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OverviewThis diploma thesis deals with the 
anoni
al equilibrium behaviour of asemi�exible homopolymer near an attra
tive substrate within the frame of amesos
opi
 
oarse-grained model.Its outline is as follows:In 
hapter 1, the problem of polymers near surfa
es is motivated. Some es-tablished knowledge about the bulk behaviour of self-avoiding self-intera
tingpolymers in solution, in parti
ular the θ-transition, is shortly reviewed. Andsome reasons to use a mesos
opi
 
oarse-grained model rather than an all-atomapproa
h are given.Chapter 2 introdu
es the studied model in
luding intrinsi
 polymer intera
-tions, surfa
e intera
tion as well as the applied boundary 
onditions. Also themeasured observables are motivated and introdu
ed.Chapter 3 deals with the Monte Carlo te
hniques applied in this thesis. Aftera short overview of the Monte Carlo method in general and its appli
ations instatisti
al physi
s in parti
ular, the 
on
ept of Markov pro
esses is explainedand the di�erent updates used to generate new 
on�gurations are explained indetail. The main te
hnique employed here is a generalised ensemble method:The multi
anoni
al method. It is introdu
ed as well as the multi
anoni
al re
ur-sion that is used to generate the ne
essary weights. The 
on
ept of reweightinggenerated 
onformations in order to estimate 
anoni
al expe
tation values fordi�erent external parameters will also be outlined and expli
itly des
ribed for
T , s and ǫs. Additionally the idea of �Repli
a Ex
hange Monte Carlo�, that wasused for some additional studies, and of the spe
ially biased algorithm �EnergyLands
ape Paving� to �nd global energy minima is given. The 
hapter is 
on-
luded with some words on the applied Ja
kknife analysis for error estimation.Chapter 4 �nally presents the results obtained. Here, the main fo
us is on thebehaviour of a polymer near an attra
tive substrate (se
tion 4.1). The 
anoni-
al expe
tation values over a wide range of surfa
e attra
tion and temperatureare presented together with the density of states and low energy 
onformations.All gained informations are summarised in a pseudophase diagram and 
om-pared with latti
e results. Similarities and di�eren
es are dis
ussed. In se
tion4.2, some additional results on the behaviour with varying solvent quality ispresented.Last but not least, the summary 
hapter 5 
ompiles the main fa
ts in a shortform.
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1 Introdu
tionIn this 
hapter the problem of polymers near or at substrates is motivated andsome reasons to use a mesos
opi
 
oarse-grained modelling approa
h are given.1.1 MotivationPolymers near surfa
es is a fas
inating �eld for both physi
ists and 
hemists. Itprovides a rewarding playground for basi
 and applied resear
h. With the ad-vent of new sophisti
ated experimental te
hniques with its enormous potentialin polymer and surfa
e resear
h the interest in the hybrid interfa
e of organi
and inorgani
 matter has in
reased. Su
h te
hniques at the nanometer s
aleare, e.g., atomi
 for
e mi
ros
opy (AFM), where it is possible to measure the
ontour length and the end-to-end distan
e of individual polymers [1℄ or toquantitatively investigate the peptide adhesion on semi
ondu
tor surfa
es [2℄.Or opti
al tweezers that are an experimental tool with an extraordinary reso-lution in positioning (±1nm) a mi
ron-sized 
olloid and in the measurement offor
es (±50fN) a
ting on it [3℄. It 
an be used to probe the behaviour of singlepolymer mole
ules su
h as DNA, titin or myosin.Appli
ations for adsorption phenomena in polymeri
 solutions 
an be found insu
h di�erent �elds as lubri
ation, adhesion and surfa
e prote
tion, steri
 stabili-sation of 
olloid parti
les [4℄ as well as biologi
al pro
esses of membrane-polymerintera
tion. To understand the latter is important for the re
onstru
tion of 
ellpro
esses. An understanding of interfa
es is also a prerequisite for making mi
ro-or nanostru
tures be
ause their behaviour is dominated by surfa
e e�e
ts ratherthan gravitation or inertia.Despite mu
h e�ort, the problem of a dilute polymer solution of variable solventquality exposed to an adsorbing substrate is not fully understood. In the 
ase ofa long �exible single 
hain in a good solvent, and no other intera
tions presentthan the ex
luded volume e�e
t, polymers are modelled by self-avoiding walks(SAWs) on a regular latti
e. De Gennes showed, that their s
aling properties inthe limit of an in�nite number of steps N may be derived from a formal n → 0limit of the O(n) ve
tor model at its 
riti
al point [5℄. Also the Ising model(n = 1), the XY model (n = 2) and the Heisenberg model (n = 3) belong tothis family. These models that do not intrinsi
ally 
ontain any boundary 
ondi-tions, as is, e.g.,introdu
ed by a substrate, have been investigated intensively byvarious di�erent methods in
luding mean �eld approa
hes, perturbation theory,transfer-matrix methods but also by exa
t enumerations and Monte Carlo simu-lations. So it is, e.g., well established that the radius of gyration of SAWs s
ales



4 CHAPTER 1. INTRODUCTIONwith N as 〈R2
〉
∼ N2ν , where ν ≈ 0.5874(2) for N → ∞ or that in a solvent the
hain exhibits a transition from a 
ompa
t globule to an expanded state whenthe temperature is in
reased. This transition is 
alled 
ollapse, 
oil-globule or

θ-transition and is indu
ed by an e�e
tive attra
tive monomer-monomer inter-a
tion that is mainly due to van der Waals for
es.An illustrative latti
e argument on what happens at this transition 
an be foundin the book of M. Doi [6℄. First, for an ideal 
hain on a latti
e that has nointrinsi
 intera
tion whatsoever and 
an be mapped onto a random walk, theradius of gyration has to be derived for 
omparison. It is de�ned as
〈
R2

gyr

〉
=

1

N

N∑

n=1

〈(

~Rn − ~Rcm

)2
〉

with ~Rcm =
1

N

N∑

n=1

~Rn, (1.1)whi
h is equivalent to
〈
R2

gyr

〉
=

1

2N2

N∑

n=1

N∑

m=1

〈(

~Rn − ~Rm

)2
〉

=
1

2N2

N∑

n=1

N∑

m=1

m∑

i=n+1

m∑

k=n+1

〈~ri · ~rk〉

=
1

2N2

N∑

n=1

N∑

m=1

m∑

i=n+1

〈
~r2

i

〉

=
1

2N2

N∑

n=1

N∑

m=1
|n − m|b2

N≫1≈ b2

2N2

∫ N

0
dn
∫ N

0
dm|n − m| =

1

6
Nb2.

Figure 1.1: Latti
e model of the ex-
luded volume 
hain. The solid 
ir
les arethe segments of the polymer and the hol-low 
ir
les are the solvent mole
ules. Pi
-ture adapted from [6℄.

Here ~Rn denote positions of monomersand ~rn = ~Rn−~Rn−1 are bond ve
tors su
hthat ~Rm − ~Rn =
∑m

i=n+1 ~ri and it wasused that there are no 
orrelations be-tween the dire
tions of di�erent bond ve
-tors: 〈~ri · ~rk〉 =
〈
~r2
i

〉
δik = b2δik, where

b is the bond length. Thus the typi
alpolymer size of an ideal 
hain s
ales as
〈Rgyr〉 ≃ Nνb, with ν = 1/2.For real polymers two e�e
ts have tobe taken into a

ount: the ex
luded vol-ume e�e
t and the solvent e�e
t. Theideal 
hain model permits widely sepa-rated segment along the 
hain to o

upythe same region in spa
e. This physi
alimpossibility is a

ounted for in an ex-
luded volume 
hain (Fig. 1.1) that 
or-responds to a self-avoiding walk by im-posing the 
ondition that two segments



1.1 Motivation 5
annot o

upy the same latti
e site. It is intuitively 
lear, that this 
onditionshifts the size distribution to higher values sin
e it is mainly the dense 
onfor-mations that are forbidden now. To quantify this e�e
t, one 
onsiders W (R)dR,the total number of ex
luded 
hains with the Nth step a distan
e between Rand R+dR away from the origin. W (R) has to be proportional to the distribu-tion fun
tion of R sin
e all possible paths have the same weight. One estimatesit by 
onsidering W0(R)dR for an ideal 
hain and multiplies it with the prob-ability that an ideal 
hain 
on�guration is also allowed under ex
luded volume
ondition p(R) to get W (R) = p(R)W0(R). Sin
e the distribution fun
tion forlong ideal 
hains is known to be Gaussian and the overall number of ideal 
hainswith N steps is zN , where z is the 
oordination number, it holds
W0 (R) = zN4πR2P (~R,N) = zN4πR2

(
3

2πNb2

)3/2

exp

(

− 3~R2

2Nb2

)

. (1.2)
p(R) 
an be estimated under the assumption that the polymer segments areevenly distributed in a region of volume R3. If the volume of one latti
e elementis denoted as νc the number of latti
e sites in R3 is R3/νc. Subsequently, if onepla
es N segments on the sites the probability that one parti
ular segment doesnot overlap with any other one is given by 1−νc/R

3. The probability that noneof the N(N − 1)/2 possible overlaps o

urs is now
p(R) =

(
1 − νc/R3

)N(N−1)/2
= exp

[
1

2
N (N − 1) ln

(

1 − νc

R3

)]
N≫1≈ exp

(

−N2νc

2R3

)

,(1.3)whi
h together with eq. (1.2) gives
W (R) = p(R)W0(R) ∝ R2 exp

(

− 3R2

2Nb2
− N2νc

2R3

)

. (1.4)Being interested in the behaviour of the radius of gyration and knowing that
W (R) is proportional to the probability that the end-to-end distan
e of theex
luded volume 
hain is R, one 
an use this expression to see how the maximaof W (R) and W0(R) relate to ea
h other. W0(R) has its maximum at R⋆

0 =
(2Nb2/3)1/2. Denoting the maximum of W (R) by R⋆ and di�erentiating thelogarithm of eq. (1.4) one gets (R⋆/R⋆

0)
5 − (R⋆/R⋆

0)
3 = (9

√
6νc)/(16b

3)
√

N ,whi
h yields for N ≫ 1

R⋆ ≃ R⋆
0

(

N1/2νc

b3

)1/5

∝ N3/5. (1.5)This 
on�rms the expe
tation that an ex
luded volume 
hain extends fasterwith N than an ideal 
hain. Extensive simulations found 〈Rgyr〉 ≃ Nνb, with
ν ≈ 0.588.., whi
h is 
lose to the estimated value.The presen
e of a solvent has a 
onsiderable in�uen
e on the 
on�guration ofthe polymer that has not been taken into a

ount yet. If the polymer has a high



6 CHAPTER 1. INTRODUCTIONa�nity with the solvent, the polymer is easily dissolved and in su
h a good sol-vent polymer 
onformations are extended random 
oils. On the other hand, in abad solvent 
ompa
t 
onformations are favoured. This solvent e�e
t is modeledwith a parameter s in this thesis, but is mainly 
onsidered to be 
onstant. Inthe latti
e model one 
an a

ount for this e�e
t by introdu
ing a solvent that
onsists of single parti
les o

upying all latti
e sites that are not o

upied by thepolymers. Neighboring sites are assigned the energies −ǫpp for two polymer seg-ments, −ǫss for two solvent mole
ules and −ǫps for a solvent mole
ule-polymersegment intera
tion. Sin
e these intera
tions are van der Waals energies, ǫpp,
ǫss and ǫps are positive. This leads to an overall system energy for any 
on�g-uration with Npp polymer-polymer 
onta
ts, Nss solvent-solvent 
onta
ts and
Nps polymer-solvent 
onta
ts of

