The bending sti�ness is de�ned as (Fig. 2.3)
Ebend =

1

4

N−2∑

k=1

(1 − cos (ϑk)) . (2.5)



2.2 The Surfae Potential 13The angle ϑk is in the interval [0, π) and the bending sti�ness an be viewed asa penalty introdued for bonds that deviate from the straight onformation.
2.2 The Surfae PotentialTo de�ne a suitable attrative surfae potential, we �rst assume that the surfaeis made up of a single type of lattie planes, that are arranged in layers to forma rystal. The upper layer is in ontat with the polymer and forms a regularlattie where next neighbours of an arbitrary atom with distane l1 and l2 liein the diretion of the unit vetors ~a1 and ~a2, respetively. Thus, the surfaelattie an be ompletely desribed by the lattie vetors ~a1 and ~a2. Now, theinteration of a single monomer with the rystal V (~s, z) an be expressed interms of a two-dimensional vetor ~s , that gives the position of the monomer inan xy-plane parallel to the surfae, and the z-distane to the wall. Due to theperiodi struture of the surfae, this potential is a periodi funtion

V (~s, z) = V (~s + l1 ~a1 + l2 ~a2, z) , (2.6)with integer l1 and l2. The natural way of representing a periodi funtion suhas eq. (2.6) is a Fourier series:
V (~s, z) = V0 (z) +

∑

q 6=0

Vq (z) ei~q·~s. (2.7)Here V0 (z) is a mean over the whole surfae and the sum is over all two-dimensional reiproal lattie vetors ~q = 2π
(

n1
~b1 + n2

~b2

) with natural num-bers n1, n2. ~a1, ~a2, ~b1 and ~b2 are de�ned suh that ~a1 · ~b1 = 1 = ~a2 · ~b2 and
~a1 ·~b2 = 0 = ~a2 ·~b1 holds. If the sum is negleted and one only works with V0 (z),the wall is modeled as ompletely smooth and formless in lateral diretion. Thisis what we are going to employ.We assume that the interation between polymer units and the substrate is ofvan der Waals type, modeled by the usual Lennard-Jones 12-6 expression

VLJ (r) = 4ǫs

[(σ

r

)12
−
(σ

r

)6
]

. (2.8)In order to simplify the problem on mesosopi sales, we integrate this potentialover the plane parallel to the surfae, sine the potential only depends on thedistane z to the surfae. This is best done using ylindrial oordinates for
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Figure 2.4: Graphial representation of the integration over all surfae layers.whih d3~r = d2~s dz = ρdρdϕdz and r =

√

ρ2 + z2 holds:
∫

∞

−∞

VLJ (r) d2~s = 4ǫs

∫
∞

0

ρdρ

∫ 2π

0

dϕ





(

σ
√

ρ2 + z2

)12

−
(

σ
√

ρ2 + z2

)6




= 8πǫsσ
2









σ10

∫ ∞

0

dρ

(

ρ
√

ρ2 + z2

)12

︸ ︷︷ ︸

1/(10z10)

−σ4

∫ ∞

0

dρ

(

ρ
√

ρ2 + z2

)6

︸ ︷︷ ︸

1/(4z4)









= 2πǫsσ
2

[
2

5

(σ

z

)10

−
(σ

z

)4
]

. (2.9)Multiplying this with the density ρsurf of the atoms in the area gives the inter-ation energy of a monomer with an area a distane z away:
VLJ,plane (z) = 2πǫsρsurfσ
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. (2.10)To model a ompat wall, that onsists not only of a single layer of atoms,but of plenty of them reahing from distane z to ∞ (Fig. 2.4), an additionalintegration over the z-omponent has to be performed:
Vsurf (z) =
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2.3 De�nition of Measured Observables 15This �nally is the potential we use in our simulations of hybrid systems. It issimilar to the one derived in Ref. [32℄. The underbraed onstant fator as wellas σ is set to unity in all the simulations. Di�erent surfaes are modeled byvarying ǫs. The funtional dependene is represented in Fig. 2.5.All energy ontributions of our homopolymer near an attrative substrate sumup to give the total energy:
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210-1-2-3-4-5Figure 2.5: The surfae potential (2.11) plotted for various values of ǫs. The minimum isattained at z = (2/5)1/6 ≈ 0.858.2.3 De�nition of Measured ObservablesIn order to extrat as many information as possible about the anonial equilib-rium behaviour out of the simulations, suitable measurable quantities have to bede�ned. Additionally to these quantities, it is very instrutive to also onsidertheir �utuations.The anonial expetation value of any quantity O is given by
〈O〉can (T ) =

∑

µ∈M Oµe−
Eµ
T

∑

µ∈M e−
Eµ
T

(2.13)and its �utuation is obtained from the temperature derivative of the expeta-
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. (2.14)Considered are the following energetial and strutural quantities and their �u-tuations.Energy: The total energy E given in eq. (2.12) is measured over the wholeparameter regime of interest. The heat apaity is de�ned as �utuation of theenergy

C =
d 〈E〉
dT

, (2.15)whih is aording to eq. (2.14) equivalent with:
C =

〈
E2
〉
− 〈E〉2

T 2
. (2.16)Radius of Gyration: The radius of gyration is a measure used to desribe theextension of a polymer hain. It is de�ned as the mean distane of a monomerfrom the entre-of-mass of the polymer:

R2
gyr ≡

1

N

N∑

n=1

〈(

~Rn − ~Rcm

)2
〉

with ~Rcm =
1

N

N∑

n=1

~Rn. (2.17)This representation is ompletely equivalent to
R2

gyr ≡
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2N2
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N∑
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〈(

~Rn − ~Rm

)2
〉

, (2.18)as an be proven quite easily. What makes the radius of gyration an interestingproperty is that it is related to the pair orrelation funtion
g (~r)

1

N

N∑

n=1

N∑

m=1

〈

δ
(

~r −
(

~Rm − ~Rn

))〉 (2.19)of polymer segments and an be measured experimentally with stati light sat-tering as well as with small angle neutron- and X-ray sattering whih allowsto hek theoretial preditions against experiments [6; 33; 34℄.Sine the substrate introdues a strutural anisotropy into the system, it is notonly worthwhile to look at the overall ompatness of the polymer expressed



2.3 De�nition of Measured Observables 17by 〈Rgyr〉, but also to study the expeted di�erent behaviour of its omponentsparallel and perpendiular to the surfae:
R2

gyr,‖ =
1

2N2

N∑

n=1

N∑

m=1

〈

(xn − xm)2 + (yn − ym)2
〉 (2.20)and

R2
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2N2

N∑

n=1
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〈

(zn − zm)2
〉

. (2.21)Here ~Rn = (xn, yn, zn) and ~Rm = (xm, ym, zm) suh that R2
gyr = R2

gyr,‖+R2
gyr,⊥.What we determined is 〈Rgyr〉, 〈Rgyr,‖

〉 and 〈Rgyr,⊥〉, for whih 〈Rgyr〉2 6=
〈
Rgyr,‖

〉2
+ 〈Rgyr,⊥〉2. Additionally, the thermal �utuations d 〈Rgyr〉 /dT ,

d
〈
Rgyr,‖

〉
/dT and d 〈Rgyr,⊥〉 /dT were measured using eq. (2.14).We also estimated the end-to-end distane Ree = RN −R1 but gained no addi-tional information from it.Distane of the Centre-of-Mass of the Polymer to the Surfae: This quan-tity is useful sine it provides lear evidene if the polymer is on average freelymoving in the box or very lose to the surfae. Apart from that it is very easilyimplemented, sine one only needs to average over the z-omponents that oneneeds in the simulation anyway:

zcm =
1

N

N∑

i=1

zi. (2.22)Again, 〈zcm〉 and its thermal �utuations d 〈Rcm〉 /dT were measured both.Mean Number of Surfae Contats: Not only the distane to the surfae, butin partiular also the number of monomers doked to the surfae, gives a usefulontribution to identify pseudo-phases. So all monomers attahed orrespondsto a single layer struture, none attahed to a free polymer and all the exitingthings happen in between. The surfae potential is a ontinuous potential andin order to di�erentiate monomers doked to the substrate from the ones notdoked, it is neessary to introdue a uto�. After regarding eq. (2.11) wedeided somewhat arbitrarily but reasonably to de�ne a monomer with z <
zc ≡ 1.2 as a doked monomer. The orresponding measured quantity is theaverage ratio 〈ns〉 of monomers doked to the surfae to the total number ofmonomers. This an be expressed as:

ns =
Ns

N
with Ns =

N∑

i=1

Θ (zc − zi) , (2.23)where Θ(z) is the Heaviside step funtion. Again also its thermal �utuation
d 〈ns〉 /dT is measured. Note that 〈ns〉 also re�ets the energy ontributionfrom the surfae attration Esur.



18 CHAPTER 2. THE MODELMean Number of Intrinsi Contats: The mean number of intrinsi ontatsis a measure of the overall ompatness of the polymer just as the radius ofgyration is and re�ets the ontribution of the intrinsi Lennard-Jones energy.Again, there is no obvious way how to de�ne a monomer-monomer ontat andwe deided to introdue a uto� as follows:
nm =

Nm

N
with Nm =

N−2∑

i=1

N∑

j=i+2

Θ (Ec − ELJ (rij)) . (2.24)Here ELJ (rij) = 4
(

r−12
ij − s r−6

ij

) as in Fig. 2.2 and Ec ≡ −0.2. Θ(E) is againthe Heaviside step funtion. This de�nition works for varying s although forsmall s ns is always zero. 〈nm〉 and d 〈nm〉 /dT are looked at.2.4 Boundary Conditions
steri wall,no potential periodi boundaryonditions inx- and y-diretion

attrative substrate xyz
Figure 2.6: Shemati representation of the boundary onditions applied.In the simulations, two di�erent kinds of boundary onditions were used. Paral-lel to the wall � in z-diretion � the boundary onditions are purely steri, i.e.,an update is simply rejeted if it suggests to ross the wall at z = 0 or z = Lbox.At z = 0 the attrative surfae potential is applied. This steri wall is neessaryto prevent the peptide from esaping to large z away from the wall with theshort range interation that we want to investigate. Sine the exat form of thedensity of states depends on the box height Lbox, also all observables dependon the hoie of Lbox. As soon as the box size however exeeds the polymersize, the in�uene on the observables is reasonably small. For smaller boxes,interesting deviations in the thermodynami behaviour an be observed [35℄.Perpendiular to the wall in xy-diretion, periodi boundary onditions with theminimum image onvention are applied. This is stritly speaking not neessaryand one might just as well apply no boundary onditions at all. They areapplied here to allow for a possible addition of a seond or more polymers into
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This quantity learly is the onethat depends the most on the boxsize. For high temperatures, thepolymer an move freely withinthe box suh that 〈zcm〉 ≈ Lbox/2.For low T however the polymerprefers to stay lose to the surfae.Aordingly, also the �utuation of
〈zcm〉 depends on the box size andas indiated in Figure 2.7(b) thepeak height depends very stronglyon it. Also the peak position shiftsto lower temperatures if the boxsize inreases. One has to keep thisdependene in mind when deidingto onentrate on a �xed box sizeas we do.But as soon as the box is learly larger than the average size of the polymer,the in�uene of the box on the onformation of the polymer is not so strikingany more. This is shown in Figure 2.8, where the radius of gyration is displayedfor varying Lbox. As soon as Lbox & N , the hange with Lbox gets smaller thanthe statistial error. We hose Lbox = 20 for N = 13 and Lbox = 40 for N = 20.Although this redution of the phase spae will always e�et the entropy, thishoie allows us to still draw valueable onlusions out of the simulation.
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3 Monte Carlo SimulationsThe Monte Carlo method is a numerial method that omputes its results byrepeated random sampling of states. This is done by drawing pseudo randomnumbers that are generated by speial algorithms, the so alled random numbergenerators [36; 37℄. We only give a very short sketh of the idea here and referfor more informations to the standard literature [38; 39; 40; 41℄.The term Monte Carlo was oined in the 1940s by physiists working on nulearweapon projets in the Los Alamos National Laboratory and was learly sup-posed to re�et some of the glamour of the eponymous ity that is famous forits gambling � another area where random numbers play a role. The idea to userandom numbers is, however, older and was, e.g., applied to estimate integralsor π.For Monte Carlo integration one uses that the expetation value of the meanover a �nite number of random variables f(xi) with xi drawn aording to theprobability density ρ(x) is idential with the expetation value of f(x) over theunderlying distribution:
〈
f
〉

= 〈f (x)〉 , where f =
1

n

n∑

i

f (xi) , xi ∝ ρ (x) . (3.1)Knowing that the original de�nition of the expetation value is an integral overthe distribution
〈f (x)〉 =

∫

ρ (x) f (x) dx = lim
n→∞

1

n

n∑

i

f (xi) , xi ∝ ρ (x) , (3.2)one an see that the mean f in eq. (3.1), that is a random number �utuatingaround the theoretially expeted value, approximates the integral in eq. (3.2)with an error that diminishes proportional to 1/
√

n. All true random samplingtehniques behave like this as a universal onsequene of the entral limit theo-rem. What an be in�uened by smart sampling tehniques is the prefator of
n−1/2 that depends on the variane of the funtion being sampled. A very helpfulobservation is the fat that the n−1/2-behaviour is independent of the dimension.Thus, espeially for high-dimensional integrals, Monte Carlo simulations are themethod of hoie. Other numerial methods like quadrature rules based oninterpolating funtions [42℄ sometimes onverge faster at low dimensions, buteven for low-dimensional ases where Monte Carlo is not the most e�iientmethod it may be an interesting way to produe a rude estimate due to itssimpliity. Thanks to its great generality the Monte Carlo tehnique an be



22 CHAPTER 3. MONTE CARLO SIMULATIONSapplied to various problems and espeially for ones with a high phase spaedimensionality like in our ase, there is no better method known.In statistial physis, the anonial expetation value of an observable O is givenby eq. (2.13). Exat enumeration � or integration for ontinuous systems � isimpossible for realisti models due to the overwhelming large number of possibleon�gurations that sales exponentially with system size. In order to neverthe-less get an estimates of anonial expetation values, Monte Carlo simulationsare needed. Here one takes a random subset R from some probability distribu-tion pµ that is spei�ed leverly beforehand instead of the whole on�gurationspae and estimate the expetation value as follows:
〈O (E)〉 (T ) =

∑

µ∈R O (Eµ) e−Eµ/T /pµ
∑

µ∈R e−Eµ/T /pµ
. (3.3)This estimate is rather poor if all pµ are equal (simple sampling), beause it isonly possible to sample a very small fration of the total number of states. Onthe other hand, if one piks those states that make an important ontributionto eq. (2.13) and ignores others, whih is alled important sampling, one an dorather well. How we hoose suh important states for our model is explained inthe next setion.3.1 Generation of Relevant Con�gurationsIf one would randomly generate new on�gurations that satisfy the given on-straints of �xed bond length, the danger of generating many thermodynamiallyirrelevant high-energy onformations with two or more monomers in unphysiallose proximity is high. One would e�etively suggest all on�gurations withequal probability and perform a simple sampling with the mentioned poor per-formane. Hene it beame ommon pratie to generate new onformationsusing a Markov proess, i.e. given a system in state µ a new state of that system

ν is generated that still resembles state µ and so forth. The probability forthe transition from µ to ν is alled transition probability P (µ → ν) and for atrue Markov proess P (µ → ν) does not vary over time and should depend onlyon the properties of the states µ and ν and nothing else. Also the onstraint
∑

ν P (µ → ν) = 1 has to hold sine the Markov proess must generate somestate ν when handed a system µ, inluding µ itself.Di�erent updates generate some random new state ν if given state µ that still isvery similar to the old one. Unlike e.g. for the Ising model, where it is possibleto update (�ip) a single spin whih only a�ets its nearest neighbours, no loalupdates exist for our ontinuous model, i.e. every update a�ets more thanjust its nearest neighbours. This is due to the long-range interations of themonomers suh that monomers that are far away along the hain, are spatiallyin lose proximity and interat. That is why individual updates are more timeonsuming for our model and the aeptane ratio (eq. (3.7)) dereases for denseonformations.



3.1 Generation of Relevant Con�gurations 23In order for the Markov hain to produe a subset of states ν distributed withprobability pν , the following two important onditions have to be met:1. Ergodiity : With the applied sequene of updates it should be possible toreah any on�guration in the on�guration spae from any other duringthe simulation. If the simulations ontains more than Ns updates, thisreads as
P (µ → ν) = P (µ → λ1)

[
Ns−1∏

i=1

P (λi → λi+1)

]

P (λNs → ν) . (3.4)2. Detailed balane: If a system is in equilibrium, the rate at whih thesystem enters and leaves any state µ must be equal:
∑

ν

pµP (µ → ν) =
∑

ν

pνP (ν → µ) , (3.5)whih is equivalent (using ∑ν P (µ → ν) = 1) to pµ =
∑

ν pνP (ν → µ).But this ondition alone does not guarantee that the Markov hain willhave the desired probability distribution pν , due to the possibility of so-alled limit irles [41℄. Thus one requests the stronger ondition of de-tailed balane
pµP (µ → ν) = pνP (ν → µ) (3.6)that ensures a generation of states with pν .We now need to implement a Markov hain with transition probabilities thatsatisfy the onditions given above. To do so, a trik is used: The transitionprobability P (µ → ν) is split up into two parts:

P (µ → ν) = g (µ → ν)A (µ → ν) . (3.7)The quantity g (µ → ν) is the seletion probability with whih, given a state µ,the update generates a new state ν, and A (µ → ν) is the aeptane probabilitywhih gives the fration of times that the generated state is adopted. This leavesomplete freedom to hoose an update to generate new states, sine the rest anbe taken are of with the right aeptane probabilities.We hose a ombination of updates that is ergodi and for whih g (µ → ν) =
g (ν → µ). Then the ondition of detailed balane (eq. (3.6)) redues to

pν

pµ
=

P (µ → ν)

P (ν → µ)
=

g (µ → ν)A (µ → ν)

g (ν → µ)A (ν → µ)
=

A (µ → ν)

A (ν → µ)
. (3.8)In the following, the updates used in the simulations are desribed in detail.



24 CHAPTER 3. MONTE CARLO SIMULATIONS3.1.1 Spherial update � Forwards (F) and Bakwards (B)
Figure 3.1: Graphial representation of the spherial update. One monomer is moved onthe surfae of a spherial setor around its preeding monomer. The hange in the bondingangle is alled ∆ϑ and the rotation angle is named ∆ϕ. All following monomers are movedby the same di�ereneOne possible update is to pik one bond at random, rotate it and attah thefollowing bonds without rotation (Fig. 3.1). If the hosen bond is ~r = ~rk+1−~rk,the rotated (k+1)th monomer moves on a spherial surfae around the kth one,sine the bond length is �xed. This explains the name 'spherial update' [43℄.There are several ways and means how to implement this update. The im-plementation used here is adopted from Ref. [44℄. We replae the vetor
~r = ~rk+1 − ~rk by its rotated version ~r′:

~r′ = cos ∆ϑ~er + sin ∆ϑ sin∆ϕ~eϕ + sin ∆ϑ cos ∆ϕ~eϑ. (3.9)Sine ~r = |r|~er = ~er and ~r ⊥ ~eϕ ⊥ ~eϑ this is the rotation of ~r′′ = cos ∆ϑ~er +

sin ∆ϑ~eϑ, some unit vetor with ∠(~r, ~r′′) = ∆ϑ, an arbitrary angle ∆ϕ about ~r.For reasons of e�ieny, we would like to have a restrition on ∆ϑ that wehoose to be ∆ϑmax = 5◦. Furthermore, to distribute the ~r′ evenly on thesurfae of the spherial ap (dA = cos ϑdϑdϕ) cos ∆ϑ has to be hosen evenlyfrom the interval (cos ∆ϑmax, 1] and ∆ϕ from the interval [0, 2π). Although the�rst suggested implementation proves that this equidistribution is not neessaryto guarantee g (µ → ν) = g (ν → µ), it is still a way to make sure, that it holds.In pratie, it is easiest to only use artesian oordinates sine they are alreadyimplemented. Our hoies were
~er =





x
y
z



 , ~eϕ =
1

√

x2 + y2





−y
x
0



 , ~eϑ =
1

√

x2 + y2





−xz
−yz

x2 + y2



(3.10)with ~eϑ =
~er×~eϕ

|~er×~eϕ|
if x2 + y2 > 0.1 and

~er =





x
y
z



 , ~eϕ =
1√

x2 + z2





z
0
−x



 , ~eϑ =
1√

x2 + z2





−xy
x2 + z2

−yz



(3.11)otherwise. The distintion is made to avoid problems for x ≈ y ≈ 0, where ~eϕand ~eϑ are not well de�ned for the �rst hoie.



3.1 Generation of Relevant Con�gurations 25This update reahes all on�gurations with the �rst monomer �xed at its originalposition. If one uses this update not only in one diretion, but also in bakwardsdiretion (the kth monomer rotates around the (k +1)th) all on�gurations anbe obtained. These are two independent updates.Espeially in globular on�gurations, spherial updates might be energetiallydisadvantageous, sine often large parts of the polymer are moved against eahother. Here a semi-loal update, that only moves one monomer at a time ouldhelp.3.1.2 Semi-Loal Update (L)
Figure 3.2: Graphial representation of the semi-loal update. Here only one monomer isrotated by a random angle α around the axis de�ned by the two neighboring monomers.The semi-loal update is inspired by the orner-�ip update on a 2D lattie. Butdue to the ontinuous spae, the rotation angle is not restrited to one angle(180◦) anymore. One rather rotates the kth monomer, that is hosen randomlywith 1 < k < N , about the onnetion vetor ~v of its neighboring monomers

~v =
~rk+1 − ~rk−1

|~rk+1 − ~rk−1|
(3.12)by a random angle α ∈ [0, 2π) (Fig. 3.2). This is done by applying the rotationmatrix R (~v, α) (eq. (3.14)) to the onnetion vetor ~r = ~rk − ~rk−1, suh thatthe �nal position of the kth monomer is given by

~r′k = R (~v, α)~r + ~rk−1

= ~r′ + ~rk−1.
(3.13)This update alone is not ergodi, beause the monomers at the edge are leftunhanged. But at least g (µ → ν) = g (ν → µ) holds.3.1.3 Rigid-Body Rotation (R)Sine the surfae introdues a spatial anisotropy, the energy is not invariantunder rotation. So as an additional update, a rotation of the whole polymerabout its entre of mass is introdued. The entre of mass was de�ned within aseond oordinate system without periodi boundary onditions to irumvent



26 CHAPTER 3. MONTE CARLO SIMULATIONSthe problems in de�ning a entre of mass in a periodi system. Again therotation matrix R (~v, α) is applied, that rotates the moleule about the axis ofrotation ~v by an angle α:
R (~v, α) =

0

@

cos α + v2
1 (1 − cos α) v1v2 (1 − cos α) − v3 sinα v1v3 (1 − cos α) + v2 sinα

v2v1 (1 − cos α) + v3 sin α cos α + v2
2 (1 − cos α) v2v3 (1 − cos α) − v1 sinα

v3v1 (1 − cos α) − v2 sin α v3v2 (1 − cos α) + v1 sinα cos α + v2
3 (1 − cos α)

1

A .(3.14)We did not restrit this rotation to small angles, suh that a good hoie for ~vis
~v =





v1

v2

v3



 =





sinϑ cos ϕ
sinϑ sin ϕ

cos ϑ



 (3.15)with cos ϑ ∈ (1,−1], ϕ ∈ [0, 2π) and α ∈ [0, 2π).After the rotation, the position ~rk of the kth monomer is replaed by
~r′k = R (~v, α) (~rk − ~rcm) + ~rcm. (3.16)Just as the translation, this update does not in�uene the intrapolymeri in-terations but only the interation with the surfae. It keeps the shape of thepolymer �xed.3.1.4 Translation (T)The ombination of updates introdued so far hardly hanges the distane tothe attrative surfae. This auses the polymer to need many sweeps to �nallyfeel the in�uene of the surfae if the simulation is initialised with a randomonformation in the middle of the box. On the other hand, one aught at thesurfae, it will take a long time to desorb.Introduing a translation of the whole moleule eliminates the problem. We�rst implemented a translation by a length l hosen at random in the interval

l ∈ [0, 1) in arbitrary diretion but deided soon that with only a single polymerin the system and translational invariane in xy-diretion, it is su�ient to onlytranslate in z-diretion.3.1.5 Sweep SequeneOne sweep onsists of an ergodi mixture of all of those updates and ontainsas many updates as the polymer ontains monomers.With the one-letter odes F, B, L, R and T given in the preeding subsetionheadings, a typial hain of updates is:TFBRFBLFB TFBRFBLFB T. . .



3.2 Multianonial Sampling 273.2 Multianonial SamplingThe tehnique we mainly used is multianonial sampling [40; 45; 46; 47℄.Its basi idea is to sample states with a �at energy histogram and to reweightthe data to get the anonial expetation values for the relevant temperaturerange (see setion 3.3). This approah has several advantages. Unlike withmultihistogram tehniques [41; 48℄, there is no need to reate several histogramsin order to aumulate enough statistis for eah energy bin, but all the neessarystatistis is generated and reweighted in a single simulation. So in a way multipleanonial simulations are substituted by a single long run whih explains thename �multianonial�.Even more important is the ability of this tehnique to sample on�gurationswith low probability. A anonial simulation samples states with the Boltzmanndistribution of energies
p (E, β) ∝ Ω (E) e−βE = e−βE+lnΩ(E) = e−βF . (3.17)Hene, states with rare realizations (low Ω (E)) or high energies (low e−βE)are suppressed. Beause of the �rough� free energy landsape, the simulation islikely to get trapped in loal free energy minima with an exponentially growingautoorrelation time τ ∝ eβ∆F , where ∆F is the free energy barrier to over-ome between two loal free energy minima. Thus multianonial simulationsthat ideally perform a random walk in energy spae signi�antly redue theautoorrelation time and the probability to not sample important states of thephase spae that would not be reahed by anonial simulations due to energybarriers, allowing to gain muh more aurate results in a given CPU time.In order to sample states with a �at histogram one needs multianonial weights

Wmuca (E) satisfying
pmuca (E) = Ω (E)Wmuca (E) ≈ const.. (3.18)The reweighting bak is then done via

〈O〉 (β) =

∑

i O (Ei) (Wmuca (Ei))
−1 e−βEi

∑

i (Wmuca (Ei))
−1 e−βEi

, (3.19)whih in priniple works for all kinds of weights and should give the same anon-ial expetations values, but the performane depends ruially on the hoie of
W (E). So, e.g., for W (E) = e−βE , the anonial ensemble is reovered.Before the atual multianonial simulation an be performed, the weights
Wmuca (E) have to be onstruted. We use the multianonial reursion [45;47℄ to do so.Altogether the method onsists of the following three steps:1. Determining the weights Wmuca (E)2. Simulation run with �xed weights and high statistis3. Reweighting to obtain the anonial expetation values



28 CHAPTER 3. MONTE CARLO SIMULATIONS3.2.1 Multianonial ReursionThe idea of the reursion is that the weights should be inversely proportionalto the density of states, that is a priori unknown [45; 47℄:
Wmuca (E) ∝ 1

Ω (E)
= e− lnΩ(E) ≡ e−S(E). (3.20)Using the dimensionless, miroanonial free energy

f (E) =
F (E)

T (E)
=

U (E) − TS (E)

T (E)
= β (E) E − S (E) (3.21)this an be rewritten as

Wmuca (E) ∝ e−β(E)E+f(E). (3.22)But f (E) and β (E) are not independent. A relation between them an bederived onsidering
β (E) =

1

T (E)

!
=

∂S

∂E
= β (E) + E

∂β (E)

∂E
− ∂f (E)

∂E
≈ S (E + ǫ) − S (E)

ǫ (3.23)aording to the �rst law of thermodynamis dU = TdS − pdV and eq. (3.21).This requires
E

∂β (E)

∂E
− ∂f (E)

∂E
= 0 (3.24)to hold true, whih is ensured by the relation

f (E) − f (E − ǫ) = (β (E) − β (E − ǫ)) E, (3.25)where ǫ is the smallest energy di�erene. This is a simpli�ation, but sine thereursion is implemented on a omputer, one has to disretise anyway.Using some initial values Wmuca,0 (E) that orresponds to some f0 (E) and
β0 (E), the initial run an be performed to gain the histogram H0 (E). Weused Wmuca,0 (E) = 0, ∀E, that gives the same weight to all energies1. Thehistogram in turn is used to determine f1 (E), β1 (E) and hene Wmuca,1 (E),a better estimate for the multianonial weights. This is done reursively suhthat Hn (E) is used to �nd Wmuca,n+1 (E) until the histogram eventually gets�at enough.To get the most out of the simulations done so far, it makes sense to performan error weighted average

βn+1 (E) = κ (E) β̃n (E) + (1 − κ (E)) βn (E) . (3.26)The new estimate β̃n (E) from the last simulation is determined onsidering
W̃muca,n (E) ∝ 1

Ω (E)
= e−S̃n(E) ∝ Wmuca,n (E)

Hn (E)
(3.27)1Note that this orresponds to f0 (E) = 0 and β0 (E) = 0 whih is the same as anonialsampling at in�nite temperature.