E = −Nppǫpp − Nssǫss − Npsǫps. (1.6)Sin
e this 
hanges the probability of an ex
luded volume 
hain in solution tohave size R to
P (R) ∝ W (R) exp

(
Ē(R)

kBT

)

, (1.7)one is interested in the average energy Ē(R) of a polymer of size R. Assumingagain that all polymer segments are uniformly distributed in a volume R3 anddenoting the probability that a latti
e site in this region is o

upied by a polymersegment by φ = Nνc/R
3 one 
an estimate the average number of 
onta
ts tobe N̄pp ≃ zNφ/2, N̄ss ≃ N0

ss − [zNφ/2 + zN(1 − φ)] and N̄ps ≃ zN(1 − φ)respe
tively, where N0
ss is the number of neighboring solvent pairs if there wouldbe no polymer in the system. Substituting this into eq. (1.6) gives

Ē(R) ≃ −1

2
zNφ(ǫpp + ǫss − 2ǫps) + terms independent of φ

= −zN2νc

R3
∆ǫ + terms independent of R,

(1.8)where ∆ǫ = 1
2(ǫpp + ǫss) − ǫps is the de
rease in energy when two polymersegments tou
h. Hen
e for ∆ǫ > 0 
ompa
t 
onformations are energeti
allyfavourable and 
ostly for ∆ǫ < 0. Plugging eq. (1.8) into eq. (1.7) �nally yields
P (R) ∝ R2 exp

(

− 3R2

2Nb2
− N2νc

2R3
(1 − 2

z∆ǫ

kBT
)

)

. (1.9)Using the same tri
k as before, one �nds that eq. (1.5) is valid again if onesubstitutes νc by ν = νc(1 − 2z
kBT ∆ǫ), su
h that the s
aling is the same.Comparing eq. (1.9) with eq. (1.2), one 
an see now that the polymer behaveslike an ideal polymer if ν = 0. The temperature at whi
h this is the 
ase is
alled the θ-temperature given by

θ =
2z∆ǫ

kB
. (1.10)



1.2 Coarse-graining 7Espe
ially for large N , 
lose to the θ-temperature only a small 
hange in tem-perature leads to a big 
hange in the size of the polymer, e.g., below the θ-temperature, the size is mu
h smaller than that of an ideal 
hain. In parti-
ular, an intera
ting self-avoiding polymer below the θ-temperature s
ales as
〈Rgyr〉 ∼ N1/3.However, the behaviour of the system is strongly a�e
ted by the presen
e of anattra
tive surfa
e. In its vi
inity the monomer-monomer attra
tion responsiblefor the 
ollapsed state below the θ-transition and the surfa
e-monomer attra
-tion responsible for the adsorption will 
ompete. This 
ompetition gives rise toto a variety of interesting new 
onformations. The polymer will adsorb to thesurfa
e, if the temperature is lowered, but at high temperatures only a �nitenumber of monomers lie on the surfa
e, even if the polymer is grafted to it. Thisis due to the lower entropy of 
onformations spread out on the surfa
e 
omparedto those �oating freely in solution.Numerous detailed studies have been performed to elu
idate the 
onformationalbehaviour 
lose to and on a substrate for homo- as well as for heteropolymers.Compared to experiments 
omputer simulations have the advantage that 
om-binations of parameters 
an be varied at wish. Also, in many experiments it isnot 
ompletely 
lear, if the system is entirely thermodynami
ally equilibratedor if, e.g., polymers that were initially in solution get irreversibly adsorbed atthe substrate. The stru
ture found 
an di�er 
onsiderably [7℄. In simulationsthese 
onditions 
an be adjusted at will.Theoreti
al studies have, e.g., been performed analyti
ally with s
aling the-ory [8; 9℄, mean-�eld density fun
tional theory [10℄ and series expansion [11;12℄ and numeri
ally with o�-latti
e models su
h as a bead-spring model of asingle polymer 
hain grafted to a weakly attra
tive surfa
e [13℄, multis
ale mod-elling [14℄, Monte Carlo studies of self-avoiding walks [8; 15; 16; 17; 18; 19;20℄, mole
ular dynami
s 
ombined with a stret
hing of an adsorbed homopoly-mer [21℄ or exa
t enumeration [22℄. Also adsorption-desorption dynami
s wereinvestigated with mole
ular dynami
s of 
oarse-grained models [23℄.1.2 Coarse-grainingThe noti
eable frequen
y with whi
h 
oarse-grained models, that in
lude lat-ti
e models, are applied has good reasons. First, one has to understand the
omplexity of the problem posed by naturally o

urring ma
romole
ules withup to ten thousands of atoms. Although the physi
al intera
tions present arein prin
iple known, the long-range overlap of many-body orbitals, the s
reeningby the positively 
harged 
ores, the intera
tion with the solvent et
. make apre
ise predi
tion of the behaviour of the system based on ab initio quantum-me
hani
al 
al
ulations pra
ti
ally impossible. For the related problem of pro-tein folding, 
lassi
al models with many e�e
tive parameters (�for
e �elds�) havebeen developed in the past de
ades to study folding dynami
s or to predi
t na-tive stru
tures in 
omputer simulations. So, e.g. the SMMP (Simple Mole
ular
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hani
s for Proteins) [24℄ implementation of the ECEPP/3 (Empiri
al Con-formational Energies for Proteins and Polypeptides) for
e �eld has seven di�er-ent parametrisations of hydrogen, depending on the 
hemi
al group it belongsto. In a di�erent approa
h one starts with a simple ansatz for the intera
tionpotential and 
alibrates against pertaining data to folding properties of whole
hains. This is implemented in the pa
kage PROFASI (PROtein Folding andAggregation SImulator) [25℄.But even those simpli�ed models are still hard to manage even by sophisti
atedalgorithms and powerful 
apability 
omputers. And if one does, it turned outthat the folding behaviour sensitively depends on the 
hoi
e of the for
e �eldparameters, su
h that predi
tions of di�erent models do not frequently 
oin
ide.Despite the ex
iting development and the su

esses in this �eld and its need ifone wants to look 
loser at detailed stru
tures, for our purposes it is su�
ientto work on even 
oarser grains.A linear polymer is a 
hain of mole
ular subunits 
alled monomers. These 
anbe identi
al (homopolymer) or vary along the polymer (heteropolymer). Here,we are only interested in general properties of semi�exible homopolymers andtheir adsorption properties on a substrate. General properties are those thatare independent of the detailed 
hemi
al stru
ture of the polymer. Hen
e alsothe model applied 
an be redu
ed to the basi
 properties of the system and thepolymer is regarded as a 
hain of point-like e�e
tive monomers. This parametri
redu
tion is 
alled 
oarse-graining [26; 27℄. In parti
ular, in a 
oarse-grainedmodel, the number of monomers and the degree of polymerisation are not ne
-essarily the same thing. In fa
t, several 
hain segments are merged to form onee�e
tive monomer (Fig. 1.2). Hen
e the 
oarse-grained model has fewer degreesof freedom than those a
tually present in the system and the relevant lengths
ales are in
reased. To work with a 
oarse-grained model has thus two advan-tages: Unne
essary details are disregarded and the 
omputational analysis ismu
h faster.
Figure 1.2: Transition from the 
hemi
al poly-mer to the 
oarse-grained model.

l

Suitable potentials are needed thatgive rise to the self-avoidan
e ofthe polymer, i.e. di�erent parts ofthe 
hain should not be allowed tooverlap, and re�e
t the intera
tionbetween di�erent monomers. Alsoa bending-sti�ness or torsional po-tential 
ould be taken into a

ount.The solvent is impli
itly modeledby the intera
tion between themonomers, whi
h again de
reases the degrees of freedom and in
reases thespeed with whi
h the simulation 
an be done. In real polymer solutions witha good solvent, the monomers and the solvent mole
ules attra
t ea
h other.Consequently, solvent mole
ules a

umulate between monomers and push themonomers apart. This 
an be modeled with a repulsive intera
tion between themonomers. In a bad solvent, it is just the other way around: repulsive intera
-



1.2 Coarse-graining 9tion between monomers and solvent mole
ules but also entropi
 for
es a
t likean e�e
tive attra
tive potential between the monomers and the polymer shrinksto form a globular 
onformation. There are several models that satisfy these
onditions. The one applied here is des
ribed in more detail in the next 
hapter.
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2 The ModelIn this 
hapter, a 
omplete des
ription of the studied model in
luding intrin-si
 polymer intera
tions, surfa
e intera
tion as well as the applied boundary
onditions will be given. Also the measured observables will be motivated andintrodu
ed.2.1 De�nition of the PolymerThe model applied here is a 
oarse-grained model of a semi�exible homopolymer.It is adapted from the AB model [29; 30℄, an o�-latti
e generalisation of the HPmodel [31℄, where the monomers are 
onstrained to the grid points of a simple
ubi
 latti
e and the polymer is modeled by a self-avoiding walk. But while ABand HP model are heteropolymer models with hydrophobi
 (A, H) and polar(B, P) monomers, we restri
t ourselves to homopolymers, su
h that only onekind of monomers is taken into a

ount that builds up the whole polymer bymere repetition of always the same unit.Our model is a 
oarse-grained model, that is not 
onstrained to a latti
e. Theasso
iated additional 
omputational 
ost is a

epted in order to get rid of un-desired e�e
ts of the underlying latti
e symmetries of latti
e models. As on thelatti
e, the distan
e between adja
ent monomers is �xed and set to unity ingood relation to the monomer-monomer-potential, but the angles are now freeto rotate. The energy fun
tion has three terms:
Etotal = Ebend + ELJ + Esur, (2.1)the bending energy Ebend, a Lennard-Jones intera
tion energy ELJ and a surfa
eattra
tion energy Esur. A torsional potential is not 
onsidered. A sket
h of a

Figure 2.1: A segment of the semi�exible polymer model. The distan
e between two adja
entmonomers is �xed and set to unity. The bonding angle at the (k + 1)th monomer is denotedby ϑk and the ve
tor between the kth and (k + 2)th monomer by ~rk+2,k ≡ ~rk+2 − ~rk.