3.2 Multianonial Sampling 29and eq. (3.23):
β̃n (E) =

S̃n (E + ǫ) − S̃n (E)

ǫ

=
ln W̃muca,n (E) − ln W̃muca,n (E + ǫ)

ǫ

=
ln (Hn (E + ǫ)) − ln (Hn (E)) − (lnWmuca,n (E + ǫ) − lnWmuca,n (E))

ǫ

=
ln (Hn (E + ǫ)) − ln (Hn (E))

ǫ
+ βn (E) . (3.28)Taking the logarithm of empty histogram bins seems to be a problem here,but one an get around this onsidering the weights κ (E) in eq. (3.26) thatdisappear for empty histogram entries.

κ (E) has to be inversely proportional to the variane of β̃n (E). Aording toeq. (3.28) this is
σ2(β̃n (E)) = σ2 (βn (E)) +

σ2 (ln Hn (E + ǫ))

ǫ2
+

σ2 (ln Hn (E))

ǫ2
. (3.29)

σ2 (βn (E)) vanishes sine βn (E) is kept �xed in eah simulation.For the remaining terms it an be used that
σ2 (ln Hn (E)) = [ln (Hn (E) + ∆Hn (E)) − ln (Hn (E))]2

=

[

ln Hn (E) +
∆Hn (E)

Hn (E)
− ln Hn (E)

]2

=

[
∆Hn (E)

Hn (E)

]2

∝ 1

Hn (E)
, (3.30)where ∆Hn (E) is the �utuation in the nth histogram whih is known to growwith the square root of the number of entries, ∆Hn (E) ∝

√

Hn (E) ≪ Hn (E),whih allows a Taylor-expansion.This yields
σ2
(

β̃n (E)
)

∝ 1

Hn (E + ǫ)
+

1

Hn (E)
. (3.31)Now, κ (E) is found by introduing

p (E) =
Hn (E + ǫ)Hn (E)

Hn (E + ǫ) + Hn (E)
∝ 1

σ2
(

β̃n (E)
) (3.32)and normalising it to all simulations so far:

κ (E) =
p (E)

p (E) + pn (E)
. (3.33)

pn (E) is the sum of all previous p (E) and κ (E) = 0 if pn (E) = 0 and/or
p (E) = 0.



30 CHAPTER 3. MONTE CARLO SIMULATIONSMatters an be simpli�ed further if one rewrites the reursion in eq. (3.26) witheq. (3.25) to
βn+1 (E) = βn (E) + κ (E)

ln Hn (E + ǫ) − ln Hn (E)

ǫ
(3.34)and use this together with the ratio of weights de�ned as

R (E) =
Wmuca (E)

Wmuca (E + ǫ)
=

e−β(E)E+f(E)

e−β(E+ǫ)(E+ǫ)+f(E+ǫ)
(3.35)to get an expression of the reursion in terms of the ratio of weights:

Rn+1 (E) = Rn

(
Hn (E + ǫ)

Hn (E)

)κ(E)

. (3.36)This allows to alulate Rn+1 (E) out of Hn (E). We �xed Wmuca,n+1 (Emax) = 1and got Wmuca,n+1 (E) for all E from the ratios.3.3 ReweightingWhat we are interested in are anonial expetation values at di�erent values of
T , ǫs and s, respetively. To obtain them, one an save a onsiderable amount ofCPU time by using eah generated peptide on�guration several times, i.e. al-ulate its ontribution to eah ombination of T , ǫs and s of interest and averageover those reweighted data. How this is done is desribed in more detail below.The ruial point of this simple trik is to generate enough relevant on�gura-tions (on�gurations with a high probability p(E) = Ω(E) exp(−E/T )) over thewhole reweighted regime. This is neessary, sine it is the relevant regime thatmainly ontributes to the average and low statistis here result in high statisti-al errors. For reweighting in T this is ahieved with a the �at multianonialenergy histogram and how it is ahieved for reweighting in ǫs and s is explainedin setion 3.4.3.3.1 Reweighting in TAs long as enough relevant states are generated, it is always possible to ob-tain the anonial expetation values by averaging over the reweighted ob-servables to the temperature of interest. More spei�ally, if a Markov hainis generated with probability distribution pµ = Ω (Eµ) W (Eµ), where e.g.
W (Eµ) = exp (−Eµ/T0), kB = 1, for a anonial simulation at temperature
T0, the anonial expetion value of an observable O at temperature T is givenby eq. (3.3). Using this equation, all our anonial averages are obtained. In amultianonial simulation W (Eµ) = Wmuca (Eµ), while for a anonial simula-tion at temperature T0 this expression simpli�es further to

〈O (E)〉 (T ) =

∑

µ O (Eµ) e−Eµ/T /e−Eµ/T0

∑

µ e−Eµ/T /e−Eµ/T0
=

∑

µ O (Eµ) e−(1/T−1/T0)Eµ

∑

µ e−(1/T−1/T0)Eµ
.(3.37)



3.3 Reweighting 31For systems with disrete energies, it is atually more ommon to store his-tograms H (E) and O (E) and obtain the anonial expetation values with asum over all energies. But for models with a ontinuous energy spetrum, it isreommendable to sum over the time series sine this works without any sys-temati disretisation errors. If the observable O does not expliitly depend on
E the time series approah works as before with O (Eµ) being the value of Oat MC time step µ and Eµ being the orresponding energy. In the histogramapproah, O (E) has to be replaed by the estimated multianonial expetationvalue of O at �xed E.Along the same lines of this well established reweighting proedure [47℄ fora reweighting in temperature, we derived a way to also reweight the anonialexpetation values to di�erent surfae attration strengths ǫs and di�erent intra-polymeri Lennard-Jones attration strengths s.3.3.2 Reweighting in ǫsMost of the results obtained in this thesis were obtained by multianonialsimulations with ǫs and s set onstant. This requires a long multianonial runfor every �xed ombination of ǫs and s and the anonial expetation values atvarious T are found by reweighting.But reweighting in ǫs and s is also possible. To see this, take a loser look atthe energy:
E =

N−2∑

i=1

N∑

j=i+1

(

1

r12
ij

− s
1

r6
ij

)

︸ ︷︷ ︸

+
1

4

N−2∑

k=1

(1 − cosϑk)

︸ ︷︷ ︸

+ǫs

N∑

i=1

[

2

15

(
1

zi

)9

−
(

1

zi

)3
]

︸ ︷︷ ︸

= ELJ,12 + s ELJ,6 + Ebend + ǫs Esur. (3.38)To alulate ELJ,12, ELJ,6, Ebend and Esur all one needs is the on�guration ofthe polymer. One knowing those four quantities, the Boltzmann weight of thegiven on�guration an be found for arbitrary T , ǫs and s. In order to simplifythe interpretation of the data, only the in�uene of either ǫs or s is analysed ata time while the other one is kept �xed. Choosing �rst s to be onstant andrenaming ELJ,12 + sELJ,6 = ELJ, the anonial weight reads
Pǫs,T (Eµ) ∝ e−

Eµ,ǫs
T = e−

ELJ,µ+Ebend,µ+ǫsEsur,µ

T

= e−
ELJ,µ+Ebend,µ+εs0Esur,µ

T e−
ELJ,µ+Ebend,µ+ǫsEsur,µ

T
+

ELJ,µ+Ebend,µ+εs0Esur,µ

T

= e−
(ǫs−ǫs0 )Esur,µ

T Pǫs0 ,T (Eµ) (3.39)So, if the simulation was done at ǫs0 , the expetation value orresponding to



32 CHAPTER 3. MONTE CARLO SIMULATIONSneighboring ǫs an be found via
〈O〉can (T, ǫs) =

∑

µ∈M Oµ (Eµ,ǫs) Pǫs,T (Eµ)
∑

µ∈M Pǫs,T (Eµ)

=

∑

µ∈M Oµ (Eµ,ǫs) Pǫs0 ,T (Eµ) e−
(ǫs−ǫs0 )Esur,µ

T

∑

µ∈M Pǫs0 ,T (Eµ) e−
(ǫs−ǫs0 )Esur,µ

T

.

(3.40)
3.3.3 Reweighting in sSimilarly, starting with eq. (2.12) and hoosing ǫs = 1, the anonial weight forarbitrary s is given by
Ps,T (Eµ) ∝ e−

Eµ,s
T = e−

ELJ,12,µ+s ELJ,6,µ+Ebend,µ+Esur,µ

T

= e−
ELJ,12,µ+s0 ELJ,6,µ+Ebend,µ+Esur,µ

T

× e−
ELJ,12,µ+s ELJ,6,µ+Ebend,µ+Esur,µ

T
+

ELJ,12,µ+s0 ELJ,6,µ+Ebend,µ+Esur,µ

T

= e−
(s−s0)ELJ,6,µ

T Ps0,T (Eµ) , (3.41)whih yields for the orresponding expetation values
〈O〉can (T, s) =

∑

µ∈M Oµ (Eµ,s)Ps,T (Eµ)
∑

µ∈M Ps,T (Eµ)

=

∑

µ∈M Oµ (Eµ,s)Ps0,T (Eµ) e−
(s−ǫs0 )ELJ,6,µ

T

∑

µ∈M Ps0,T (Eµ) e−
(s−s0)ELJ,6,µ

T

.

(3.42)
3.4 Replia Exhange Monte CarloWhen using the reweighting in ǫs or s, one has the problem, that those are �xedparameters inserted into the simulation. So if we, e.g., perform a multianonialsimulation at s suh that we obtain all expetation values for all T at that s byreweighting in T and want to also have all expetation values for all T at s+ δs,one has to be areful2. The problem is, that there might be on�gurations thatare important at s+ δs, that are not so important at s and hene have not beensu�iently sampled. This is well known for the reweighting in T in anonialsimulations where the reweighting range, in that one an still expet reliableresults, is limited to the width of the input histogram [47℄. Multianonialsimulation resolves that problem.For s we use a tehnique alled replia exhange Monte Carlo (REMC). REMCappears to have been disovered independently by various researhers [49; 50℄2We will only argue for s here, not for ǫs, sine the alulation is ompletely analogous.



3.4 Replia Exhange Monte Carlo 33and is also known as parallel tempering, multiple Markov hain Monte Carloand exhange Monte Carlo searh. It has been suessfully applied to the o�-lattie protein folding problem [51℄ and several other appliations an be foundin Ref. [52℄.In short, we perform several simulations with several not too di�erent s at thesame system and reweight to the s in between. Every so often, one swaps thestates of the system in two of the simulations with a ertain probability whihis hosen so that the states of eah system still follow the distribution pµ onewants to have, in our ase the �at distribution obtained by the multianonialweights.Consider two multianonial simulations that run in parallel, one with s = s1 theother one with s = s2. Sine the multianonial weights are di�erent for di�erent
s, we denote the orresponding weights by Wmuca,1(E1) and Wmuca,2(E2) andthe energies in both systems as well as its onstituents get the same indies.On the majority of time steps, we simply do one step in the simulation of eahsystem. But, every so often, we want to swap the states, i.e. the values of theoordinates in eah of the two simulations are set to those in the other. Ifsimulation 1 has on�guration µ (µ1) and simulation 2 has on�guration ν (ν2),and a swap is suggested, the aeptane probability is

A (µ1ν2 → ν1µ2) =

{
pν1µ2/pµ1ν2 if pν1µ2/pµ1ν2 < 1,
1 otherwise.

(3.43)The proof that this satis�es ergodiity and detailed balane an, e.g., be foundin Ref. [41℄. In the ase of two parallel anonial simulations at βlow and βhigh,
pν1µ2/pµ1ν2 simpli�es to pν1µ2/pµ1ν2 = exp [−(βlow − βhigh)∆E], with ∆E =
Ehigh−Elow. For our two multianonial simulations at s1 and s2 with di�erentweights, this gets a bit more ompliated:
pν1µ2

pµ1ν2

=
pν1

pµ1

· pµ2

pν2

=
Wmuca,1 (ELJ,12,ν + s1ELJ,6,ν + Ebend,ν + Esur,ν)

Wmuca,1 (ELJ,12,µ + s1ELJ,6,µ + Ebend,µ + Esur,µ)

× Wmuca,2 (ELJ,12,µ + s2ELJ,6,µ + Ebend,µ + Esur,µ)

Wmuca,2 (ELJ,12,ν + s2ELJ,6,ν + Ebend,ν + Esur,ν) ,

(3.44)where the notations are analogous to eq. (3.38).This method is used for the results presented in setion 4.2. Two parallel simula-tions at similar s were performed and swapped from time to time. Expetationvalues in between are alulated using all generated on�gurations and pre-sented. Probably, it would also be su�ient to alulate the expetation valuesfrom the data of two independent simulations that do not swap on�gurations.This should provide su�iently many relevant on�gurations if the simulationis long enough. However, swapping from time to time helps a bit to preventthe simulation to get stuk and does at least not ost muh if it is not done toooften, e.g., 1000 independent sweeps followed by one swap move.



34 CHAPTER 3. MONTE CARLO SIMULATIONS3.5 Energy Landsape Paving (ELP)Although it is not the primary goal here to searh for global energy minima, itis very instrutive to investigate how the nature of the energy minima hangeswith ǫs. In order to do so, an algorithm speialised on �nding global energyminima was applied: The Energy Landsape Paving (ELP) [53℄. It is easilyimplemented and has suessfully proven to be appliable to �nd global energyminima in rough energy landsapes of AB heteropolymers [43℄. Its entral ideais to perform low-temperature anonial Monte Carlo simulations, but with anenergy expression that is modi�ed after eah step in order to steer the searhaway from regions that have already been explored. Here, we use for the modi-�ed statistial weight of a state the simple version
w(Ẽ) = e−Ẽ/T with Ẽ = E + H (E, t) , (3.45)where H (E, t) is the histogram of energies at MC step t. In a regular low-temperature Metropolis simulation the probability to esape a loal minimumdepends only on the height of the surrounding energy barriers. ELP loally�attens the energy landsape by �lling up suh loal energy minima. This againdereases the weight of states within those minima and onsequently inreasesthe probability to esape. So, initially when H (E, t) ≈ 0 ELP will favour lowenergies and avoids the sampling of unphysial high-energy onformations. Af-ter getting stuk in a loal energy minimum, the energy landsape gets deformedand higher energies will be explored until eventually another loal energy min-imum is found or the higher energy histogram entries have similar frequeniesand the original energy landsape gets approximately restored up to a onstantirrelevant fator. Due to this bias, ELP violates detailed balane and is there-fore inappropriate to unravel thermodynami properties of the system. It alsoannot distinguish between di�erent strutures of the same energy. However to�nd low-energy states, it is e�ient and easy to implement.3.6 Error estimationAny data, experimentally determined or simulated, an only be trusted, if theyome along with a reliable error estimation.Markov hain MC update algorithms have autoorrelation times that enter di-retly into the statistial errors and an be dealt with using autoorrelationanalysis as will be explained in the �rst subsetion. This, however, beomesquite umbersome for quantities that are not diretly measured in the simula-tion but a nonlinear ombination of those diretly measured quantities, e.g., theheat apaity. In this ase, error propagation has to be applied, if one wants tobe very preise, but usually another simpler approah is preferred. This is theJakknife method shortly explained in setion 3.6.2. All our errors are Jakknifeerrors.



3.6 Error estimation 353.6.1 Autoorrelation TimeSuessive states of Markov hain MC methods are orrelated. This is imme-diately obvious onsidering any of the updates introdued above. The polymerafter one update is still in a on�guration very similar to the on�guration be-fore. Thus the variane of estimates produed from Markov hain MC simula-tions may be muh higher than from the same amount of on�gurations that aresampled independently � without knowing how the on�guration before lookedlike. To quantify this e�et, the autoorrelation funtion is introdued:
A (k) =

〈OiOi+k〉 − 〈Oi〉 〈Oi+k〉
〈
O2

i

〉
− 〈Oi〉2

. (3.46)The expetation value 〈OiOi+k〉 is the orrelation between observable O at time
i and a later time i + k. If the value of O at both times is unorrelated,the orrelation fatorises to the produt of the individual expetation values
〈OiOi+k〉 = 〈Oi〉 〈Oi+k〉 and the autoorrelation vanishes. The denominator isjust for normalisation, i.e. A (0) = 1. In equilibrium, time translation invarianeholds. Hene 〈Oi〉 = 〈Oi+k〉 and in the numerator 〈Oi〉 〈Oi+k〉 simpli�es furtherto 〈Oi〉2. The autoorrelation funtion is a measure for the similarity of anobservable at time i with itself at time i + k. For small k, A (k) ≈ 1 sine eahstate still resembles the preeding one. On the other hand, for very large k, anyon�guration might have been reahed and A (k) ≈ 0. For not too small k, theautoorrelation deays exponentially,

A (k) =
k→∞−→ ae−k/τexp , (3.47)whih de�nes the exponential autoorrelation time τexp and a is some onstant.Even more useful is another de�nition of autoorrelation time: the integratedautoorrelation time

τ ′
int =

1

2
+

N∑

k=1

A (k)

(

1 − k

N

)
N≫τexp≈ 1

2
+

N∑

k=1

A (k) = τint. (3.48)Here it turns out that
σ2

O
=

σ2
Oi

N
2τ ′

int ≈
σ2

Oi

N
2τint (3.49)as is derived in [54℄3. σ2

Oi
=
〈
O2

i

〉
−〈Oi〉2 is the variane of the individual mea-surements and in the ase of unorrelated measurements σ2

O
= σ2

Oi
/N . Henethe variane is inreased by a fator of 2τint for orrelated data. This e�et anbe quite signi�ant. It is instrutive to introdue a parameter

Neff =
N

2τint
≤ N (3.50)3In this de�nition of τint, τint = 1/2 for unorrelated measurements. Some authors de�ne

τint = 0 for unorrelated measurement, whih is a bit more intuitive, but eq. (3.49) wouldn'tlook that nie.



36 CHAPTER 3. MONTE CARLO SIMULATIONSthat gives the e�etive statistis, i.e., the number of unorrelated data oneobtains from N measurements that are orrelated with an integrated autoorre-lation time τint. Hene only every 2τint iterations, the produed data are unor-related again. This knowledge is an important input of the Jakknife methoddesribed below. What is left to explain is how to determine τint. An estimator
Ã (k) of A (k) is obtained by substituting the expetation values 〈OiOi+k〉 bythe mean values OiOi+k. This, in pratie leads to very noisy tails of Ã (k), sinethere is less statistis for large time separations k. Summing over all available
Ã (k) to obtain τint would thus introdue a onsiderable error. One still gets adeent estimate of τint by introduing a ut-o�

τ̃int (kmax) =
1

2
+

kmax∑

k=1

Ã (k) . (3.51)This approahes τint in the limit of large kmax. But as soon as Ã (k) getsvery small, it reahes a plateau and its statistial error inreases rapidly. Aompromise between those systemati and statistial errors is to determine anoptimal kmax self-onsistently by utting o� as soon as kmax ≥ 6τ̃int (kmax) asdone here. Other hoies suh as utting of as soon as Ã (k) �rst subtends thebase line an also be applied.It is important to notie, that the autoorrelation time an be signi�antlyredued by hoosing e�ient Monte Carlo algorithms. So, for instane, a multi-anonial simulation, that ideally exeutes a random walk in energy spae, hasa lower autoorrelation than the Metropolis algorithm, that more or less staysin the same energy regime. Hene, it produes e�etively more statistis.Also note, that while τexp only depends on the algorithm but is theoretiallyindependent of the observable under onsideration, τint depends on the observ-able. More mathematial details an be found in [41; 58℄. We only performed ashort autoorrelation analysis in order to have a rough estimate, how to hoosethe bins for the Jakknife analysis.3.6.2 Bloking Jakknife TehniqueTo employ the whole autoorrelation analysis desribed above would result ina onsiderable e�ort to get aurate statistial errors. Thus, general but lessaurate methods have been developed to estimate the error of a Monte Carlorun on a daily basis. These are the Binning and the Jakknife methods [54℄that both divide the time series of N orrelated measurements Oi in bloks.The Binning analysis onsiders a number NB = N/k of equidistant bloks oflength k (Fig. 3.3):
OB,n ≡ 1

k

k∑

i=1

O(n−1)k+1, n = 1, . . . ,NB . (3.52)The idea of this binning is to hoose k larger than the autoorrelation timeand thus to reate with OB,n, n = 1, . . . NB, a new, shorter time series whih is
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O

OJ,1OB,1

OJ,2OB,2

OJ,3OB,3

OJ,4
OB,4

OJ,NB
OB,NB

..........
︸ ︷︷ ︸

kFigure 3.3: A shemati representation of the blok Jakknife error estimation. The blokon the top represents all N orrelated measurements. Its blok average is denoted by O. Inthe following bloks, the grey bloks represent the Jakknife bloks with blok average OJ,nand the white bloks the binning bloks with blok average OB,n, n = 1, . . . , NB , and bloklength k. It holds: N = NBk.almost unorrelated and an thus be analysed by standard means. The Jakknifebloks OJ,n ontain all data, but the ones of the binning bloks,
OJ,n ≡ NO − kOB,n

N − k
, n = 1, . . . NB . (3.53)

O denotes the ommon mean value of the all N measurements. The advantageof those larger bloks is that the statistis of eah blok is better and �utuationsof individual bloks are redued ompared to the binning approah. For linearquantities like energy or radius of gyration there is no di�erene in the estimatederror and both methods give an analytially equal result. Di�erenes howeverour, when nonlinear quantities like the spei� heat are treated due to the biasof the estimator that redues for larger sets of data as 1/N . After orretionfor the trivial orrelation of the jakknife bins � every value of the time seriesis used N − 1 times � the Jakknife error of O is given by
ǫ2
O
≡ σ2

O
=

NB − 1

NB

NB∑

n=1

(
OJ,n − O

)2
. (3.54)It is bene�ial to hoose k rather large. k ≫ τint has to hold and it is anempirial rule that k ≈ 6τint gives good results. Choosing k even larger doesnot alter ǫ2

O
muh, but hoosing it too small underestimates the error.
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4 ResultsIn this hapter, various informations about the anonial equilibrium behaviourof short polymers near an attrative substrate are presented. The main fous ison the behaviour at varying surfae attration strength and temperature.The overall goal aimed at is to summarise all those informations and onstruta pseudophase diagram. This pseudophase diagram should ontain informationabout the quality and position of onformational phases present and indiatetransitions between them. We want to stress that all phases and transitionsmentioned here are no phases in the strit thermodynami sense, sine we aredealing with �nite hain lengths. But even for those short hains that areonsidered here, we obtain a good piture about the behaviour of the polymerat the surfae and most of the phases are believed to still exist for longer hains.4.1 Adsorption Behaviour for Various SurfaeAttration StrengthsIn this setion, I present the results gained for various observables of two ex-empli�ed short peptide sequenes with 13 and 20 monomers, respetively. Mul-tianonial simulations at 51 di�erent surfae attration strengths ǫs, rangingfrom ǫs = 0, . . . , 5, were performed and reweighted to T = 0, . . . , 5. Sine themain strutural ativity takes plaes below T = 3, usually only the lower tem-perature regime is displayed. Every simulation onsists of 108 sweeps and wasat least performed with 2 di�erent random number seeds to assure that trap-ping that sometimes ourred, does not entail any systemati deviation. Theinterpolymeri interation is regarded onstant here with s = 1.All implemented updates and boundary onditions were tested against sev-eral independent works on short hydrophobi-polar heteropolymers of the ABmodel [44; 55; 56; 57℄.4.1.1 ObservablesEnergy and Spei� HeatThe total energy of the single polymer has already been de�ned in eq. (2.12).With s = 1, this simpli�es to
E = 4

N−2∑

i=1

N∑

j=i+1

(

1

r12
ij

− 1

r6
ij

)

+
1

4
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(1 − cosϑk) + ǫs
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i=1

[
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1
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zi
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]

.(4.1)



40 CHAPTER 4. RESULTS
(a) (b)Figure 4.1: (a) Energy of the 20mer. (b) Heat apaity of the 20mer. The small linesrepresent the simulated data, the olour ode is interpolated.In Fig. 4.1, a 3D plot of the energy and spei� heat of the 20mer vs. ǫs and Tis shown. The projetions onto the surfae-attration-temperature plane, as ob-tained for the 13- and 20mer for both quantities, are plotted in Figs. 4.2 and 4.3.For both investigated polymer lengths the energy varies smoothly with hang-ing ǫs and T . The global minimum is reahed at maximal surfae attrationand minimal temperature. This is not unexpeted sine at low temperatures,energy dominates over entropy and hene lower energy onformations are morefrequently assumed. Also for ever higher surfae attrations, any given onfor-mation lose to or at the surfae orresponds to lower energies.Although the total energy varies smoothly with ǫs and T , this does not holdtrue for the individual ompositions, beause many internal monomer-monomer
(a) (b)Figure 4.2: (a) Energy of the 13mer. (b) Heat apaity of the 13mer. The olour ode is asin Fig. 4.1.
(a) (b)Figure 4.3: (a) Energy of the 20mer. (b) Heat apaity of the 20mer. The olour ode is asin Fig. 4.1.



4.1 Adsorption Behaviour for Various Surfae Attration Strengths 41ontats orrespond to a high intrinsi energy while many monomer-surfaeontats orrespond to a high surfae ontribution to the energy (see setion4.1.6). Those quantities indeed perform onsiderable �utuations and jumps aswill be disussed below.The heat apaity turns out to be insu�ient to haraterise all phase transi-tions, sine the hains are very short. Only two transitions an be identi�ed asridges in the pro�le: The �rst one is the adsorption transition between desorbedand adsorbed on�gurations. Where exatly in the projetion plane desorbedand adsorbed on�gurations dominate is among others displayed below in thepseudophase diagram in Fig. 4.26. The adsorption transition exhibits india-tions to be �rst-order like, as it is harateristi for suh short hains. For an slattie model it was shown in [15℄, that for a �nite hain length (179mer) thefree energy minima of adsorbed and desorbed onformations are separated bya gap when plotted versus monomer-monomer and monomer-surfae ontats,i.e. none of the possible onformations in between are stable in equilibrium whihre�ets the �rst-order like behaviour for �nite hains. But The other transitionthat an learly be identi�ed by the strong ridges in the spei� heat landsapeis a freezing transition at low temperatures. At roughly T ≈ 0.25 the heatapaity exhibits a strong peak and rapidly goes to zero at lower temperaturesindependent of the surfae attration strength. This and the rystalline stru-tures found at those low temperatures indiate a freezing transition. Althoughthe freezing temperature seems to be rather onstant, the type of rystallinestruture adapted by the peptide depends strongly on ǫs. But to identify theshape of the peptide one has to take a loser look at onformational quantitieslike the radius of gyration.Radius of GyrationThe radius of gyration provides an exellent measure of the overall ompatnessof the polymer. Figures 4.5, 4.6 and 4.4 reveal that the most ompat onforma-tions dominate at low temperatures and low surfae attrations. If the surfaeattration is weak the polymer behaves like a free polymer and the transitionfrom globular (DG) to random oil (DE) on�gurations (Fig. 4.26) orrespondsto the well known θ-transition [6; 5℄, where the repulsive exluded volume e�etbalanes the attrative fores between the segments and the polymer behaveslike an ideal hain (see hapter 1). For the 13mer we found θ13 ≃ 0.94 andfor the 20-polymer θ20 ≃ 1.28 from the peaks in d 〈Rgyr〉 /dT at ǫs = 0. Thehigher value for the larger polymer is due to �nite size e�ets. The overallpolymer-polymer interation per monomer (that orresponds to ǫpp) is higherfor longer hains, beause less monomers are at the outer part in the energeti-ally favourable ompat onformations whih leads to a higher ǫpp. This againinreases the θ-temperature.Also the freezing transition an be found at the same temperatures as it wasalready learly visible in the heat apaity. The adsorption transition hardlye�ets the overall size of the polymer and an thus hardly be seen in the radius
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(a) (b)Figure 4.4: (a) Radius of gyration of the 20mer. (b) d 〈Rgyr〉 /dT of the 20mer. The smalllines represent the simulated data. The olour ode is interpolated.of gyration.To extrat further information out of the radius of gyration, it is more illustra-tive to take a loser look at its parallel (Figs. 4.7 and 4.8) and perpendiular(Figs. 4.12 and 4.13) omponent to the surfae, respetively. These quantitiesare expeted to behave di�erent sine the surfae introdues a spatial anisotropy.So for instane, for ǫs ≥ 2.8 for the 13mer and ǫs ≥ 3.4 for the 20mer and lowtemperatures 〈R⊥〉 vanishes while 〈R‖

〉 attains low values at lower ǫs. A van-ishing 〈R⊥〉 orresponds to a on�guration where the polymer is spread out�at on the surfae without any extension into the third dimension. Theseon�gurations
(a) (b)Figure 4.5: (a) Radius of gyration of the 13mer. (b) d 〈Rgyr〉 /dT of the 13mer. The olourode is as in Fig. 4.4.
(a) (b)Figure 4.6: (a) Radius of gyration of the 20mer. (b) d 〈Rgyr〉 /dT of the 20mer. The olourode as in Fig. 4.4.