12 CHAPTER 2. THE MODELpolymer segment of this model without the surfa
e 
an be seen in Fig. 2.1. Ifthe position ve
tor of the kth monomer, k = 1, . . . ,N , is denoted by ~rk, the
ondition of �xed monomer-monomer distan
e reads as
|~rk+1 − ~rk| = 1 ∀ k = 1, . . . ,N − 1. (2.2)A polymer with N monomers has N − 1 bonds between neighboring monomersand N − 2 bending angles ϑk, k = 1, . . . ,N − 2, that are de�ned by
cos (ϑk) = (~rk+1 − ~rk) · (~rk+2 − ~rk+1) . (2.3)
s = +5
s = +2
s = +1
s = 0
s = −2
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0-5-10-15-20-25Figure 2.2: Lennard-Jones potential indi�erent solutions. For s > 0 the poten-tial has a minimum at rmin = 6
p

2/s wherethe attra
tion between two monomers is
ELJ(rmin) = −s2. For s ≤ 0 the potential ispurely repulsive.
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0.50.40.30.20.10Figure 2.3: Bending energy for one bond-ing angle. It has its minimum at ϑk = 0(straight bond) and its maximum at ϑk = π(maximal bending).
With those de�nitions both intrinsi
 energy terms 
an be de�ned. The Lennard-Jones term that is always repulsive at short ranges is given by

ELJ = 4
N−2∑

i=1

N∑

j=i+2

(

1

r12
ij

− s
1

r6
ij

) (2.4)with s being a 
onstant inverse solubility parameter. For s ≤ 0 the monomersrepel ea
h other whi
h leads to spread out 
onformations as 
an be found ingood solvents (Fig. 2.2). On the other hand for s > 0 the monomers attra
tea
h other whi
h for high enough attra
tion leads to globular 
onformations likein a bad solvent. The minimum of the Lennard-Jones potential between twomonomers rmin = 6
√

2/s 
hanges with s and equals the distan
e of neighboringmonomers along the 
hain at s = 2. The depth of the potential goes with sas ELJ(rmin) = −s2. Hen
e, if one only wants to model attra
tive monomer-monomer intera
tions, it might be just as reasonable to �x s and vary the wholeLennard-Jones intera
tion ELJ linearly. We mainly 
hoose s = 1 to modelhydrophobi
 peptides, but also start to investigate the behaviour for s ∈ [−2, 5]for a short 
hain. The bending sti�ness is de�ned as (Fig. 2.3)
Ebend =

1

4

N−2∑

k=1

(1 − cos (ϑk)) . (2.5)



2.2 The Surfa
e Potential 13The angle ϑk is in the interval [0, π) and the bending sti�ness 
an be viewed asa penalty introdu
ed for bonds that deviate from the straight 
onformation.
2.2 The Surfa
e PotentialTo de�ne a suitable attra
tive surfa
e potential, we �rst assume that the surfa
eis made up of a single type of latti
e planes, that are arranged in layers to forma 
rystal. The upper layer is in 
onta
t with the polymer and forms a regularlatti
e where next neighbours of an arbitrary atom with distan
e l1 and l2 liein the dire
tion of the unit ve
tors ~a1 and ~a2, respe
tively. Thus, the surfa
elatti
e 
an be 
ompletely des
ribed by the latti
e ve
tors ~a1 and ~a2. Now, theintera
tion of a single monomer with the 
rystal V (~s, z) 
an be expressed interms of a two-dimensional ve
tor ~s , that gives the position of the monomer inan xy-plane parallel to the surfa
e, and the z-distan
e to the wall. Due to theperiodi
 stru
ture of the surfa
e, this potential is a periodi
 fun
tion

V (~s, z) = V (~s + l1 ~a1 + l2 ~a2, z) , (2.6)with integer l1 and l2. The natural way of representing a periodi
 fun
tion su
has eq. (2.6) is a Fourier series:
V (~s, z) = V0 (z) +

∑

q 6=0

Vq (z) ei~q·~s. (2.7)Here V0 (z) is a mean over the whole surfa
e and the sum is over all two-dimensional re
ipro
al latti
e ve
tors ~q = 2π
(

n1
~b1 + n2

~b2

) with natural num-bers n1, n2. ~a1, ~a2, ~b1 and ~b2 are de�ned su
h that ~a1 · ~b1 = 1 = ~a2 · ~b2 and
~a1 ·~b2 = 0 = ~a2 ·~b1 holds. If the sum is negle
ted and one only works with V0 (z),the wall is modeled as 
ompletely smooth and formless in lateral dire
tion. Thisis what we are going to employ.We assume that the intera
tion between polymer units and the substrate is ofvan der Waals type, modeled by the usual Lennard-Jones 12-6 expression

VLJ (r) = 4ǫs

[(σ

r

)12
−
(σ

r

)6
]

. (2.8)In order to simplify the problem on mesos
opi
 s
ales, we integrate this potentialover the plane parallel to the surfa
e, sin
e the potential only depends on thedistan
e z to the surfa
e. This is best done using 
ylindri
al 
oordinates for
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n z′ = 0

z′ = z

z′ → ∞

attra
tive substrateattra
tive substrate
Figure 2.4: Graphi
al representation of the integration over all surfa
e layers.whi
h d3~r = d2~s dz = ρdρdϕdz and r =

√

ρ2 + z2 holds:
∫

∞

−∞

VLJ (r) d2~s = 4ǫs

∫
∞
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


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√
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

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ρ
√
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)6

︸ ︷︷ ︸
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







= 2πǫsσ
2

[
2

5

(σ

z

)10

−
(σ

z

)4
]

. (2.9)Multiplying this with the density ρsurf of the atoms in the area gives the inter-a
tion energy of a monomer with an area a distan
e z away:
VLJ,plane (z) = 2πǫsρsurfσ

2

[
2

5

(σ

z

)10
−
(σ

z

)4
]

. (2.10)To model a 
ompa
t wall, that 
onsists not only of a single layer of atoms,but of plenty of them rea
hing from distan
e z to ∞ (Fig. 2.4), an additionalintegration over the z-
omponent has to be performed:
Vsurf (z) =

∫ ∞

z
VLJ,plane

(
z′
)

dz′

= 2πǫsρsurfσ
2

∫ ∞

z

[
2

5

( σ

z′

)10
−
( σ

z′

)4
]

dz′

= 2πǫsρsurfσ
2

[
2

45
σ
(σ

z

)9
− 1

3
σ
(σ

z

)3
]

=
2π

3
ρsurfσ

3

︸ ︷︷ ︸

=1

ǫs

[
2

15

(σ

z

)9
−
(σ

z

)3
]

σ=1
= ǫs

[

2

15

(
1

z

)9

−
(

1

z

)3
]

. (2.11)



2.3 De�nition of Measured Observables 15This �nally is the potential we use in our simulations of hybrid systems. It issimilar to the one derived in Ref. [32℄. The underbra
ed 
onstant fa
tor as wellas σ is set to unity in all the simulations. Di�erent surfa
es are modeled byvarying ǫs. The fun
tional dependen
e is represented in Fig. 2.5.All energy 
ontributions of our homopolymer near an attra
tive substrate sumup to give the total energy:
E = 4

N−2∑

i=1

N∑

j=i+1

(

1

r12
ij

− s
1

r6
ij

)

+
1

4

N−2∑

k=1

(1 − cosϑk) + ǫs

N∑

i=1

[

2

15

(
1

zi

)9

−
(

1

zi

)3
]

.(2.12)
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543210

210-1-2-3-4-5Figure 2.5: The surfa
e potential (2.11) plotted for various values of ǫs. The minimum isattained at z = (2/5)1/6 ≈ 0.858.2.3 De�nition of Measured ObservablesIn order to extra
t as many information as possible about the 
anoni
al equilib-rium behaviour out of the simulations, suitable measurable quantities have to bede�ned. Additionally to these quantities, it is very instru
tive to also 
onsidertheir �u
tuations.The 
anoni
al expe
tation value of any quantity O is given by
〈O〉can (T ) =

∑

µ∈M Oµe−
Eµ
T

∑

µ∈M e−
Eµ
T

(2.13)and its �u
tuation is obtained from the temperature derivative of the expe
ta-
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d 〈O〉

can

dT
=

„

d

dT

P

µ∈M Oµe−
Eµ
T

«

P

µ∈M e−
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T

“

P

µ∈M e−
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T

”2
−

„

d

dT

P

µ∈M e−
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T

«

P

µ∈M Oµe−
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T

“

P

µ∈M e−
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T

”2

=
1
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P
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P

µ∈M e−
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P

µ∈M e−
Eµ
T

P

µ∈M e−
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T

−
1

T 2

P

µ∈M Eµe−
Eµ
T

P

µ∈M e−
Eµ
T

P

µ∈M Oµe−
Eµ
T

P

µ∈M e−
Eµ
T

=
〈OE〉 − 〈O〉 〈E〉

T2
. (2.14)Considered are the following energeti
al and stru
tural quantities and their �u
-tuations.Energy: The total energy E given in eq. (2.12) is measured over the wholeparameter regime of interest. The heat 
apa
ity is de�ned as �u
tuation of theenergy

C =
d 〈E〉
dT

, (2.15)whi
h is a

ording to eq. (2.14) equivalent with:
C =

〈
E2
〉
− 〈E〉2

T 2
. (2.16)Radius of Gyration: The radius of gyration is a measure used to des
ribe theextension of a polymer 
hain. It is de�ned as the mean distan
e of a monomerfrom the 
entre-of-mass of the polymer:

R2
gyr ≡

1

N

N∑

n=1

〈(

~Rn − ~Rcm

)2
〉

with ~Rcm =
1

N

N∑

n=1

~Rn. (2.17)This representation is 
ompletely equivalent to
R2

gyr ≡
1

2N2

N∑

n=1

N∑

m=1

〈(

~Rn − ~Rm

)2
〉

, (2.18)as 
an be proven quite easily. What makes the radius of gyration an interestingproperty is that it is related to the pair 
orrelation fun
tion
g (~r)

1

N

N∑

n=1

N∑

m=1

〈

δ
(

~r −
(

~Rm − ~Rn

))〉 (2.19)of polymer segments and 
an be measured experimentally with stati
 light s
at-tering as well as with small angle neutron- and X-ray s
attering whi
h allowsto 
he
k theoreti
al predi
tions against experiments [6; 33; 34℄.Sin
e the substrate introdu
es a stru
tural anisotropy into the system, it is notonly worthwhile to look at the overall 
ompa
tness of the polymer expressed



2.3 De�nition of Measured Observables 17by 〈Rgyr〉, but also to study the expe
ted di�erent behaviour of its 
omponentsparallel and perpendi
ular to the surfa
e:
R2

gyr,‖ =
1

2N2

N∑

n=1

N∑

m=1

〈

(xn − xm)2 + (yn − ym)2
〉 (2.20)and

R2
gyr,⊥ =

1

2N2

N∑

n=1

N∑

m=1

〈

(zn − zm)2
〉

. (2.21)Here ~Rn = (xn, yn, zn) and ~Rm = (xm, ym, zm) su
h that R2
gyr = R2

gyr,‖+R2
gyr,⊥.What we determined is 〈Rgyr〉, 〈Rgyr,‖

〉 and 〈Rgyr,⊥〉, for whi
h 〈Rgyr〉2 6=
〈
Rgyr,‖

〉2
+ 〈Rgyr,⊥〉2. Additionally, the thermal �u
tuations d 〈Rgyr〉 /dT ,

d
〈
Rgyr,‖

〉
/dT and d 〈Rgyr,⊥〉 /dT were measured using eq. (2.14).We also estimated the end-to-end distan
e Ree = RN −R1 but gained no addi-tional information from it.Distan
e of the Centre-of-Mass of the Polymer to the Surfa
e: This quan-tity is useful sin
e it provides 
lear eviden
e if the polymer is on average freelymoving in the box or very 
lose to the surfa
e. Apart from that it is very easilyimplemented, sin
e one only needs to average over the z-
omponents that oneneeds in the simulation anyway:

zcm =
1

N

N∑

i=1

zi. (2.22)Again, 〈zcm〉 and its thermal �u
tuations d 〈Rcm〉 /dT were measured both.Mean Number of Surfa
e Conta
ts: Not only the distan
e to the surfa
e, butin parti
ular also the number of monomers do
ked to the surfa
e, gives a useful
ontribution to identify pseudo-phases. So all monomers atta
hed 
orrespondsto a single layer stru
ture, none atta
hed to a free polymer and all the ex
itingthings happen in between. The surfa
e potential is a 
ontinuous potential andin order to di�erentiate monomers do
ked to the substrate from the ones notdo
ked, it is ne
essary to introdu
e a 
uto�. After regarding eq. (2.11) wede
ided somewhat arbitrarily but reasonably to de�ne a monomer with z <
zc ≡ 1.2 as a do
ked monomer. The 
orresponding measured quantity is theaverage ratio 〈ns〉 of monomers do
ked to the surfa
e to the total number ofmonomers. This 
an be expressed as:

ns =
Ns

N
with Ns =

N∑

i=1

Θ (zc − zi) , (2.23)where Θ(z) is the Heaviside step fun
tion. Again also its thermal �u
tuation
d 〈ns〉 /dT is measured. Note that 〈ns〉 also re�e
ts the energy 
ontributionfrom the surfa
e attra
tion Esur.



18 CHAPTER 2. THE MODELMean Number of Intrinsi
 Conta
ts: The mean number of intrinsi
 
onta
tsis a measure of the overall 
ompa
tness of the polymer just as the radius ofgyration is and re�e
ts the 
ontribution of the intrinsi
 Lennard-Jones energy.Again, there is no obvious way how to de�ne a monomer-monomer 
onta
t andwe de
ided to introdu
e a 
uto� as follows:
nm =

Nm

N
with Nm =

N−2∑

i=1

N∑

j=i+2

Θ (Ec − ELJ (rij)) . (2.24)Here ELJ (rij) = 4
(

r−12
ij − s r−6

ij

) as in Fig. 2.2 and Ec ≡ −0.2. Θ(E) is againthe Heaviside step fun
tion. This de�nition works for varying s although forsmall s ns is always zero. 〈nm〉 and d 〈nm〉 /dT are looked at.2.4 Boundary Conditions
steri
 wall,no potential periodi
 boundary
onditions inx- and y-dire
tion

attra
tive substrate xyz
Figure 2.6: S
hemati
 representation of the boundary 
onditions applied.In the simulations, two di�erent kinds of boundary 
onditions were used. Paral-lel to the wall � in z-dire
tion � the boundary 
onditions are purely steri
, i.e.,an update is simply reje
ted if it suggests to 
ross the wall at z = 0 or z = Lbox.At z = 0 the attra
tive surfa
e potential is applied. This steri
 wall is ne
essaryto prevent the peptide from es
aping to large z away from the wall with theshort range intera
tion that we want to investigate. Sin
e the exa
t form of thedensity of states depends on the box height Lbox, also all observables dependon the 
hoi
e of Lbox. As soon as the box size however ex
eeds the polymersize, the in�uen
e on the observables is reasonably small. For smaller boxes,interesting deviations in the thermodynami
 behaviour 
an be observed [35℄.Perpendi
ular to the wall in xy-dire
tion, periodi
 boundary 
onditions with theminimum image 
onvention are applied. This is stri
tly speaking not ne
essaryand one might just as well apply no boundary 
onditions at all. They areapplied here to allow for a possible addition of a se
ond or more polymers into
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121086420(a) (b)Figure 2.7: (a) 〈zcm〉 of the 13mer, (b) d 〈zcm〉 /dT of the 13mer in 
ubi
 boxes of di�erentsizes. The errors are indi
ated for Lbox = 40 and 9, resp.the systems that would rarely ever meet ea
h other if there were no boundaries.On the other hand, the periodi
 boundary 
onditions for not too small boxeshardly have any in�uen
e on the results, sin
e the monomer-monomer potential
ELJ is short-ranged.To get an impression of how mu
h the box really in�uen
es our re-sults, we performed some test runs for 
ubi
 box sizes Lbox =
4, 5, 6, 7, 8, 9, 10, 20, 40, 80 and s = 1 and ǫs = 1. In Fig. 2.7, theaverage 
entre-of-mass distan
e of the polymer to the surfa
e 〈zcm〉and its thermal �u
tuation are shown for various box sizes Lbox.
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ubi
 boxes ofdi�erent sizes. The errors are indi
ated for Lbox =
40.

This quantity 
learly is the onethat depends the most on the boxsize. For high temperatures, thepolymer 
an move freely withinthe box su
h that 〈zcm〉 ≈ Lbox/2.For low T however the polymerprefers to stay 
lose to the surfa
e.A

ordingly, also the �u
tuation of
〈zcm〉 depends on the box size andas indi
ated in Figure 2.7(b) thepeak height depends very stronglyon it. Also the peak position shiftsto lower temperatures if the boxsize in
reases. One has to keep thisdependen
e in mind when de
idingto 
on
entrate on a �xed box sizeas we do.But as soon as the box is 
learly larger than the average size of the polymer,the in�uen
e of the box on the 
onformation of the polymer is not so strikingany more. This is shown in Figure 2.8, where the radius of gyration is displayedfor varying Lbox. As soon as Lbox & N , the 
hange with Lbox gets smaller thanthe statisti
al error. We 
hose Lbox = 20 for N = 13 and Lbox = 40 for N = 20.Although this redu
tion of the phase spa
e will always e�e
t the entropy, this
hoi
e allows us to still draw valueable 
on
lusions out of the simulation.
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3 Monte Carlo SimulationsThe Monte Carlo method is a numeri
al method that 
omputes its results byrepeated random sampling of states. This is done by drawing pseudo randomnumbers that are generated by spe
ial algorithms, the so 
alled random numbergenerators [36; 37℄. We only give a very short sket
h of the idea here and referfor more informations to the standard literature [38; 39; 40; 41℄.The term Monte Carlo was 
oined in the 1940s by physi
ists working on nu
learweapon proje
ts in the Los Alamos National Laboratory and was 
learly sup-posed to re�e
t some of the glamour of the eponymous 
ity that is famous forits gambling � another area where random numbers play a role. The idea to userandom numbers is, however, older and was, e.g., applied to estimate integralsor π.For Monte Carlo integration one uses that the expe
tation value of the meanover a �nite number of random variables f(xi) with xi drawn a

ording to theprobability density ρ(x) is identi
al with the expe
tation value of f(x) over theunderlying distribution:
〈
f
〉

= 〈f (x)〉 , where f =
1

n

n∑

i

f (xi) , xi ∝ ρ (x) . (3.1)Knowing that the original de�nition of the expe
tation value is an integral overthe distribution
〈f (x)〉 =

∫

ρ (x) f (x) dx = lim
n→∞

1

n

n∑

i

f (xi) , xi ∝ ρ (x) , (3.2)one 
an see that the mean f in eq. (3.1), that is a random number �u
tuatingaround the theoreti
ally expe
ted value, approximates the integral in eq. (3.2)with an error that diminishes proportional to 1/
√

n. All true random samplingte
hniques behave like this as a universal 
onsequen
e of the 
entral limit theo-rem. What 
an be in�uen
ed by smart sampling te
hniques is the prefa
tor of
n−1/2 that depends on the varian
e of the fun
tion being sampled. A very helpfulobservation is the fa
t that the n−1/2-behaviour is independent of the dimension.Thus, espe
ially for high-dimensional integrals, Monte Carlo simulations are themethod of 
hoi
e. Other numeri
al methods like quadrature rules based oninterpolating fun
tions [42℄ sometimes 
onverge faster at low dimensions, buteven for low-dimensional 
ases where Monte Carlo is not the most e�i
ientmethod it may be an interesting way to produ
e a 
rude estimate due to itssimpli
ity. Thanks to its great generality the Monte Carlo te
hnique 
an be



22 CHAPTER 3. MONTE CARLO SIMULATIONSapplied to various problems and espe
ially for ones with a high phase spa
edimensionality like in our 
ase, there is no better method known.In statisti
al physi
s, the 
anoni
al expe
tation value of an observable O is givenby eq. (2.13). Exa
t enumeration � or integration for 
ontinuous systems � isimpossible for realisti
 models due to the overwhelming large number of possible
on�gurations that s
ales exponentially with system size. In order to neverthe-less get an estimates of 
anoni
al expe
tation values, Monte Carlo simulationsare needed. Here one takes a random subset R from some probability distribu-tion pµ that is spe
i�ed 
leverly beforehand instead of the whole 
on�gurationspa
e and estimate the expe
tation value as follows:
〈O (E)〉 (T ) =

∑

µ∈R O (Eµ) e−Eµ/T /pµ
∑

µ∈R e−Eµ/T /pµ
. (3.3)This estimate is rather poor if all pµ are equal (simple sampling), be
ause it isonly possible to sample a very small fra
tion of the total number of states. Onthe other hand, if one pi
ks those states that make an important 
ontributionto eq. (2.13) and ignores others, whi
h is 
alled important sampling, one 
an dorather well. How we 
hoose su
h important states for our model is explained inthe next se
tion.3.1 Generation of Relevant Con�gurationsIf one would randomly generate new 
on�gurations that satisfy the given 
on-straints of �xed bond length, the danger of generating many thermodynami
allyirrelevant high-energy 
onformations with two or more monomers in unphysi
al
lose proximity is high. One would e�e
tively suggest all 
on�gurations withequal probability and perform a simple sampling with the mentioned poor per-forman
e. Hen
e it be
ame 
ommon pra
ti
e to generate new 
onformationsusing a Markov pro
ess, i.e. given a system in state µ a new state of that system

ν is generated that still resembles state µ and so forth. The probability forthe transition from µ to ν is 
alled transition probability P (µ → ν) and for atrue Markov pro
ess P (µ → ν) does not vary over time and should depend onlyon the properties of the states µ and ν and nothing else. Also the 
onstraint
∑

ν P (µ → ν) = 1 has to hold sin
e the Markov pro
ess must generate somestate ν when handed a system µ, in
luding µ itself.Di�erent updates generate some random new state ν if given state µ that still isvery similar to the old one. Unlike e.g. for the Ising model, where it is possibleto update (�ip) a single spin whi
h only a�e
ts its nearest neighbours, no lo
alupdates exist for our 
ontinuous model, i.e. every update a�e
ts more thanjust its nearest neighbours. This is due to the long-range intera
tions of themonomers su
h that monomers that are far away along the 
hain, are spatiallyin 
lose proximity and intera
t. That is why individual updates are more time
onsuming for our model and the a

eptan
e ratio (eq. (3.7)) de
reases for dense
onformations.



3.1 Generation of Relevant Con�gurations 23In order for the Markov 
hain to produ
e a subset of states ν distributed withprobability pν , the following two important 
onditions have to be met:1. Ergodi
ity : With the applied sequen
e of updates it should be possible torea
h any 
on�guration in the 
on�guration spa
e from any other duringthe simulation. If the simulations 
ontains more than Ns updates, thisreads as
P (µ → ν) = P (µ → λ1)

[
Ns−1∏

i=1

P (λi → λi+1)

]

P (λNs → ν) . (3.4)2. Detailed balan
e: If a system is in equilibrium, the rate at whi
h thesystem enters and leaves any state µ must be equal:
∑

ν

pµP (µ → ν) =
∑

ν

pνP (ν → µ) , (3.5)whi
h is equivalent (using ∑ν P (µ → ν) = 1) to pµ =
∑

ν pνP (ν → µ).But this 
ondition alone does not guarantee that the Markov 
hain willhave the desired probability distribution pν , due to the possibility of so-
alled limit 
ir
les [41℄. Thus one requests the stronger 
ondition of de-tailed balan
e
pµP (µ → ν) = pνP (ν → µ) (3.6)that ensures a generation of states with pν .We now need to implement a Markov 
hain with transition probabilities thatsatisfy the 
onditions given above. To do so, a tri
k is used: The transitionprobability P (µ → ν) is split up into two parts:

P (µ → ν) = g (µ → ν)A (µ → ν) . (3.7)The quantity g (µ → ν) is the sele
tion probability with whi
h, given a state µ,the update generates a new state ν, and A (µ → ν) is the a

eptan
e probabilitywhi
h gives the fra
tion of times that the generated state is adopted. This leaves
omplete freedom to 
hoose an update to generate new states, sin
e the rest 
anbe taken 
are of with the right a

eptan
e probabilities.We 
hose a 
ombination of updates that is ergodi
 and for whi
h g (µ → ν) =
g (ν → µ). Then the 
ondition of detailed balan
e (eq. (3.6)) redu
es to

pν

pµ
=

P (µ → ν)

P (ν → µ)
=

g (µ → ν)A (µ → ν)

g (ν → µ)A (ν → µ)
=

A (µ → ν)

A (ν → µ)
. (3.8)In the following, the updates used in the simulations are des
ribed in detail.