4.1 Adsorption Behaviour for Various Surfae Attration Strengths 43are alled adsorbed ompat (AC1) and adsorbed expanded (AE1) (Fig. 4.26).The `1' is added to distinguish those regions from regions that extend into thethird dimension. AC1 and AE1 are separated by the freezing transition suhthat on�gurations in AC1 at lower temperatures are maximally ompat whileon�gurations in AE1 are less ompat and more �exible but still mainly �aton the surfae.In order to on�rm that onformations in AC1 are indeed maximally ompatsingle layers, one an onsider a simple argument. It is well known that themost ompat shape in the 2D ontinuous spae is the irle. Thus one analulate 〈R‖

〉 for a irle and ompare it with the simulated value. Assuming
N monomers to be distributed evenly in the irle, N ≈ πr2, where r is theradius of the irle in units of the mean distane of neighbouring monomers.The radius of gyration in the same units is thus given by

Rcirc
gyr

2
(

≈ R2
‖

)

=
1

πr2

∫

r′≤r
d2r′r′2 =

1

2
r2 ≈ N

2π
. (4.2)We have two di�erent types of mean distanes between monomers in ompatonformations. Neighboring monomers on the hain have distane one, whilefor all others the most favourable distane is rmin,LJ ≈ 1.1225. So we expetfor ompat 〈R‖

〉 on the surfae to hold: √13/2π ≈ 1.438 <
〈
R‖,13

〉
< 1.615 <

rmin,LJ

√

13/2π and √20/2π ≈ 1.784 <
〈
R‖,20

〉
< 2.026 < rmin,LJ

√

20/2π. Thesimulated data are R‖,13 = 1.45 and R‖,20 = 1.81 that niely �t the estimate.Trying the same thing in 3D however does not work that well. The most om-pat shape in 3D is the sphere, that we assume to be �lled uniformly with Nmonomers, N = 4πr3/3. Corresponding on�gurations are found as free om-pat hains (DC) as well as adsorbed ompat on�gurations (AC) for weaksurfae attration. Here the radius of gyration is given by
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. (4.3)This leads to the estimate 1.130 < Rgyr,13 < 1.268 and 1.684 < Rgyr,20 < 1.464.But the simulated data are smaller: Rgyr,13 = 1.023 and Rgyr,20 = 1.242. Thisslight deviation an however be explained by the fat, that the mass of thepolymer is not uniformly distributed in the sphere as assumed in the alulation.For a ompat paking of disrete monomer positions, it is far more realisti, thatthe outer thin shell of the sphere does not ontain any monomers. Performingthe integration not from r′ = 0 to r′ = r but only to r′ = r − ε, redued theestimated radius of gyration signi�antly already for small ε due to the inreasedweight of the outer shells in higher dimensions. Taking into aount this e�et,the absolute values of 〈Rgyr〉 obtained, seem to be very reasonable.
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(a) (b)Figure 4.7: (a) ˙

R‖

¸ of the 20mer. (b) d
˙

Rgyr,‖

¸

/dT of the 20 polymer. The small linesrepresent the simulated data. The olour ode is interpolated.The most notieable transition that an be seen in the Rgyr-omponents is thestrong layering transition at ǫs ≈ 2.8 for N = 13 and ǫs ≈ 3.3 for N = 20 thatseparates regions of planar onformations (AE1, AC1) in the surfae attration-temperature plane from more ompat 3D onformations (AG, AC2b) at lowtemperatures.In a paper of J. Krawzyk et al. [16℄ a lattie argument an be found that nielyillustrates what happens here. The polymer is modeled as a self-avoiding walk ona 3D ubi lattie in a half-spae interating via a nearest-neighbour interationof di�erent monomers with ǫm being the ontributions per ontat. In additioneah polymer-surfae ontat lowers the energy by another ǫs suh that theoverall energy of a on�guration with ns surfae ontats and nm intrinsi on-
(a) (b)Figure 4.8: (a) ˙

R‖

¸ of the 13mer. (b) d
˙

Rgyr,‖

¸

/dT of the 13mer. The olour ode is asin Fig. 4.7.
(a) (b)Figure 4.9: (a) ˙

R‖

¸ of the 20 polymer. (b) d
˙

Rgyr,‖

¸

/dT of the 20mer; olour ode as inFig. 4.7.



4.1 Adsorption Behaviour for Various Surfae Attration Strengths 45tats is given by
EN = −nmǫm − nsǫs. (4.4)Now one onsiders the zero-temperature situation, where for positive self-attration and surfae attration, the polymer will take on some ompat on-�guration touhing the surfae. For a ubi lattie model this is likely to bea retangular parallelepiped with square ross-setion parallel to the surfae ofsite length w (Fig. 4.10). If the height to the surfae is l, and there are N = lw2monomers in the polymer, the total energy El, negleting ontributions fromedges and orners) is

El (ǫm, ǫs) ∼ −
(
w2 (l − 1) + 2 (w (w − 1)) l
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Nlǫm − Nǫm − N

l
ǫs

= −2ǫmN + (ǫm − ǫs)
N

l
+ 2ǫm

√
lN.

(4.5)
For �xed N the energy an be minimized with respet to l to see how the layerthikness depends on ǫm, ǫs and N . One obtains for the minimum on�guration

l3/2 =

(

1 − ǫs

ǫm

)

N1/2. (4.6)A plot of l vs. ǫs/ǫm an be found in Fig. 4.11. Sine there are only integervalues of l possible � there is nothing like half a layer � a partiular layer willbe stable for a range of ǫs/ǫm. So, using this argument, for instane a singlelayer on�guration is stable for ǫs ≥ ǫm and for some values of ǫs < ǫm given byrelation 4.6. If ǫs is inreased at �xed ǫm the system's energy is minimised by

Figure 4.10: Exempli�ed ompat onfor-mation for a self-avoiding polymer on a 3Dlattie with w = 5 and l = 3 to illustrate theargument of J. Krawzyk et al..
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ǫs/ǫm)2/3N1/3 vs. ǫs/ǫm for four di�erenthain lengths on the lattie. For N = 13only double- and single-layer strutures arestable while for N = 20 also triple-layer and
N = 50 even four layer strutures seem tobe energetially favourable for a low ǫs/ǫm-ratio.
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(a) (b)Figure 4.12: (a) 〈R⊥〉 of the 20mer. (b) d 〈Rgyr,⊥〉 /dT of the 20mer. The small linesrepresent the simulated data. The olour ode is interpolated.smaller values of l. This is exatly what is observed here with dereasing 〈R⊥〉 atlow temperatures with inreasing ǫs. Sine the total surfae area is minimised ifthe layers are uniform layers with a roughly equal number of monomers in eahlayer, the polymer jumps from (l+1) layers to l layers at some value of ǫs with ajump in the internal energy rather than ontinuously dereasing the oupationnumber of the top layer. This is also on�rmed by the sharp layering transitionfrom single- to double-layer strutures for both hain length and ground stateenergy onsiderations and suggests that the transition is �rst-order like with atransition region that gets sharper for larger N , see Fig. 4.11.However, one striking disrepany between lattie theory and the data from ourontinuous model is observed: While the argument predits that for ǫs ≥ ǫmonly single layer on�gurations are stable, our single layers are only stable for
(a) (b)Figure 4.13: (a) 〈R⊥〉 of the 13mer. (b) d 〈Rgyr,⊥〉 /dT of the 13mer. The olour ode is asin Fig. 4.12.
(a) (b)Figure 4.14: (a) 〈R⊥〉 of the 20mer, (b) d 〈Rgyr,⊥〉 /dT of the 20mer. The olour ode is asin Fig. 4.12.
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ǫs/ǫm & 3. We onjeture that this substantial di�erene is due to the di�erentoordination number of both models. Inside the bulk of a ompat polymer onan s lattie, eah monomer has maximally z = 6 nearest neighbours while inthe ontinuous model hexagonal lose paking is observed at low temperatureswith z = 12 nearest neighbours. This gives more ompat onformations with ahigher l in our ontinuous model an additional stability. In fat, repeating theargument in eq. (4.5) for a hexagonal lattie, one obtains
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(4.7)
This yields for the equivalent of eq. (4.6) on a hexagonal lattie

l3/2 =
2

3

(

4 − ǫs

ǫm

)

N1/2, (4.8)whih predits a single-double layer transition for N = 13 at ǫs/ǫm = 3.235and for N = 20 at ǫs/ǫm = 3.384. Thus even if one approximates the moreylindrial shaped observed layered strutures by a ubi, this argument givesa rather good estimate of the loation of the layering transitions if a hexagonallattie struture is assumed.Although for the short hains onsidered in this setion there are no triple layersobserved, the omponents 〈R‖,⊥

〉 indiate some ativity at lower surfae attra-tion. For N = 13, ǫs ≈ 1.2 is the lowest attration strength at whih thereare still stable double layer on�gurations found below the freezing transition.For N = 20 this is at ǫs ≈ 1.4. What follows at lower ǫs is a low-temperaturephase of surfae attahed ompat onformations that we all AC2a. AC2aonformations our if the monomer-surfae attration is not strong enough toindue a layering in the ompat attahed struture. One has to be areful inwhat exatly these onformations look like. On the one hand, the surfae at-tration is strong enough to attah the polymer, on the other hand the ompatonformation of a free polymer below the θ-transition shouldn't be distortedtoo muh - no layering. We found two distint strutures that �t this sheme:1. ompletely undistorted ompat onformations loated at the surfae and2. roughly semi-spherially shaped strutures doked to the surfae. Both arelearly observed over a substantial range of surfae attrations ǫs. Comparingwhere whih kind of those two strutures is observed at both hain length di�er-enes are found. For N = 13 both, d 〈Rgyr,⊥〉 /dT and d
〈
Rgyr,‖

〉
/dT indiatea transition at ǫs ≈ 0.45. This transition is the wetting transition [13; 10℄,that has already attrated some interest in literature. We will meet this tran-sition again, when disussing the e�et of solvent variation (setion 4.2). Hereompat polymers that only move lose to the surfae at low T and lower ǫsattah to form semi-spherially shaped strutures at higher ǫs that are stable



48 CHAPTER 4. RESULTSuntil at ǫs ≈ 1.2 a seemingly ontinuous pseudophase transition to double layerstrutures takes plae.Without the additional information from the extrated low energy states, itwould hardly be possible to loate this transition, although the radius of gyrationas well as its omponents indeed hange their absolute values at this ǫs a littlebit.For N = 20 no analog to the wetting transition at ǫs ≈ 0.45 for N = 13 wasobserved. Already at an attration strength of ǫs ≈ 0.2 adsorbed onformationsare found at low temperatures but only d 〈Rgyr,⊥〉 /dT shows some very smalltransition peak at the intersetion of the freezing transition at T ≈ 0.25 and theadsorption transition line that will be disussed below. The AC2a pseudophasehere seems to onsist of a mixture of ompat onformations doked to thesurfae and the mentioned semi-spherial onformations without any transitionbetween them. This is also on�rmed by regarding the low energy onformationsfound in this regime. At ǫs ≈ 1.4 the ontinuous transition to double-layerstrutures (AC2b) takes plae. The higher ǫs the higher the amount of semi-spherial onformations found in the AC2a phase, but a lear ut from theompat adsorbed onformations does not exist.This di�erene in the wetting transition for N = 13 and N = 20 might be dueto the fat, that the most ompat onformation for N = 13 is an almost perfetiosahedron (Fig. 4.15). �Almost� beause the Lennard-Jones energy minimumdi�ers from the distane of neighboring monomers for s = 1. For s = 2 the mostompat struture is indeed a perfet iosahedron. This additionally stabilisesthe onformation and is already known in luster physis, where 13 spheres anform one of Makay's iosahedrons [59℄ with their typial �vefold symmetry.Sine also the globular struture of the 13mer has a higher symmetry than thatof the 20mer, it is not unexpeted that the wetting transition for the 13meris sharper than for the 20mer. It might be worthwhile to study the wettingtransition also for other hain length in order to be able to predit a trend forlonger hains whih is not possible only knowing the behaviour for those twoinvestigated hain lengths.Raising the temperature, polymers from the AC2a as well as from the AC2bregime form adsorbed and still rather ompat on�gurations above the freezing
(a) (b) ()Figure 4.15: (a) Most ompat onformation of the 13mer found for s = 2. (b) The sameonformation as in (a), but all outer monomers are onneted to show the iosahedral shape.() Most ompat onformation of the 13mer found for s = 1.
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(a) (b)Figure 4.16: (a) 〈zcm〉 of the 20mer. (b) d 〈zcm〉 /dT of the 20mer. The small lines representthe simulated data. The olour ode is interpolated.temperature that are muh like a drop on the surfae. This pseudophase isalled Surfae-Attahed Globule (AG) and sometimes also SAG. It has been�rst onjetured from short exat enumeration studies in 2D poor solvent [60℄,but was also found for instane in Ref. [15℄ and [16℄.At even higher temperatures, two things an happen dependent on whetherthe monomer-monomer or the monomer-surfae interation is stronger. If theformer is the ase, the polymer �rst desorbs from the surfae (from AG to DG)and expands at even higher temperatures (from DG to DE). In the latter ase,the polymer expands while it is still on the surfae (from AG to AE2) anddesorbs at higher temperatures (from AE2 to DE). The point in the phase dia-
(a) (b)Figure 4.17: (a) Centre-of-mass distane 〈zcm〉 of the of 13mer to the surfae. (b) d 〈zcm〉 /dTof the 13mer. The olour ode is as in Fig. 4.16.
(a) (b)Figure 4.18: (a) Centre-of-mass distane 〈zcm〉 of the of 20mer to the surfae. (b) d 〈zcm〉 /dTof the 20mer. The olour ode is as in Fig. 4.16.



50 CHAPTER 4. RESULTSgram where the four phases AG, AE2, DG and DE oinide was found to be for
N = 13 at ǫs ≈ 1.57 and T ≈ 1.15 and for N = 20 at ǫs ≈ 1.9 and T ≈ 1.38.Due to the higher relative number of monomers in the bulk in ompat longerhains, the θ-temperature inreases as explained above. Sine at the adsorptiontransition there seems to be ǫs ∝ T , the four-phases-oexistene point is alsoshifted to higher ǫs for longer hains.The adsorption transition an be disussed best when looking at the mean num-ber of surfae ontats and the distane of the entre of mass of the polymer tothe surfae.Centre-of-Mass Distane of the Polymer to the SurfaeThe entre-of-mass distane of the polymer to the surfae is the observable thatdisplays the adsorption transition sharper than all the others, although one hasto keep in mind the dependene on the size of the simulation box (setion 2.4).As an be seen in Figs. 4.16, 4.17 and 4.18, for large temperatures and low ǫs thepolymer an move freely within the simulation box without feeling the in�ueneof the surfae too muh. Thus the average entre-of-mass distane 〈zcm〉 of thepolymer above the surfae is just half of the height of the simulation box. Sinewe hose the simulation box for N = 13 to be Lbox = 20 and for N = 20 tobe Lbox = 40 this yields 〈zcm〉 = 10 for N = 13 and 〈zcm〉 = 20 for N = 20 ifthe attrative in�uene of the wall an be negleted. The steri in�uene is ofourse still there. On the other hand, for dominant surfae attration at high
ǫs and low temperatures, the polymer will preferably sit on the surfae and thedistane will be 〈zcm〉 ≈ 0.858, orresponding to the minimum of the surfaeattration potential, for single layer strutures and a bit bigger for double-layerand globular strutures.When looking at 〈zcm〉 and d 〈zcm〉 /dT as presented in Figs. 4.16, 4.17 and 4.18,one noties �rst a quite sharp adsorption transition that divides the projetionof 〈zcm〉 into an adsorbed (bright/green) regime and a desorbed (dark/blue)regime. This transition looks like a straight line in the phase diagram suh thatthere seems to hold: ǫs ∝ T on the transition line. Intuitively, this makes sensesine at higher T the stronger Brownian �utuation is more likely to overomethe surfae attration. One an, however, also dedue it from the lattie modelin Ref. [15℄ that we will hek our results against at the end of the urrenthapter.The model in question is a minimalisti simple-ubi (s) exluded volume lattiemodel, where the polymer an move between two in�nitely extended parallelwalls, separated by a distane zw expressed in lattie units. One wall is attrativeto the monomers while the other one has a pure sterial in�uene to preventthe polymer to esape into outer spae. The energy term of suh a polymer isgiven by

E (ns, nm) = −ǫsns − ǫmnm, (4.9)where ns is the number of nearest-neighbour monomer-substrate ontats, nm



4.1 Adsorption Behaviour for Various Surfae Attration Strengths 51the number of nearest-neighbour, but nonadjaent monomer-monomer ontatsand ǫs and ǫm are the respetive ontat energy sales. The restrited parti-tion sum for a marostate with ns surfae ontats and nm monomer-monomerontats is then given by
ZT (ns, nm) =

∑

n′
s,n′

m

δn′
s,nsδn′

m,nme−E(n′
s,n′

m)/kBT = gns,nme−E(ns,nm), (4.10)where gns,nm is the ontat density that only depends on the geometry ofthe system, in partiular zw and N . The partition funtion is hene Z =
∑

ns,nm
ZT (ns, nm) and more interestingly one an de�ne the spei� ontatfree energy as a funtion of the ontat numbers ns and nm:

FT (ns, nm) = −kBT ln
(

gns,nme−E(ns,nm)/kBT
)

= E (ns, nm) − TS (ns, nm) ,(4.11)identifying kB ln gns,nm ≡ S (ns, nm) as a �miroontat� entropy. If one nowminimises this with respet to ns, one �nds
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)

T ∝ T (4.12)beause the fator in front to T does not depend on ǫs and T . This argumentshould also be valid in our model sine the surfae energy is proportional to
ǫs and short ranged and the ontribution of the other energy terms that donot depend on the number of surfae ontats vanishes while di�erentiating.Our simulation yields ∆T/∆ǫs ≈ 0.8806 for N = 13 and ∆T/∆ǫs ≈ 0.9342for N = 20 what should orrespond to −1/(dgns,nm/dns) for the ns at theadsorption transition that is naturally around one.Looking at 〈zcm〉 and d 〈zcm〉 /dT in the adsorbed phases in more detail oneobserves the low temperature transitions between AC2a, AC2b and AC1 thatwere already disussed above. But sine the data are so similar to what is foundfor the main number of surfae ontats in that regime, we will skip a moredetailed look here to go to the mean number of surfae ontats immediately.Mean Number of Surfae ContatsThe mean number of surfae ontats provides a lear measure of the frationof monomers adsorbed to the surfae but gives no information on what happens
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(a) (b)Figure 4.19: (a) Mean number 〈ns〉 of surfae ontats per monomer of the 20mer. (b)

d 〈ns〉 /dT of the 20mer. The small lines represent the simulated data, the olour ode isinterpolated.in the desorbed states. Hene, it is a good observable to study the onfor-mational behaviour in the adsorbed regime. For example, the regime, wheresingle-layer strutures dominate (AC1, AE1) an be identi�ed easily, beause
〈ns〉 ≈ 1 (dark/blue regime in Fig. 4.19, 4.20 and 4.21), whih oinides nielywith the region, where 〈R⊥〉 ≈ 0. One an also see that the average number ofsurfae ontats are very similar in the phases AG, AC2a, AC2b, AE2, wheremost of the monomers are attahed, with a monotoni derease of 〈ns〉 withinreasing T . The adsorption transition an be found at lower T as for 〈zcm〉and is less sharp.
(a) (b)Figure 4.20: (a) Mean number 〈ns〉 of surfae ontats per monomer of the 13mer. (b)

d 〈ns〉 /dT of the 13mer. The olour ode is as in Fig. 4.19.
(a) (b)Figure 4.21: (a) Mean number 〈ns〉 of surfae ontats per monomer of the 20mer. (b)

d 〈ns〉 /dT of the 20mer. The olour ode is as in Fig. 4.19.



4.1 Adsorption Behaviour for Various Surfae Attration Strengths 53At low temperatures d 〈ns〉 /dT indiates the following transitions:transition N = 13 N = 20adsorption transition T ≈ 0.2 T ≈ 0.2transition between AC and AC2a T ≈ 0.5 �transition between AC2a and AC2b T ≈ 0.9 T ≈ 1.7layering transition between AC2b and AC1 T ≈ 2.8 T ≈ 3.4Unlike on the lattie, where one �nds 〈ns〉 ≈ 1 for a single layer struture,
〈ns〉 ≈ 1/2 for a double layer struture, 〈ns〉 ≈ 1/3 for a triple layer strutureet. [16℄, our double layer strutures have 〈ns〉 > 1/2. This indiates that whileon the lattie, in order to obtain a ompat on�guration, all layers ontainabout the same amount of monomers, in our o�-lattie model, there are alwayssome more monomers in the layer on the surfae. Sine this only happens at theouter part of the layer, the di�erene is more pronouned the shorter the hain is.
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543210

10.80.60.40.20Figure 4.22: 〈ns〉 vs. ǫs for small T for bothinvestigated hain length N = 13 and N = 20.

In Fig. 4.22, 〈ns〉 is shown as a fun-tion of ǫs at small temperatures.
〈ns〉 is a good quantity to see lay-ering. Starting at high ǫs, �rst forboth hain length 〈ns〉 ≈ 1 until atthe layering transition, 〈ns〉 jumpsto 〈ns〉 ≈ 0.69 for N = 13 and to
〈ns〉 ≈ 0.65 for N = 20.Further jumps orresponding tofurther layering transitions are notobserved for those short hains. In-stead what follows is a plateauregime where the relative amountof monomers that over the surfaeis rather onstant. When the double-layer struture gets unstable at lower ǫs,

〈ns〉 starts to derease again. The onformations in AC and AC2a thus have no�xed 〈ns〉, but it rather depends on ǫs. At around ǫs ≈ 0.2, where the polymerdesorbs, 〈ns〉 derease rapidly until 〈ns〉 = 0 at ǫs = 0.The observable left to disuss is the mean number of intrinsi ontats.Mean Number of Intrinsi ContatsSine, if the mean number of intrinsi ontats 〈nm〉 is large, the polymer is veryompat and its radius of gyration small, and if the mean number of intrinsiontats is small, the polymer is very strethed out and the radius of gyrationvery high, 〈nm〉 and 〈Rgyr〉 are omplementary observables and yield similarinformations.
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(a) (b)Figure 4.23: (a) 〈nm〉 of the 20mer, (b) d 〈nm〉 /dT of the 20mer. The small lines representthe simulated data. The olour ode is interpolated.One an see, that the projetion of 〈nm〉 onto the ǫs-T -plane is divided into aompat regime omprising AC, AG, AC2a, AC2b, DC and DG and a regime ofless ompat onformations. This niely on�rms the results already obtainedfor 〈Rgyr〉. Apart from that, transitions from maximally ompat onformations(DC, AC) to less ompat ones (AC2a) and the θ-transition of the free polymerare on�rmed. And, one again, the layering transition from double- to single-layer on�gurations is strongly signalled.
(a) (b)Figure 4.24: (a) Mean number 〈nm〉 of intrinsi ontats (without next neighbours alongthe hain) per monomer of the 13mer, (b) d 〈nm〉 /dT of the 13mer. The olour ode is as inFig. 4.23.
(a) (b)Figure 4.25: (a) Mean number 〈nm〉 of intrinsi ontats (without next neighbours alongthe hain) per monomer of the 20mer, (b) d 〈nm〉 /dT of the 20mer. The olour ode is as inFig. 4.23.



4.1 Adsorption Behaviour for Various Surfae Attration Strengths 554.1.2 The Pseudophase DiagramTo summarise all the informations gained from the di�erent observables, we drewthe approximate boundaries of di�erent regimes into the ǫs-T -plane and denotedthe di�erent pseudophases by the abbreviations already used (Fig. 4.26).
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(b)Figure 4.26: (a) Phase diagram of the 13mer, (b) Phase diagram of the 20mer. The olouredstripes indiates the regime where the phase transitions take plae.
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Figure 4.27: Representative examples of onformation of the di�erent regions in the ǫs-
T -plane. Conformations AC1a, AC1b, AC2a, AC2b and AG are loated at the surfae, theloation of whih is sometimes indiated with blue spheres. DE, DG and DC are desorbed.



4.1 Adsorption Behaviour for Various Surfae Attration Strengths 57The pseudophases found are (Fig. 4.27):
• DE (desorbed expanded): These are free desorbed random oil onforma-tions above the θ-transition.
• DG (desorbed globular): Globular free onformations below the θ- andabove the freezing-transition. Polymers in this pseudo-phase orrespondto a liquid and are still rather �exible.
• DC (desorbed ompat): Maximally ompat, spherially shaped on�g-urations below the freezing transition
• AE1 (adsorbed expanded single layer): Expanded on�gurations abovethe freezing-transition that are �at on the surfae but little ompat.
• AE2 (adsorbed expanded 3D onformations): Adsorbed expanded on�g-urations above the freezing-transition with usually more than half of themonomers attahed.
• AC1 (adsorbed ompat single layer): Adsorbed ompat on�gurationsbelow the freezing-transition that are �at on the substrate but ompatlike a irle.
• AG (adsorbed globular 3D onformations): Adsorbed onformations atthe surfae below the θ-transition, above the freezing-transition and withextension into the 3rd dimension. Like a drop on the surfae.
• AC2a (adsorbed ompat 3D onformations): Compat on�gurationat the surfae, that is semi-spherially shaped and below the freezing-transition.
• AC2b (adsorbed ompat double layers): Adsorbed double layer on�g-urations below the freezing-transition. The oupation of the layer at thesurfae is slightly higher than that of the other layer.
• AC (adsorbed spherial ompat): Conformation as in DC, but the poly-mer often touhes the surfae in this regime.4.1.3 Data for ǫs = 2 and N = 20In order to give an impression of how the simulated data look like before mergingthem together in the shown 3D plots and to stress how areful one has tobe in believing the skethed pseudophase transition positions, all observablesfor an arbitrary ǫs (ǫs = 2) and for N = 20 are presented here. A look onthe phase diagram for N = 20 tells us that we have to expet the freezingtransition at T ≈ 0.2, the expansion from AG to AE2 at T ≈ 1.3 and thedesorption at T ≈ 1.6. This seems less obvious when regarding Fig. 4.28. Alltemperature derivatives of 〈E〉, 〈zcm〉, 〈Rgyr〉, 〈Rgyr,‖