24 CHAPTER 3. MONTE CARLO SIMULATIONS3.1.1 Spheri
al update � Forwards (F) and Ba
kwards (B)
Figure 3.1: Graphi
al representation of the spheri
al update. One monomer is moved onthe surfa
e of a spheri
al se
tor around its pre
eding monomer. The 
hange in the bondingangle is 
alled ∆ϑ and the rotation angle is named ∆ϕ. All following monomers are movedby the same di�eren
eOne possible update is to pi
k one bond at random, rotate it and atta
h thefollowing bonds without rotation (Fig. 3.1). If the 
hosen bond is ~r = ~rk+1−~rk,the rotated (k+1)th monomer moves on a spheri
al surfa
e around the kth one,sin
e the bond length is �xed. This explains the name 'spheri
al update' [43℄.There are several ways and means how to implement this update. The im-plementation used here is adopted from Ref. [44℄. We repla
e the ve
tor
~r = ~rk+1 − ~rk by its rotated version ~r′:

~r′ = cos ∆ϑ~er + sin ∆ϑ sin∆ϕ~eϕ + sin ∆ϑ cos ∆ϕ~eϑ. (3.9)Sin
e ~r = |r|~er = ~er and ~r ⊥ ~eϕ ⊥ ~eϑ this is the rotation of ~r′′ = cos ∆ϑ~er +

sin ∆ϑ~eϑ, some unit ve
tor with ∠(~r, ~r′′) = ∆ϑ, an arbitrary angle ∆ϕ about ~r.For reasons of e�
ien
y, we would like to have a restri
tion on ∆ϑ that we
hoose to be ∆ϑmax = 5◦. Furthermore, to distribute the ~r′ evenly on thesurfa
e of the spheri
al 
ap (dA = cos ϑdϑdϕ) cos ∆ϑ has to be 
hosen evenlyfrom the interval (cos ∆ϑmax, 1] and ∆ϕ from the interval [0, 2π). Although the�rst suggested implementation proves that this equidistribution is not ne
essaryto guarantee g (µ → ν) = g (ν → µ), it is still a way to make sure, that it holds.In pra
ti
e, it is easiest to only use 
artesian 
oordinates sin
e they are alreadyimplemented. Our 
hoi
es were
~er =





x
y
z



 , ~eϕ =
1

√

x2 + y2





−y
x
0



 , ~eϑ =
1

√

x2 + y2





−xz
−yz

x2 + y2



(3.10)with ~eϑ =
~er×~eϕ

|~er×~eϕ|
if x2 + y2 > 0.1 and

~er =





x
y
z



 , ~eϕ =
1√

x2 + z2





z
0
−x



 , ~eϑ =
1√

x2 + z2





−xy
x2 + z2

−yz



(3.11)otherwise. The distin
tion is made to avoid problems for x ≈ y ≈ 0, where ~eϕand ~eϑ are not well de�ned for the �rst 
hoi
e.



3.1 Generation of Relevant Con�gurations 25This update rea
hes all 
on�gurations with the �rst monomer �xed at its originalposition. If one uses this update not only in one dire
tion, but also in ba
kwardsdire
tion (the kth monomer rotates around the (k +1)th) all 
on�gurations 
anbe obtained. These are two independent updates.Espe
ially in globular 
on�gurations, spheri
al updates might be energeti
allydisadvantageous, sin
e often large parts of the polymer are moved against ea
hother. Here a semi-lo
al update, that only moves one monomer at a time 
ouldhelp.3.1.2 Semi-Lo
al Update (L)
Figure 3.2: Graphi
al representation of the semi-lo
al update. Here only one monomer isrotated by a random angle α around the axis de�ned by the two neighboring monomers.The semi-lo
al update is inspired by the 
orner-�ip update on a 2D latti
e. Butdue to the 
ontinuous spa
e, the rotation angle is not restri
ted to one angle(180◦) anymore. One rather rotates the kth monomer, that is 
hosen randomlywith 1 < k < N , about the 
onne
tion ve
tor ~v of its neighboring monomers

~v =
~rk+1 − ~rk−1

|~rk+1 − ~rk−1|
(3.12)by a random angle α ∈ [0, 2π) (Fig. 3.2). This is done by applying the rotationmatrix R (~v, α) (eq. (3.14)) to the 
onne
tion ve
tor ~r = ~rk − ~rk−1, su
h thatthe �nal position of the kth monomer is given by

~r′k = R (~v, α)~r + ~rk−1

= ~r′ + ~rk−1.
(3.13)This update alone is not ergodi
, be
ause the monomers at the edge are leftun
hanged. But at least g (µ → ν) = g (ν → µ) holds.3.1.3 Rigid-Body Rotation (R)Sin
e the surfa
e introdu
es a spatial anisotropy, the energy is not invariantunder rotation. So as an additional update, a rotation of the whole polymerabout its 
entre of mass is introdu
ed. The 
entre of mass was de�ned within ase
ond 
oordinate system without periodi
 boundary 
onditions to 
ir
umvent



26 CHAPTER 3. MONTE CARLO SIMULATIONSthe problems in de�ning a 
entre of mass in a periodi
 system. Again therotation matrix R (~v, α) is applied, that rotates the mole
ule about the axis ofrotation ~v by an angle α:
R (~v, α) =

0

@

cos α + v2
1 (1 − cos α) v1v2 (1 − cos α) − v3 sinα v1v3 (1 − cos α) + v2 sinα

v2v1 (1 − cos α) + v3 sin α cos α + v2
2 (1 − cos α) v2v3 (1 − cos α) − v1 sinα

v3v1 (1 − cos α) − v2 sin α v3v2 (1 − cos α) + v1 sinα cos α + v2
3 (1 − cos α)

1

A .(3.14)We did not restri
t this rotation to small angles, su
h that a good 
hoi
e for ~vis
~v =





v1

v2

v3



 =





sinϑ cos ϕ
sinϑ sin ϕ

cos ϑ



 (3.15)with cos ϑ ∈ (1,−1], ϕ ∈ [0, 2π) and α ∈ [0, 2π).After the rotation, the position ~rk of the kth monomer is repla
ed by
~r′k = R (~v, α) (~rk − ~rcm) + ~rcm. (3.16)Just as the translation, this update does not in�uen
e the intrapolymeri
 in-tera
tions but only the intera
tion with the surfa
e. It keeps the shape of thepolymer �xed.3.1.4 Translation (T)The 
ombination of updates introdu
ed so far hardly 
hanges the distan
e tothe attra
tive surfa
e. This 
auses the polymer to need many sweeps to �nallyfeel the in�uen
e of the surfa
e if the simulation is initialised with a random
onformation in the middle of the box. On the other hand, on
e 
aught at thesurfa
e, it will take a long time to desorb.Introdu
ing a translation of the whole mole
ule eliminates the problem. We�rst implemented a translation by a length l 
hosen at random in the interval

l ∈ [0, 1) in arbitrary dire
tion but de
ided soon that with only a single polymerin the system and translational invarian
e in xy-dire
tion, it is su�
ient to onlytranslate in z-dire
tion.3.1.5 Sweep Sequen
eOne sweep 
onsists of an ergodi
 mixture of all of those updates and 
ontainsas many updates as the polymer 
ontains monomers.With the one-letter 
odes F, B, L, R and T given in the pre
eding subse
tionheadings, a typi
al 
hain of updates is:TFBRFBLFB TFBRFBLFB T. . .



3.2 Multi
anoni
al Sampling 273.2 Multi
anoni
al SamplingThe te
hnique we mainly used is multi
anoni
al sampling [40; 45; 46; 47℄.Its basi
 idea is to sample states with a �at energy histogram and to reweightthe data to get the 
anoni
al expe
tation values for the relevant temperaturerange (see se
tion 3.3). This approa
h has several advantages. Unlike withmultihistogram te
hniques [41; 48℄, there is no need to 
reate several histogramsin order to a

umulate enough statisti
s for ea
h energy bin, but all the ne
essarystatisti
s is generated and reweighted in a single simulation. So in a way multiple
anoni
al simulations are substituted by a single long run whi
h explains thename �multi
anoni
al�.Even more important is the ability of this te
hnique to sample 
on�gurationswith low probability. A 
anoni
al simulation samples states with the Boltzmanndistribution of energies
p (E, β) ∝ Ω (E) e−βE = e−βE+lnΩ(E) = e−βF . (3.17)Hen
e, states with rare realizations (low Ω (E)) or high energies (low e−βE)are suppressed. Be
ause of the �rough� free energy lands
ape, the simulation islikely to get trapped in lo
al free energy minima with an exponentially growingauto
orrelation time τ ∝ eβ∆F , where ∆F is the free energy barrier to over-
ome between two lo
al free energy minima. Thus multi
anoni
al simulationsthat ideally perform a random walk in energy spa
e signi�
antly redu
e theauto
orrelation time and the probability to not sample important states of thephase spa
e that would not be rea
hed by 
anoni
al simulations due to energybarriers, allowing to gain mu
h more a

urate results in a given CPU time.In order to sample states with a �at histogram one needs multi
anoni
al weights

Wmuca (E) satisfying
pmuca (E) = Ω (E)Wmuca (E) ≈ const.. (3.18)The reweighting ba
k is then done via

〈O〉 (β) =

∑

i O (Ei) (Wmuca (Ei))
−1 e−βEi

∑

i (Wmuca (Ei))
−1 e−βEi

, (3.19)whi
h in prin
iple works for all kinds of weights and should give the same 
anon-i
al expe
tations values, but the performan
e depends 
ru
ially on the 
hoi
e of
W (E). So, e.g., for W (E) = e−βE , the 
anoni
al ensemble is re
overed.Before the a
tual multi
anoni
al simulation 
an be performed, the weights
Wmuca (E) have to be 
onstru
ted. We use the multi
anoni
al re
ursion [45;47℄ to do so.Altogether the method 
onsists of the following three steps:1. Determining the weights Wmuca (E)2. Simulation run with �xed weights and high statisti
s3. Reweighting to obtain the 
anoni
al expe
tation values
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anoni
al Re
ursionThe idea of the re
ursion is that the weights should be inversely proportionalto the density of states, that is a priori unknown [45; 47℄:
Wmuca (E) ∝ 1

Ω (E)
= e− lnΩ(E) ≡ e−S(E). (3.20)Using the dimensionless, mi
ro
anoni
al free energy

f (E) =
F (E)

T (E)
=

U (E) − TS (E)

T (E)
= β (E) E − S (E) (3.21)this 
an be rewritten as

Wmuca (E) ∝ e−β(E)E+f(E). (3.22)But f (E) and β (E) are not independent. A relation between them 
an bederived 
onsidering
β (E) =

1

T (E)

!
=

∂S

∂E
= β (E) + E

∂β (E)

∂E
− ∂f (E)

∂E
≈ S (E + ǫ) − S (E)

ǫ (3.23)a

ording to the �rst law of thermodynami
s dU = TdS − pdV and eq. (3.21).This requires
E

∂β (E)

∂E
− ∂f (E)

∂E
= 0 (3.24)to hold true, whi
h is ensured by the relation

f (E) − f (E − ǫ) = (β (E) − β (E − ǫ)) E, (3.25)where ǫ is the smallest energy di�eren
e. This is a simpli�
ation, but sin
e there
ursion is implemented on a 
omputer, one has to dis
retise anyway.Using some initial values Wmuca,0 (E) that 
orresponds to some f0 (E) and
β0 (E), the initial run 
an be performed to gain the histogram H0 (E). Weused Wmuca,0 (E) = 0, ∀E, that gives the same weight to all energies1. Thehistogram in turn is used to determine f1 (E), β1 (E) and hen
e Wmuca,1 (E),a better estimate for the multi
anoni
al weights. This is done re
ursively su
hthat Hn (E) is used to �nd Wmuca,n+1 (E) until the histogram eventually gets�at enough.To get the most out of the simulations done so far, it makes sense to performan error weighted average

βn+1 (E) = κ (E) β̃n (E) + (1 − κ (E)) βn (E) . (3.26)The new estimate β̃n (E) from the last simulation is determined 
onsidering
W̃muca,n (E) ∝ 1

Ω (E)
= e−S̃n(E) ∝ Wmuca,n (E)

Hn (E)
(3.27)1Note that this 
orresponds to f0 (E) = 0 and β0 (E) = 0 whi
h is the same as 
anoni
alsampling at in�nite temperature.



3.2 Multi
anoni
al Sampling 29and eq. (3.23):
β̃n (E) =

S̃n (E + ǫ) − S̃n (E)

ǫ

=
ln W̃muca,n (E) − ln W̃muca,n (E + ǫ)

ǫ

=
ln (Hn (E + ǫ)) − ln (Hn (E)) − (lnWmuca,n (E + ǫ) − lnWmuca,n (E))

ǫ

=
ln (Hn (E + ǫ)) − ln (Hn (E))

ǫ
+ βn (E) . (3.28)Taking the logarithm of empty histogram bins seems to be a problem here,but one 
an get around this 
onsidering the weights κ (E) in eq. (3.26) thatdisappear for empty histogram entries.

κ (E) has to be inversely proportional to the varian
e of β̃n (E). A

ording toeq. (3.28) this is
σ2(β̃n (E)) = σ2 (βn (E)) +

σ2 (ln Hn (E + ǫ))

ǫ2
+

σ2 (ln Hn (E))

ǫ2
. (3.29)

σ2 (βn (E)) vanishes sin
e βn (E) is kept �xed in ea
h simulation.For the remaining terms it 
an be used that
σ2 (ln Hn (E)) = [ln (Hn (E) + ∆Hn (E)) − ln (Hn (E))]2

=

[

ln Hn (E) +
∆Hn (E)

Hn (E)
− ln Hn (E)

]2

=

[
∆Hn (E)

Hn (E)

]2

∝ 1

Hn (E)
, (3.30)where ∆Hn (E) is the �u
tuation in the nth histogram whi
h is known to growwith the square root of the number of entries, ∆Hn (E) ∝

√

Hn (E) ≪ Hn (E),whi
h allows a Taylor-expansion.This yields
σ2
(

β̃n (E)
)

∝ 1

Hn (E + ǫ)
+

1

Hn (E)
. (3.31)Now, κ (E) is found by introdu
ing

p (E) =
Hn (E + ǫ)Hn (E)

Hn (E + ǫ) + Hn (E)
∝ 1

σ2
(

β̃n (E)
) (3.32)and normalising it to all simulations so far:

κ (E) =
p (E)

p (E) + pn (E)
. (3.33)

pn (E) is the sum of all previous p (E) and κ (E) = 0 if pn (E) = 0 and/or
p (E) = 0.
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an be simpli�ed further if one rewrites the re
ursion in eq. (3.26) witheq. (3.25) to
βn+1 (E) = βn (E) + κ (E)

ln Hn (E + ǫ) − ln Hn (E)

ǫ
(3.34)and use this together with the ratio of weights de�ned as

R (E) =
Wmuca (E)

Wmuca (E + ǫ)
=

e−β(E)E+f(E)

e−β(E+ǫ)(E+ǫ)+f(E+ǫ)
(3.35)to get an expression of the re
ursion in terms of the ratio of weights:

Rn+1 (E) = Rn

(
Hn (E + ǫ)

Hn (E)

)κ(E)

. (3.36)This allows to 
al
ulate Rn+1 (E) out of Hn (E). We �xed Wmuca,n+1 (Emax) = 1and got Wmuca,n+1 (E) for all E from the ratios.3.3 ReweightingWhat we are interested in are 
anoni
al expe
tation values at di�erent values of
T , ǫs and s, respe
tively. To obtain them, one 
an save a 
onsiderable amount ofCPU time by using ea
h generated peptide 
on�guration several times, i.e. 
al-
ulate its 
ontribution to ea
h 
ombination of T , ǫs and s of interest and averageover those reweighted data. How this is done is des
ribed in more detail below.The 
ru
ial point of this simple tri
k is to generate enough relevant 
on�gura-tions (
on�gurations with a high probability p(E) = Ω(E) exp(−E/T )) over thewhole reweighted regime. This is ne
essary, sin
e it is the relevant regime thatmainly 
ontributes to the average and low statisti
s here result in high statisti-
al errors. For reweighting in T this is a
hieved with a the �at multi
anoni
alenergy histogram and how it is a
hieved for reweighting in ǫs and s is explainedin se
tion 3.4.3.3.1 Reweighting in TAs long as enough relevant states are generated, it is always possible to ob-tain the 
anoni
al expe
tation values by averaging over the reweighted ob-servables to the temperature of interest. More spe
i�
ally, if a Markov 
hainis generated with probability distribution pµ = Ω (Eµ) W (Eµ), where e.g.
W (Eµ) = exp (−Eµ/T0), kB = 1, for a 
anoni
al simulation at temperature
T0, the 
anoni
al expe
tion value of an observable O at temperature T is givenby eq. (3.3). Using this equation, all our 
anoni
al averages are obtained. In amulti
anoni
al simulation W (Eµ) = Wmuca (Eµ), while for a 
anoni
al simula-tion at temperature T0 this expression simpli�es further to

〈O (E)〉 (T ) =

∑

µ O (Eµ) e−Eµ/T /e−Eµ/T0

∑

µ e−Eµ/T /e−Eµ/T0
=

∑

µ O (Eµ) e−(1/T−1/T0)Eµ

∑

µ e−(1/T−1/T0)Eµ
.(3.37)



3.3 Reweighting 31For systems with dis
rete energies, it is a
tually more 
ommon to store his-tograms H (E) and O (E) and obtain the 
anoni
al expe
tation values with asum over all energies. But for models with a 
ontinuous energy spe
trum, it isre
ommendable to sum over the time series sin
e this works without any sys-temati
 dis
retisation errors. If the observable O does not expli
itly depend on
E the time series approa
h works as before with O (Eµ) being the value of Oat MC time step µ and Eµ being the 
orresponding energy. In the histogramapproa
h, O (E) has to be repla
ed by the estimated multi
anoni
al expe
tationvalue of O at �xed E.Along the same lines of this well established reweighting pro
edure [47℄ fora reweighting in temperature, we derived a way to also reweight the 
anoni
alexpe
tation values to di�erent surfa
e attra
tion strengths ǫs and di�erent intra-polymeri
 Lennard-Jones attra
tion strengths s.3.3.2 Reweighting in ǫsMost of the results obtained in this thesis were obtained by multi
anoni
alsimulations with ǫs and s set 
onstant. This requires a long multi
anoni
al runfor every �xed 
ombination of ǫs and s and the 
anoni
al expe
tation values atvarious T are found by reweighting.But reweighting in ǫs and s is also possible. To see this, take a 
loser look atthe energy:
E =

N−2∑

i=1

N∑

j=i+1

(

1

r12
ij

− s
1

r6
ij

)

︸ ︷︷ ︸

+
1

4

N−2∑

k=1

(1 − cosϑk)

︸ ︷︷ ︸

+ǫs

N∑

i=1

[

2

15

(
1

zi

)9

−
(

1

zi

)3
]

︸ ︷︷ ︸

= ELJ,12 + s ELJ,6 + Ebend + ǫs Esur. (3.38)To 
al
ulate ELJ,12, ELJ,6, Ebend and Esur all one needs is the 
on�guration ofthe polymer. On
e knowing those four quantities, the Boltzmann weight of thegiven 
on�guration 
an be found for arbitrary T , ǫs and s. In order to simplifythe interpretation of the data, only the in�uen
e of either ǫs or s is analysed ata time while the other one is kept �xed. Choosing �rst s to be 
onstant andrenaming ELJ,12 + sELJ,6 = ELJ, the 
anoni
al weight reads
Pǫs,T (Eµ) ∝ e−

Eµ,ǫs
T = e−

ELJ,µ+Ebend,µ+ǫsEsur,µ

T

= e−
ELJ,µ+Ebend,µ+εs0Esur,µ

T e−
ELJ,µ+Ebend,µ+ǫsEsur,µ

T
+

ELJ,µ+Ebend,µ+εs0Esur,µ

T

= e−
(ǫs−ǫs0 )Esur,µ

T Pǫs0 ,T (Eµ) (3.39)So, if the simulation was done at ǫs0 , the expe
tation value 
orresponding to
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an be found via
〈O〉can (T, ǫs) =

∑

µ∈M Oµ (Eµ,ǫs) Pǫs,T (Eµ)
∑

µ∈M Pǫs,T (Eµ)

=

∑

µ∈M Oµ (Eµ,ǫs) Pǫs0 ,T (Eµ) e−
(ǫs−ǫs0 )Esur,µ

T

∑

µ∈M Pǫs0 ,T (Eµ) e−
(ǫs−ǫs0 )Esur,µ

T

.

(3.40)
3.3.3 Reweighting in sSimilarly, starting with eq. (2.12) and 
hoosing ǫs = 1, the 
anoni
al weight forarbitrary s is given by
Ps,T (Eµ) ∝ e−

Eµ,s
T = e−

ELJ,12,µ+s ELJ,6,µ+Ebend,µ+Esur,µ

T

= e−
ELJ,12,µ+s0 ELJ,6,µ+Ebend,µ+Esur,µ

T

× e−
ELJ,12,µ+s ELJ,6,µ+Ebend,µ+Esur,µ

T
+

ELJ,12,µ+s0 ELJ,6,µ+Ebend,µ+Esur,µ

T

= e−
(s−s0)ELJ,6,µ

T Ps0,T (Eµ) , (3.41)whi
h yields for the 
orresponding expe
tation values
〈O〉can (T, s) =

∑

µ∈M Oµ (Eµ,s)Ps,T (Eµ)
∑

µ∈M Ps,T (Eµ)

=

∑

µ∈M Oµ (Eµ,s)Ps0,T (Eµ) e−
(s−ǫs0 )ELJ,6,µ

T

∑

µ∈M Ps0,T (Eµ) e−
(s−s0)ELJ,6,µ

T

.

(3.42)
3.4 Repli
a Ex
hange Monte CarloWhen using the reweighting in ǫs or s, one has the problem, that those are �xedparameters inserted into the simulation. So if we, e.g., perform a multi
anoni
alsimulation at s su
h that we obtain all expe
tation values for all T at that s byreweighting in T and want to also have all expe
tation values for all T at s+ δs,one has to be 
areful2. The problem is, that there might be 
on�gurations thatare important at s+ δs, that are not so important at s and hen
e have not beensu�
iently sampled. This is well known for the reweighting in T in 
anoni
alsimulations where the reweighting range, in that one 
an still expe
t reliableresults, is limited to the width of the input histogram [47℄. Multi
anoni
alsimulation resolves that problem.For s we use a te
hnique 
alled repli
a ex
hange Monte Carlo (REMC). REMCappears to have been dis
overed independently by various resear
hers [49; 50℄2We will only argue for s here, not for ǫs, sin
e the 
al
ulation is 
ompletely analogous.