〉, 〈Rgyr,⊥〉, 〈nm〉 and 〈ns〉show some ativity at the freezing transition around T ≈ 0.2, but the exat
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2.521.510.50-0.5-1-1.5(a) (b)Figure 4.28: (a) Several observables for ǫs = 2 and N = 20, (b) The derivative with respetto T of the same observables.position of the peak varies between T ≈ 0.16 for d 〈Rgyr,z〉 /dT and T ≈ 0.35for d 〈zcm〉 /dT . This is learly an e�et of the �nite size of the polymer. Onlyin the thermodynami limit of very long hains the transitions are expeted totake plae at the same ǫs and T for all observables. For �nite hain length, thetransition lines still hange with N and are not well de�ned due to the broadpeaks that are slightly di�erent for di�erent observables.Below the freezing transition, all observables are quite onstant with T . Atsuh low temperatures, those marostates are formed whih are energetiallyfavoured. Entropy is not yet relevant. Above the freezing transition however,entropy does play a role and the average energy inreases, the onformation getsless ompat � indiated by inreasing 〈Rgyr〉, 〈Rgyr,‖

〉, 〈Rgyr,⊥〉 and dereasing
〈nm〉 � and the ontat to the surfae loosens � indiated by dereasing 〈ns〉 andinreasing 〈zcm〉. The expansion from AG to AE2 at T ≈ 1.3 is even less wellde�ned. In fat, it is rather hard to loate this ontinuous transition. Not onlyexpands the polymer monotonously with T and it is not lear, where to de�nethe boundary between �ompat� and �random oil� onformations. Also thepeaks of the relevant observables d 〈Rgyr〉 /dT , d

〈
Rgyr,‖

〉
/dT , d 〈Rgyr,⊥〉 /dTand d 〈nm〉 /dT are loated between T ≈ 0.81 and T ≈ 1.67. This makes itimpossible to draw a lear transition line. The line in the pseudophase diagramis a ompromise between all the observables and due to the need to indiatethat in one regime ompat onformations and in the other one expanded onedominate. A lear transition line should only exist in the thermodynami limitjust as for the θ-transition of desorbed states. The desorption transition iseasier to loate, but still the peaks of C, d 〈zcm〉 /dT and d 〈ns〉 /dT that mainlyindiate this transition, do not oinide. d 〈zcm〉 /dT already shows ativity at

T ≈ 1.73, then 〈ns〉 at T ≈ 1.6 and C at T ≈ 1.56. It makes however sense,that when the system is ooled, the polymer �rst has to move to the surfae� ativity in 〈zcm〉 at higher T � before monomer-surfae ontats an have aonsiderable e�et on the energy.This hopefully made it lear, that the pseudophase diagrams in the previoussubsetion are supposed to give a good qualitative overview about the behaviourwith varying ǫS and T , but the positions of the phase boundaries should onlybe onsidered as rough guidelines.



4.1 Adsorption Behaviour for Various Surfae Attration Strengths 594.1.4 Density of StatesIt is rather illuminating to take a look at the density of states Ω(E) that wasestimated while generating the multianonial weights. In Fig. 4.29 Ω(E) isplotted both logarithmially and linearly for three investigated hain lengths
N = 13, 20, 50. For any �xed hain lengths Ω(E) behaves very similarly for
E & −0.25 for all ǫs, while the behaviour of Ω(E) hanges for energies belowthis value. In the linear plot, hardly any di�erenes apart from �utuationsan be seen, but the logarithmi plot reveals, that the number of low energystates with E < −0.25 inreases with inreasing ǫs. This is simply due to thefat, that on�gurations with a low degeneray on the surfae like single layeron�gurations are assigned a lower energy the lower the ǫs. The fration of totalon�gurations in the simulation box, whose energy gets onsiderably in�uenedby the surfae potential present, dereases with inreasing simulation box size,whih also has an in�uene on Ω(E) and the anonial expetation values of theobservables (see setion 2.4).It is also interesting to observe, how the overall shape of the density of stateshanges with inreasing N . For small N there is a distint maximum of Ω(E)at E ≈ −0.25, the energy with the most mirosopi realizations. As N in-reases, the relative mount of high energy on�gurations inreases until at somepoint, Ω(E) is no longer a dereasing funtion of E for E > −0.25, and hasno maximum any more. Con�gurations near the peak of Ω(E) are random-oil on�gurations with a high degeneray. Higher energy on�gurations arethose that self-interset whih is punished by the high energy repulsive partof the Lennard-Jones energy. The longer the hain, the more likely it gets forthe polymer to self-interset whih explains the higher amount of high-energyon�gurations for higher N .The inreasing amount of high energy on�gurations with inreasing hainlength has far less an e�et on the anonial averages, espeially at low tem-peratures, than the inreasing number of low energy states with inreasing ǫs.Fig. 4.30, e.g., shows the probability p(E) = Ω(E) exp(−E/T ) of on�gurationswith energy E per monomer at temperatures lose to the adsorption tempera-ture for several ǫs. Due to the exponential Boltzmann weight exp(−E/T ), lowenergy on�gurations are getting more and more probable at lower tempera-tures. Eventually low energy on�gurations obtain a similar probability thanon�gurations with E & −0.25 with a lower probability for energies in between.Sine this is learly found in Fig. 4.30 for short hain lengths, and we knowthat lower energy on�gurations are attahed to the surfae for not to small
ǫs, while on�gurations with E & −0.25 are mainly free. Hene the adsorptiontransition appears to be �rst-order like for those short hains. But one an alsosee that with the disappearing peak of Ω(E) also the double peak struture of
p(E) gets less and less pronouned. Thus for longer hains, the transition mighteventually beome ontinuous.For even lower temperatures, the adsorbed onformations will gain more andmore weight ompared to the free ones. Hene for temperatures lower than the
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(a)

(b)

()Figure 4.29: Density of states Ω(E) for (a) N = 13, (b) N = 20 and () N = 50 and various
ǫs. The larger the ǫs the lower the deepest possible energy of the polymer. Sine only therelative Ω(E) was approximated, the normalisation is some unknown number here. The insetgives the same data on a linear sale.
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()Figure 4.30: Probability p(E) = Ω(E) exp(−Etot/T ) of a polymer near a substrate to havean energy E in a anonial ensemble for di�erent ǫs for (a) N = 13, (b) N = 20 and ()
N = 50. E on the absissa is normalised per monomer, while E in the exponent is theabsolute energy. The inset gives the same data on a linear sale.



62 CHAPTER 4. RESULTSplotted ones, only the rare low energy on�gurations on the substrate are ofthermodynami signi�ane.One more thing an be onluded from Fig. 4.30: The adsorption temperatureinreases with inreasing N . This must be due to the dereasing relative amountof monomers on the surfae that makes the free ompat monomer more stableand the higher degeneray of free onformations ompared to desorbed one forlonger hains.4.1.5 Comparison with Lattie ResultsWe would like to ompare the results disussed with those obtained from asimilar model on an s lattie [15℄, that was already deployed to motivate theobservation that ǫs ∝ T at the adsorption transition in setion 4.1.1.The polymer is modeled as a nongrafted self-avoiding polymer between twoin�nitely extended parallel planar walls, separated by a distane zw expressedin lattie units. One wall is short-ranged attrative, while the other one has apurely sterial in�uene to prevent the polymer from esaping. The energy ofthe system is given by
E (ns, nm) = −ǫL

s ns − ǫmnm, (4.13)where ns is the number of nearest-neighbour monomer-substrate ontats, nmthe number of nearest-neighbour, but nonadjaent monomer-monomer ontatsand ǫL
s and ǫm are the respetive ontat energy sales. We add the �L� to
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Figure 4.31: (a) Solubility-temperaturepseudo-phase diagram of a 179-merfrom [15℄. The olour odes the spei�heat as a funtion of reiproal solubility
s and temperature T � the brighterthe larger its value. Here is ǫLs = 1and ǫm = s. (b) Surfae attration-temperature diagram of the same systemas in (a), but with ǫm = 1 and the surfaeattration varied. () The phase diagramof the 20mer of Fig. 4.26 one again foromparison.



4.1 Adsorption Behaviour for Various Surfae Attration Strengths 63distinguish the equivalent surfae ontat energy sales on the lattie with thosein our model. Thus, the probability for a onformation with ns surfae and nmmonomer-monomer ontats at temperature T and given ǫL
s and ǫm is

pT,ǫLs ,ǫm
(ns, nm) =

1

Z
gns,nme(ǫLs ns+ǫmnm)/kBT , (4.14)where Z is the partition sum Z =

∑

ns,nm
gns,nm exp((ǫL

s ns+ǫmnm)/kBT ). Thisallows to alulate the anonial expetation values 〈O〉
(
T, ǫL

s , ǫm

) for all T , ǫL
sand ǫm for any funtion O(ns, nm), if one knows gns,nm via:

〈O〉
(
T, ǫL

s , ǫm

)
=
∑

ns,nm

O (ns, nm) pT,ǫLs ,ǫm
(ns, nm) . (4.15)The applied ontat-density hain-growth algorithm in [15℄ whih is an im-proved variant of the multianonial hain-growth sampling method [61; 62℄has the advantage that it diretly samples the ontat density gns,nm that onlydepends on the geometry of the system, in partiular zw and N . This allowsto set the two independent energy sales ǫL

s and ǫm after the simulation toalulate the expetation values of interest.

Figure 4.32: Representative minimum free-energy examples of onformations in the di�erentpseudo-phases of a 179mer [15℄.

In the paper, a simple resaling wasperformed and a dimensionless re-iproal solubility was introduedby hoosing
ǫL
s = ǫ0, ǫm = sǫ0 and ǫ0 = 1.(4.16)

s ontrols the quality of the im-pliit solvent surrounding the poly-mer, with a large s orrespondingto a bad solvent and vie versa.Having an estimate of gns,nm , witheqs. (4.14), (4.15) and (4.16)the spei� heat 〈C〉 = (
〈
E2
〉
−

〈E〉2)/(kBT 2), kB = 1, was al-ulated for a range of s and T .The projetion of 〈C〉 (s, T ) ontothe solubility-temperature plane fora lattie homopolymer with 179monomers in a avity with zw =
200 is shown in Fig. 4.31(a). Alegend to the various pseudophasesan be found in Fig. 4.32.Although the model is similar toour o�-lattie model, with thisparametrisation it is hard to diretly ompare the results, sine one always has



64 CHAPTER 4. RESULTSto think, whih s-T ombination in Fig. 4.31(a) orresponds to whih ǫs-T om-bination in Fig. 4.31() � where we one again show the pseudophase diagramof the 20mer for onveniene.The resaling of the lattie model that orresponds to the surfae strength vari-ation of our model is
ǫL
s = ǫsǫ0 and ǫm = ǫ0 and ǫ0 = 1. (4.17)Here ǫs is allowed to adopt di�erent values and is the quantity that orrespondsto our ǫs just as the s in eq. (4.16) roughly orresponds to our s � or morepreisely to the square root of our s. The estimate for gns,nm an be reused toalulate 〈C〉 (ǫs, T ) with this parametrisation over the same range of ǫs and Tthan examined here. The result is depited in Fig. 4.31(b).In order to identify the pseudophases in Fig. 4.31(b) with the help of Fig. 4.31(a)a simple argument an be used: If the energy in the parametrisation (4.16) isdenoted by E′ = −ns − snm and the temperature by T ′ and the energy in theparametrisation (4.17) by E = −ǫsns − nm and the temperature by T , in orderto get the same Boltzmann weight in both parametrisations for a on�gurationwith ns surfae and nm monomer-monomer ontats, it has to hold:
E′

T ′
=

E

T
⇔ ns + snm

T ′
=

ǫsns + nm

T

⇔ T =
T ′

s
∧ ǫs =

1

s
.

(4.18)With these relations all pseudophases in Fig. 4.31(b) were identi�ed. The tran-sitions between them are loated with a higher preision than in our resultswhih is learly due to the longer hain possible on the lattie.It is quite reassuring to see, that there are ertain similarities betweenFigs. 4.31(b) and (). For instane, for the adsorption transition one �ndsin both models that ǫs ∝ T . The explanation for this notieable transition wasalready given. Di�erent however is not only the slope, derived in eq. (4.12)for the lattie model, that depends on the system's geometry and energy salesand we do not want to go into detail here. Also while for the o�-lattie model,the extrapolation of the transition line seems to go through the origin ǫs = 0and T = 0, there is an o�set observed on the lattie suh that the extrapo-lated transition line roughly rosses ǫs = 0.4 and T = 0. We speulate thatthis might be due to the intrinsi ubi struture of the lattie polymer thatpossesses �at surfaes at low temperatures even without a substrate. Unlike foro�-lattie models, where a ompat polymer attains a spherial shape, suh aubi onformation is likely to dok to a substrate without having to modifyits onformation. Hene an important di�erene between lattie and o�-lattiemodels is that while for not too high surfae attration strengths for o�-lattiemodels, there is a ompetition between most ompat spherial onformationsthat do not possess �at regions on the polymer surfae and less ompat on-formations with �at regions that allow for more surfae ontats but redue thenumber of intrinsi ontats, suh a ompetition is missing for s lattie models.
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Figure 4.33: Low ǫs and T -setion ofFig. 4.31(b) to get a loser look at the AC2subphases.