3.4 Repli
a Ex
hange Monte Carlo 33and is also known as parallel tempering, multiple Markov 
hain Monte Carloand ex
hange Monte Carlo sear
h. It has been su

essfully applied to the o�-latti
e protein folding problem [51℄ and several other appli
ations 
an be foundin Ref. [52℄.In short, we perform several simulations with several not too di�erent s at thesame system and reweight to the s in between. Every so often, one swaps thestates of the system in two of the simulations with a 
ertain probability whi
his 
hosen so that the states of ea
h system still follow the distribution pµ onewants to have, in our 
ase the �at distribution obtained by the multi
anoni
alweights.Consider two multi
anoni
al simulations that run in parallel, one with s = s1 theother one with s = s2. Sin
e the multi
anoni
al weights are di�erent for di�erent
s, we denote the 
orresponding weights by Wmuca,1(E1) and Wmuca,2(E2) andthe energies in both systems as well as its 
onstituents get the same indi
es.On the majority of time steps, we simply do one step in the simulation of ea
hsystem. But, every so often, we want to swap the states, i.e. the values of the
oordinates in ea
h of the two simulations are set to those in the other. Ifsimulation 1 has 
on�guration µ (µ1) and simulation 2 has 
on�guration ν (ν2),and a swap is suggested, the a

eptan
e probability is

A (µ1ν2 → ν1µ2) =

{
pν1µ2/pµ1ν2 if pν1µ2/pµ1ν2 < 1,
1 otherwise.

(3.43)The proof that this satis�es ergodi
ity and detailed balan
e 
an, e.g., be foundin Ref. [41℄. In the 
ase of two parallel 
anoni
al simulations at βlow and βhigh,
pν1µ2/pµ1ν2 simpli�es to pν1µ2/pµ1ν2 = exp [−(βlow − βhigh)∆E], with ∆E =
Ehigh−Elow. For our two multi
anoni
al simulations at s1 and s2 with di�erentweights, this gets a bit more 
ompli
ated:
pν1µ2

pµ1ν2

=
pν1

pµ1

· pµ2

pν2

=
Wmuca,1 (ELJ,12,ν + s1ELJ,6,ν + Ebend,ν + Esur,ν)

Wmuca,1 (ELJ,12,µ + s1ELJ,6,µ + Ebend,µ + Esur,µ)

× Wmuca,2 (ELJ,12,µ + s2ELJ,6,µ + Ebend,µ + Esur,µ)

Wmuca,2 (ELJ,12,ν + s2ELJ,6,ν + Ebend,ν + Esur,ν) ,

(3.44)where the notations are analogous to eq. (3.38).This method is used for the results presented in se
tion 4.2. Two parallel simula-tions at similar s were performed and swapped from time to time. Expe
tationvalues in between are 
al
ulated using all generated 
on�gurations and pre-sented. Probably, it would also be su�
ient to 
al
ulate the expe
tation valuesfrom the data of two independent simulations that do not swap 
on�gurations.This should provide su�
iently many relevant 
on�gurations if the simulationis long enough. However, swapping from time to time helps a bit to preventthe simulation to get stu
k and does at least not 
ost mu
h if it is not done toooften, e.g., 1000 independent sweeps followed by one swap move.



34 CHAPTER 3. MONTE CARLO SIMULATIONS3.5 Energy Lands
ape Paving (ELP)Although it is not the primary goal here to sear
h for global energy minima, itis very instru
tive to investigate how the nature of the energy minima 
hangeswith ǫs. In order to do so, an algorithm spe
ialised on �nding global energyminima was applied: The Energy Lands
ape Paving (ELP) [53℄. It is easilyimplemented and has su

essfully proven to be appli
able to �nd global energyminima in rough energy lands
apes of AB heteropolymers [43℄. Its 
entral ideais to perform low-temperature 
anoni
al Monte Carlo simulations, but with anenergy expression that is modi�ed after ea
h step in order to steer the sear
haway from regions that have already been explored. Here, we use for the modi-�ed statisti
al weight of a state the simple version
w(Ẽ) = e−Ẽ/T with Ẽ = E + H (E, t) , (3.45)where H (E, t) is the histogram of energies at MC step t. In a regular low-temperature Metropolis simulation the probability to es
ape a lo
al minimumdepends only on the height of the surrounding energy barriers. ELP lo
ally�attens the energy lands
ape by �lling up su
h lo
al energy minima. This againde
reases the weight of states within those minima and 
onsequently in
reasesthe probability to es
ape. So, initially when H (E, t) ≈ 0 ELP will favour lowenergies and avoids the sampling of unphysi
al high-energy 
onformations. Af-ter getting stu
k in a lo
al energy minimum, the energy lands
ape gets deformedand higher energies will be explored until eventually another lo
al energy min-imum is found or the higher energy histogram entries have similar frequen
iesand the original energy lands
ape gets approximately restored up to a 
onstantirrelevant fa
tor. Due to this bias, ELP violates detailed balan
e and is there-fore inappropriate to unravel thermodynami
 properties of the system. It also
annot distinguish between di�erent stru
tures of the same energy. However to�nd low-energy states, it is e�
ient and easy to implement.3.6 Error estimationAny data, experimentally determined or simulated, 
an only be trusted, if they
ome along with a reliable error estimation.Markov 
hain MC update algorithms have auto
orrelation times that enter di-re
tly into the statisti
al errors and 
an be dealt with using auto
orrelationanalysis as will be explained in the �rst subse
tion. This, however, be
omesquite 
umbersome for quantities that are not dire
tly measured in the simula-tion but a nonlinear 
ombination of those dire
tly measured quantities, e.g., theheat 
apa
ity. In this 
ase, error propagation has to be applied, if one wants tobe very pre
ise, but usually another simpler approa
h is preferred. This is theJa
kknife method shortly explained in se
tion 3.6.2. All our errors are Ja
kknifeerrors.



3.6 Error estimation 353.6.1 Auto
orrelation TimeSu

essive states of Markov 
hain MC methods are 
orrelated. This is imme-diately obvious 
onsidering any of the updates introdu
ed above. The polymerafter one update is still in a 
on�guration very similar to the 
on�guration be-fore. Thus the varian
e of estimates produ
ed from Markov 
hain MC simula-tions may be mu
h higher than from the same amount of 
on�gurations that aresampled independently � without knowing how the 
on�guration before lookedlike. To quantify this e�e
t, the auto
orrelation fun
tion is introdu
ed:
A (k) =

〈OiOi+k〉 − 〈Oi〉 〈Oi+k〉
〈
O2

i

〉
− 〈Oi〉2

. (3.46)The expe
tation value 〈OiOi+k〉 is the 
orrelation between observable O at time
i and a later time i + k. If the value of O at both times is un
orrelated,the 
orrelation fa
torises to the produ
t of the individual expe
tation values
〈OiOi+k〉 = 〈Oi〉 〈Oi+k〉 and the auto
orrelation vanishes. The denominator isjust for normalisation, i.e. A (0) = 1. In equilibrium, time translation invarian
eholds. Hen
e 〈Oi〉 = 〈Oi+k〉 and in the numerator 〈Oi〉 〈Oi+k〉 simpli�es furtherto 〈Oi〉2. The auto
orrelation fun
tion is a measure for the similarity of anobservable at time i with itself at time i + k. For small k, A (k) ≈ 1 sin
e ea
hstate still resembles the pre
eding one. On the other hand, for very large k, any
on�guration might have been rea
hed and A (k) ≈ 0. For not too small k, theauto
orrelation de
ays exponentially,

A (k) =
k→∞−→ ae−k/τexp , (3.47)whi
h de�nes the exponential auto
orrelation time τexp and a is some 
onstant.Even more useful is another de�nition of auto
orrelation time: the integratedauto
orrelation time

τ ′
int =

1

2
+

N∑

k=1

A (k)

(

1 − k

N

)
N≫τexp≈ 1

2
+

N∑

k=1

A (k) = τint. (3.48)Here it turns out that
σ2

O
=

σ2
Oi

N
2τ ′

int ≈
σ2

Oi

N
2τint (3.49)as is derived in [54℄3. σ2

Oi
=
〈
O2

i

〉
−〈Oi〉2 is the varian
e of the individual mea-surements and in the 
ase of un
orrelated measurements σ2

O
= σ2

Oi
/N . Hen
ethe varian
e is in
reased by a fa
tor of 2τint for 
orrelated data. This e�e
t 
anbe quite signi�
ant. It is instru
tive to introdu
e a parameter

Neff =
N

2τint
≤ N (3.50)3In this de�nition of τint, τint = 1/2 for un
orrelated measurements. Some authors de�ne

τint = 0 for un
orrelated measurement, whi
h is a bit more intuitive, but eq. (3.49) wouldn'tlook that ni
e.
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tive statisti
s, i.e., the number of un
orrelated data oneobtains from N measurements that are 
orrelated with an integrated auto
orre-lation time τint. Hen
e only every 2τint iterations, the produ
ed data are un
or-related again. This knowledge is an important input of the Ja
kknife methoddes
ribed below. What is left to explain is how to determine τint. An estimator
Ã (k) of A (k) is obtained by substituting the expe
tation values 〈OiOi+k〉 bythe mean values OiOi+k. This, in pra
ti
e leads to very noisy tails of Ã (k), sin
ethere is less statisti
s for large time separations k. Summing over all available
Ã (k) to obtain τint would thus introdu
e a 
onsiderable error. One still gets ade
ent estimate of τint by introdu
ing a 
ut-o�

τ̃int (kmax) =
1

2
+

kmax∑

k=1

Ã (k) . (3.51)This approa
hes τint in the limit of large kmax. But as soon as Ã (k) getsvery small, it rea
hes a plateau and its statisti
al error in
reases rapidly. A
ompromise between those systemati
 and statisti
al errors is to determine anoptimal kmax self-
onsistently by 
utting o� as soon as kmax ≥ 6τ̃int (kmax) asdone here. Other 
hoi
es su
h as 
utting of as soon as Ã (k) �rst subtends thebase line 
an also be applied.It is important to noti
e, that the auto
orrelation time 
an be signi�
antlyredu
ed by 
hoosing e�
ient Monte Carlo algorithms. So, for instan
e, a multi-
anoni
al simulation, that ideally exe
utes a random walk in energy spa
e, hasa lower auto
orrelation than the Metropolis algorithm, that more or less staysin the same energy regime. Hen
e, it produ
es e�e
tively more statisti
s.Also note, that while τexp only depends on the algorithm but is theoreti
allyindependent of the observable under 
onsideration, τint depends on the observ-able. More mathemati
al details 
an be found in [41; 58℄. We only performed ashort auto
orrelation analysis in order to have a rough estimate, how to 
hoosethe bins for the Ja
kknife analysis.3.6.2 Blo
king Ja
kknife Te
hniqueTo employ the whole auto
orrelation analysis des
ribed above would result ina 
onsiderable e�ort to get a

urate statisti
al errors. Thus, general but lessa

urate methods have been developed to estimate the error of a Monte Carlorun on a daily basis. These are the Binning and the Ja
kknife methods [54℄that both divide the time series of N 
orrelated measurements Oi in blo
ks.The Binning analysis 
onsiders a number NB = N/k of equidistant blo
ks oflength k (Fig. 3.3):
OB,n ≡ 1

k

k∑

i=1

O(n−1)k+1, n = 1, . . . ,NB . (3.52)The idea of this binning is to 
hoose k larger than the auto
orrelation timeand thus to 
reate with OB,n, n = 1, . . . NB, a new, shorter time series whi
h is
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O