This also explains, why a transitionlike the one observed for N = 13 bet-ween AC and AC2a, the wetting tran-sition, would never be possible on thelattie, sine there simply is no spher-ially doked stable onformation AC.On the other hand, AC2 onforma-tions at low T and for ǫs between theadsorption and the single-double layer-ing transitions an be observed in bothmodels. And also for both models, theAG pseudophase was found when rais-ing the temperature.But while for the o�-lattie model,apart from the wetting transition, there were only the transition from AC2a(semi-spherial shaped) into AC2b (double-layer strutures) found, on the lat-tie a zoo of pseudo-transitions within AC2 an be seen (Fig. 4.33). It turns out,that these are the predited higher-order layering transitions. With dereasingsurfae attration, layer after layer is added until the number of layers is thesame as in the most ompat onformation. A lattie polymer has no otherhoie than to form those layers at low temperatures. The layering transitionfrom AC1 to AC2 is very sharp for both models. Also the shape of the transi-tion region from 2D adsorbed to 3D adsorbed onformations looks very similar.Interestingly, also the ǫs/ǫm-ratio predited for this transition in Ref. [16℄ ineq. (4.6) agrees quite well with the observed one.What ould not be learly identi�ed on the lattie is a freezing transition thatorresponds to the one between AC1 and AE1. There is some ativity observedat very low T in AC1, but it is hard to draw preise onlusions from it.All the high-temperature pseudophases, DE, DC/DG, AG, AE, niely orres-pond to eah other in both models, whih suggests that their overall positionsare orretly identi�ed.4.1.6 Low-Energy Con�gurationsUsing the speialised algorithm Energy Landsape Paving (ELP) introduedin setion 3.5, a searh for low energy on�gurations at 100 di�erent ǫs, ǫs =
0, 0.05, 0.1, . . . , 5, was performed. Here, we did not only onentrate on theenergetial favourable onformations that hange with varying ǫs, but also onthe omposition of the energy. It turned out that while ELP works very well for
N = 13, the CPU time inreased dramatially for N = 20, suh that we onlypresent rigorous results for N = 13 here.In Fig. 4.34, all energy ontributions for N = 13 are shown vs. ǫs. One anniely see that although the total energy E hanges smoothly with ǫs, thisdoes not hold true for its subunits. Until ǫ ≈ 0.45, our ELP runs did not �nd



66 CHAPTER 4. RESULTSTable 4.1: Low energy on�gurations for the 13mer.
ǫs-range 0 − 0.45 0.5 − 1.15 1.2 − 2.8 2.85 − 5DC/AC AC2A AC2b AC1on�guration

low energy on�gurations that are doked to the surfae, i.e., Esur ≈ 0 in thisregion and only ELJ and Ebend ontribute. This hanges abruptly at ǫ ≈ 0.45,where Esur inreases to a �nite value. At the same time the ontribution due tothe intrinsi Lennard-Jones energy dereases. This learly indiates a wettingtransition that is indeed observed when looking at the on�gurations displayed inTable 4.1. Ebend also shows some ativity here and dereases. But for the overallbehaviour the bending term hardly plays any role sine it is muh weaker thanthe ompeting surfae and intrinsi attration that determine the behaviour.For ǫs & 0.5 the surfae ontribution inreases linearly with ǫs, whih is whatone would expet. ELJ stays rather onstant until at ǫs ≈ 2.8 it performs ajump down to the value attained in a ompat single layer on�guration. Thisis the double-single layer transition where ELJ exatly oinides with Esur. Foreven higher ǫs, ELJ attains another plateau while Esur again inreases linearlybut with a higher slope than in the double-layer region.The transition from AC2a to AC2b is not visible in Fig. 4.34. This strutural re-ordering from ompat adsorbed semi-spherial onformation to the double-layerneither a�ets the number of intrinsi ontats nor the number of monomersdoked to the surfae onsiderably.
ELJ

Ebend

Esur

E = Esur + Ebend + ELJ

ǫs

E

543210

10-1-2-3-4-5-6-7Figure 4.34: Di�erent energy ontributions of the 13mer normalised to the number ofmonomers.



4.2 Behaviour at Various Monomer-Monomer Attration Strengths 674.2 Behaviour at Various Monomer-MonomerAttration StrengthsSome additional work was performed on the thermodynami behaviour of thepolymer if the surfae attration strength is set onstant (ǫs = 1), but thesolvent quality s is varied. Only the ase N = 13 was onsidered. The hope isto obtain a pseudophase diagram like in Fig. 4.26(a) that an be ompared withthe one in Fig. 4.31(a). Here, we present �rst results of this still ongoing study.In order to do so, the reweighting in s introdued in setion 3.3 was applied.First, multianonial weights for s = −2, −1.75, . . . , 5 were generated. After-wards, two parallel multianonial simulations at neighboring s were performedfor every pair of neighboring values of s as desribed in setion 3.4 and theanonial expetation values for various T and s in between were alulated byreweighting the onformations. This approah allowed us to measure anonialexpetation values over a wide range of s and having to generate relatively fewmultianonial weights. In addition, every generated on�guration an be usedmore often than in single multianonial simulations where only a reweightingin T is performed.We indeed obtained promising results. However, the longer reweighting pro-edure after every simulation step slowed the simulations down, suh that no
(a) (b)Figure 4.35: Ω(E) for s = −2, −1.75, . . . , 0.75 and ǫs = 1. (a) Linear plot. (b) Logarithmiplot.
(a) (b)Figure 4.36: Ω(E) for s = 0.75, 1, . . . , 5 and ǫs = 1. (a) Linear plot. (b) Logarithmi plot.



68 CHAPTER 4. RESULTSTable 4.2: Low energy on�gurations for the 13mer.
s −2 � 0 0.25 0.5on�guration
s 0.75 1 1.25 � 5on�guration

�nal pseudophase diagram an be presented here. The statistis is not yet goodenough. Thus, for suh short hains, where the generation of new onformationsis faster as for longer hains and the autoorrelation time is lower, one does notgain muh with the reweighting in s. But it might beome a useful tehniquefor longer hains.

Figure 4.37: 〈Rgyr〉 vs. s and T for the 13mer.

Some informations an however beextrated from the simulations per-formed. In Fig. 4.35 and Fig. 4.36the density of states obtained fromthe multianonial reursion aredisplayed. If one �rst looks atFig. 4.35, one an see that for
s = −2 the density of states onlyattains a very weak maximum at
E ≈ 1.5. The lowest energy statefound is at E ≈ −1.188. If s in-reases until s = 0.25 the maximumgets more pronouned and shiftedto lower energies. The lowest en-ergy found, however dereases onlyslightly. This hanges for s = 0.5. Here the maximum inreases further butthe di�erene of the lowest energy found for s = 0.25 and s = 0.5 is onsid-erably higher than it was for smaller s. For higher s the di�erene gets evenmore pronouned. To understand this, it helps to take a look at the low energyonformations found for di�erent s that are presented in Table 4.2. For s 6 0,the polymer prefers to be in a strethed onformation, like a rod. This is whatone expets in this regime where individual monomers repel eah other. Fromthe anonial expetation values of, e.g., the radius of gyration, we know thatthe polymer stays rather strethed also for higher temperatures and there areindiations for an adsorption transition somewhere between T = 0 and T = 1.What is responsible for the muh lower energies found for s = 0.25 and s = 0.5 isa ollapse of the polymer. This is illustrated in Table 4.2, where low-energy on-



4.2 Behaviour at Various Monomer-Monomer Attration Strengths 69formations are displayed and around those values of s, one an see the polymerto ollapse whih orresponds to a wetting transition on the surfae. As soonas the polymer is ollapsed and monomer-monomer ontats are energetiallyfavourable, an inreasing s yields a muh lower energy of ompat onforma-tions. As a onsequene, the average energy goes down rapidly. This an also beseen in the density of states in Fig. 4.36. Here for inreasing s the energy rangeof ompat onformations gets muh broader whih also implies a redution ofthe peak height.Figure 4.37 shows the projetion of the radius of gyration onto the s-T -plane.Every olour stripe represents one run of two parallel multianonial simulations.Although the �utuations espeially at low temperatures are still rather high,one an reliably read o� that the s-T -plane is split into a region of ompat anda region of swollen onformations.What we were not able to learly identify is however the exat position of theadsorption transition. Espeially for high s, the polymer only moves lose to thesurfae without giving up its ompat onformation. Hene an adsorption onlymeans a small redution in energy ompared the ontribution of the intrinsiontats. On the other hand it redues the entropy. Thus, an adsorption in thisregion is only expeted to happen at very low temperatures. This is di�erenton the lattie (see Fig. 4.31), where a doking to the substrate is muh morefavourable in bad solvents. For our model we found in several simulations on-taining about 107 − 108 sweeps no adsorption at all. In order to gain deeperinsights into the adsorption behaviour of short polymers with this model, furtherand longer simulations are neessary. This is future work.



70 CHAPTER 4. RESULTS



5 Summary & OutlookThe main objetive of this work was to onstrut a pseudophase diagram of on-formational thermodynami phases of a single semi-�exible homopolymer nearan attrative substrate in dependene of the external parameters surfae at-tration strength and temperature. The semi�exible homopolymer is modeledby a oarse-grained mesosopi o�-lattie model. In that model, a polymeris onsidered as a hain of monomers with ovalent bonds of �xed length, aLennard-Jones interation potential for ontats between monomers being non-adjaent along the hain, a weak bending sti�ness and a surfae attration term.The surfae attration is due to the van der Waals fores between the polymerand the substrate and is modeled by a Lennard-Jones-like potential.The goal to onstrut a pseudophase diagram was indeed ahieved for polymersof hain lengths N = 13 and N = 20. For these hain lengths, the anonialexpetation values of several observables were measured over a broad range ofsurfae attration strengths. and temperature using multianonial simulations.Namely, the observables designed to unravel the equilibrium behaviour of suh asystem are the energy, the radius of gyration as well as its omponents paralleland perpendiular to the substrate, the distane of the entre-of-mass of thepolymer to the surfae, the mean number of monomer-surfae ontats, the meannumber of intrinsi monomer-monomer ontats and the thermal �utuations ofall those quantities.The pseudophase diagram was onstruted using all statistial informationsabout energeti and strutural �utuations. Although the omputational ex-pense to explore suh a broad parameter range aurately restrited us to rathershort hains, we were still able to identify several onformational pseudophasesand pseudophase transitions. These are:
• Crystalline strutures below the freezing transition. With inreasing sur-fae attration strength we identi�ed maximally ompat onformationsfreely �oating in solution (DC) or attahed to the substrate (AC), semi-spherial ompat onformations (AC2a) that are distorted by the surfaebut show no layers, double-layer onformation (AC2b) and single-layeronformations (AC1).
• Adsorbed onformations above the freezing transition. Here three onfor-mational pseudophases were distinguished: globular, rather unstruturedthree-dimensional onformations (AG), expanded �at onformations onthe substrate (AE1) and three-dimensional expanded adsorbed onforma-tions (AE2).
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• Desorbed onformations. Compat onformations (DC) are separated bythe freezing transition from globular onformations (DG). At even highertemperatures above the well known θ-transition random-oil onforma-tions were found (DE).The sharpest pseudophase transition identi�ed is the layering transition betweensingle- and double-layer-strutures. The surfae attration strength at whihthis transition is observed oinides quite well with the one estimated for a hexa-gonal lattie � the lattie type adopted for single- and double-layer struturesbelow the freezing transition. Higher-layer onformations were not found forthese short hains. In a reent study on an s lattie, for weak surfae attrationand positive self-attration, layering transitions were observed until a maximallyompat ubi struture is reahed. This is di�erent for our o�-lattie model.Here the maximally ompat onformation is spherial and has no �at areaon its surfae that an easily form many monomer-substrate ontats withoutthe need to deform. Hene the Lennard-Jones energy for monomer-monomerontats ompetes with the monomer-substrate ontat energy. This induesa wetting transition. For N = 13 we learly identi�ed this wetting transition,while for N = 20 the transition appears to be rather ontinuous. This di�erenemight be due to the high symmetry of the most ompat onformation of the13mer that is an iosahedron. Hene it is not possible to predit the wettingbehaviour of longer hains from just those two investigated hain lengths butmore simulations at di�erent hain lengths are needed.At the adsorption transition the substrate adhesion strengh was found to beproportional to temperature. This is expeted sine at a higher temperature thestronger Brownian �utuation is more likely to overome the surfae attration.But also a lattie argument that minimises the free energy is given and indeedthe relation was also veri�ed on the lattie.For a single polymer in bulk solution, it is known that three phases exist, namelya swollen globule, a ollapsed �uid globule and a solid rystalline state, thatare separated by the θ- and the freezing transition, respetively. We foundthose phases for low surfae attration and also identi�ed their orrespondingadsorbed pseudophases. So, the existene of an adsorbed globule (AG) wasveri�ed. The θ-transition for adsorbed polymers between AG and AE2 shiftsto lower temperatures ompared to the free polymer until it disappears at thesingle-double layer transition. The freezing transition always stays at about thesame low temperature. Only the exat struture of the rystalline state hangeswith ǫs.Due to the �nite length of the investigated polymers, di�erent observables indi-ate transitions at slightly di�erent positions. This yields an unertainty in thepseudophase transition regions indiated in the pseudophase diagrams, whihshould disappear in the thermodynamis limit. For N = 20 it is not notieablysmaller than for N = 13 whih might be due to the higher possible symmetry ofthe 13mer, but this needs further investigation. From a short test of the depen-dene of the anonial expetations values on the size on the simulation box,



73we also know that they always depend on the distane to the introdued steriwall. This dependene is however very weak for most of the observables if thesize of box is hosen to be onsiderably larger than the polymer extension suhthat the onlusions drawn are independent on the exat box size hosen. Onlythe average distane of the polymer to the surfae shows a stronger dependene.This however annot be avoided sine without it, the hane of the polymer to�nd the substrate and stay in its viinity is negligible.The density of states for N = 13, N = 20 and N = 50 for di�erent substrateadhesion strengths reveals a pronouned peak for N = 13 and N = 20. Theon�gurations that orrespond to the peak are highly degenerate random-oilon�gurations. It vanishes for inreasing hain length while the number ofhigher-energy states inreases. Aordingly, the anonial probability p(E) atthe adsorption transition exhibits at double-peaked struture for small N with aminimum between both peaks that seems to disappear for longer hains. Henethe transition seems to hange from �rst-order like to ontinuous for inreasinghain length.Additional studies were performed for �xed positive surfae attration strengthand varying solvent quality. The applied parallel multianonial simulationwith a reweighting in temperature and solvent quality works in priniple, butthe reweighting over a wide range of parameters after every sweep slowed thesimulation onsiderably down suh that the statistis is not yet good enough.However this approah might be very valuable if one only reweights to a smallnumber of parameters at a time or if the hains are longer suh that the genera-tion of new on�gurations are more expensive ompared to the reweighting. Wewere still able to draw some onlusions out of those simulations. So a wettingtransition indued by inreasing solvent quality and a ollapse transition induedby dereasing solvent quality were identi�ed and loated. The question if thepolymer adsorbs for very high intrinsi monomer-monomer attration strengthsand the determination of the adsorption temperature must be left open here forfuture investigations.
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