OJ,1OB,1

OJ,2OB,2

OJ,3OB,3

OJ,4
OB,4

OJ,NB
OB,NB

..........
︸ ︷︷ ︸

kFigure 3.3: A s
hemati
 representation of the blo
k Ja
kknife error estimation. The blo
kon the top represents all N 
orrelated measurements. Its blo
k average is denoted by O. Inthe following blo
ks, the grey blo
ks represent the Ja
kknife blo
ks with blo
k average OJ,nand the white blo
ks the binning blo
ks with blo
k average OB,n, n = 1, . . . , NB , and blo
klength k. It holds: N = NBk.almost un
orrelated and 
an thus be analysed by standard means. The Ja
kknifeblo
ks OJ,n 
ontain all data, but the ones of the binning blo
ks,
OJ,n ≡ NO − kOB,n

N − k
, n = 1, . . . NB . (3.53)

O denotes the 
ommon mean value of the all N measurements. The advantageof those larger blo
ks is that the statisti
s of ea
h blo
k is better and �u
tuationsof individual blo
ks are redu
ed 
ompared to the binning approa
h. For linearquantities like energy or radius of gyration there is no di�eren
e in the estimatederror and both methods give an analyti
ally equal result. Di�eren
es howevero

ur, when nonlinear quantities like the spe
i�
 heat are treated due to the biasof the estimator that redu
es for larger sets of data as 1/N . After 
orre
tionfor the trivial 
orrelation of the ja
kknife bins � every value of the time seriesis used N − 1 times � the Ja
kknife error of O is given by
ǫ2
O
≡ σ2

O
=

NB − 1

NB

NB∑

n=1

(
OJ,n − O

)2
. (3.54)It is bene�
ial to 
hoose k rather large. k ≫ τint has to hold and it is anempiri
al rule that k ≈ 6τint gives good results. Choosing k even larger doesnot alter ǫ2

O
mu
h, but 
hoosing it too small underestimates the error.
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4 ResultsIn this 
hapter, various informations about the 
anoni
al equilibrium behaviourof short polymers near an attra
tive substrate are presented. The main fo
us ison the behaviour at varying surfa
e attra
tion strength and temperature.The overall goal aimed at is to summarise all those informations and 
onstru
ta pseudophase diagram. This pseudophase diagram should 
ontain informationabout the quality and position of 
onformational phases present and indi
atetransitions between them. We want to stress that all phases and transitionsmentioned here are no phases in the stri
t thermodynami
 sense, sin
e we aredealing with �nite 
hain lengths. But even for those short 
hains that are
onsidered here, we obtain a good pi
ture about the behaviour of the polymerat the surfa
e and most of the phases are believed to still exist for longer 
hains.4.1 Adsorption Behaviour for Various Surfa
eAttra
tion StrengthsIn this se
tion, I present the results gained for various observables of two ex-empli�ed short peptide sequen
es with 13 and 20 monomers, respe
tively. Mul-ti
anoni
al simulations at 51 di�erent surfa
e attra
tion strengths ǫs, rangingfrom ǫs = 0, . . . , 5, were performed and reweighted to T = 0, . . . , 5. Sin
e themain stru
tural a
tivity takes pla
es below T = 3, usually only the lower tem-perature regime is displayed. Every simulation 
onsists of 108 sweeps and wasat least performed with 2 di�erent random number seeds to assure that trap-ping that sometimes o

urred, does not entail any systemati
 deviation. Theinterpolymeri
 intera
tion is regarded 
onstant here with s = 1.All implemented updates and boundary 
onditions were tested against sev-eral independent works on short hydrophobi
-polar heteropolymers of the ABmodel [44; 55; 56; 57℄.4.1.1 ObservablesEnergy and Spe
i�
 HeatThe total energy of the single polymer has already been de�ned in eq. (2.12).With s = 1, this simpli�es to
E = 4

N−2∑

i=1

N∑

j=i+1

(

1

r12
ij

− 1

r6
ij

)

+
1

4

N−2∑

k=1

(1 − cosϑk) + ǫs

N∑

i=1

[

2

15

(
1

zi

)9

−
(

1

zi

)3
]

.(4.1)
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(a) (b)Figure 4.1: (a) Energy of the 20mer. (b) Heat 
apa
ity of the 20mer. The small linesrepresent the simulated data, the 
olour 
ode is interpolated.In Fig. 4.1, a 3D plot of the energy and spe
i�
 heat of the 20mer vs. ǫs and Tis shown. The proje
tions onto the surfa
e-attra
tion-temperature plane, as ob-tained for the 13- and 20mer for both quantities, are plotted in Figs. 4.2 and 4.3.For both investigated polymer lengths the energy varies smoothly with 
hang-ing ǫs and T . The global minimum is rea
hed at maximal surfa
e attra
tionand minimal temperature. This is not unexpe
ted sin
e at low temperatures,energy dominates over entropy and hen
e lower energy 
onformations are morefrequently assumed. Also for ever higher surfa
e attra
tions, any given 
onfor-mation 
lose to or at the surfa
e 
orresponds to lower energies.Although the total energy varies smoothly with ǫs and T , this does not holdtrue for the individual 
ompositions, be
ause many internal monomer-monomer
(a) (b)Figure 4.2: (a) Energy of the 13mer. (b) Heat 
apa
ity of the 13mer. The 
olour 
ode is asin Fig. 4.1.
(a) (b)Figure 4.3: (a) Energy of the 20mer. (b) Heat 
apa
ity of the 20mer. The 
olour 
ode is asin Fig. 4.1.
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tion Strengths 41
onta
ts 
orrespond to a high intrinsi
 energy while many monomer-surfa
e
onta
ts 
orrespond to a high surfa
e 
ontribution to the energy (see se
tion4.1.6). Those quantities indeed perform 
onsiderable �u
tuations and jumps aswill be dis
ussed below.The heat 
apa
ity turns out to be insu�
ient to 
hara
terise all phase transi-tions, sin
e the 
hains are very short. Only two transitions 
an be identi�ed asridges in the pro�le: The �rst one is the adsorption transition between desorbedand adsorbed 
on�gurations. Where exa
tly in the proje
tion plane desorbedand adsorbed 
on�gurations dominate is among others displayed below in thepseudophase diagram in Fig. 4.26. The adsorption transition exhibits indi
a-tions to be �rst-order like, as it is 
hara
teristi
 for su
h short 
hains. For an s
latti
e model it was shown in [15℄, that for a �nite 
hain length (179mer) thefree energy minima of adsorbed and desorbed 
onformations are separated bya gap when plotted versus monomer-monomer and monomer-surfa
e 
onta
ts,i.e. none of the possible 
onformations in between are stable in equilibrium whi
hre�e
ts the �rst-order like behaviour for �nite 
hains. But The other transitionthat 
an 
learly be identi�ed by the strong ridges in the spe
i�
 heat lands
apeis a freezing transition at low temperatures. At roughly T ≈ 0.25 the heat
apa
ity exhibits a strong peak and rapidly goes to zero at lower temperaturesindependent of the surfa
e attra
tion strength. This and the 
rystalline stru
-tures found at those low temperatures indi
ate a freezing transition. Althoughthe freezing temperature seems to be rather 
onstant, the type of 
rystallinestru
ture adapted by the peptide depends strongly on ǫs. But to identify theshape of the peptide one has to take a 
loser look at 
onformational quantitieslike the radius of gyration.Radius of GyrationThe radius of gyration provides an ex
ellent measure of the overall 
ompa
tnessof the polymer. Figures 4.5, 4.6 and 4.4 reveal that the most 
ompa
t 
onforma-tions dominate at low temperatures and low surfa
e attra
tions. If the surfa
eattra
tion is weak the polymer behaves like a free polymer and the transitionfrom globular (DG) to random 
oil (DE) 
on�gurations (Fig. 4.26) 
orrespondsto the well known θ-transition [6; 5℄, where the repulsive ex
luded volume e�e
tbalan
es the attra
tive for
es between the segments and the polymer behaveslike an ideal 
hain (see 
hapter 1). For the 13mer we found θ13 ≃ 0.94 andfor the 20-polymer θ20 ≃ 1.28 from the peaks in d 〈Rgyr〉 /dT at ǫs = 0. Thehigher value for the larger polymer is due to �nite size e�e
ts. The overallpolymer-polymer intera
tion per monomer (that 
orresponds to ǫpp) is higherfor longer 
hains, be
ause less monomers are at the outer part in the energeti-
ally favourable 
ompa
t 
onformations whi
h leads to a higher ǫpp. This againin
reases the θ-temperature.Also the freezing transition 
an be found at the same temperatures as it wasalready 
learly visible in the heat 
apa
ity. The adsorption transition hardlye�e
ts the overall size of the polymer and 
an thus hardly be seen in the radius
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(a) (b)Figure 4.4: (a) Radius of gyration of the 20mer. (b) d 〈Rgyr〉 /dT of the 20mer. The smalllines represent the simulated data. The 
olour 
ode is interpolated.of gyration.To extra
t further information out of the radius of gyration, it is more illustra-tive to take a 
loser look at its parallel (Figs. 4.7 and 4.8) and perpendi
ular(Figs. 4.12 and 4.13) 
omponent to the surfa
e, respe
tively. These quantitiesare expe
ted to behave di�erent sin
e the surfa
e introdu
es a spatial anisotropy.So for instan
e, for ǫs ≥ 2.8 for the 13mer and ǫs ≥ 3.4 for the 20mer and lowtemperatures 〈R⊥〉 vanishes while 〈R‖

〉 attains low values at lower ǫs. A van-ishing 〈R⊥〉 
orresponds to a 
on�guration where the polymer is spread out�at on the surfa
e without any extension into the third dimension. These
on�gurations
(a) (b)Figure 4.5: (a) Radius of gyration of the 13mer. (b) d 〈Rgyr〉 /dT of the 13mer. The 
olour
ode is as in Fig. 4.4.
(a) (b)Figure 4.6: (a) Radius of gyration of the 20mer. (b) d 〈Rgyr〉 /dT of the 20mer. The 
olour
ode as in Fig. 4.4.
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alled adsorbed 
ompa
t (AC1) and adsorbed expanded (AE1) (Fig. 4.26).The `1' is added to distinguish those regions from regions that extend into thethird dimension. AC1 and AE1 are separated by the freezing transition su
hthat 
on�gurations in AC1 at lower temperatures are maximally 
ompa
t while
on�gurations in AE1 are less 
ompa
t and more �exible but still mainly �aton the surfa
e.In order to 
on�rm that 
onformations in AC1 are indeed maximally 
ompa
tsingle layers, one 
an 
onsider a simple argument. It is well known that themost 
ompa
t shape in the 2D 
ontinuous spa
e is the 
ir
le. Thus one 
an
al
ulate 〈R‖

〉 for a 
ir
le and 
ompare it with the simulated value. Assuming
N monomers to be distributed evenly in the 
ir
le, N ≈ πr2, where r is theradius of the 
ir
le in units of the mean distan
e of neighbouring monomers.The radius of gyration in the same units is thus given by

Rcirc
gyr

2
(

≈ R2
‖

)

=
1

πr2

∫

r′≤r
d2r′r′2 =

1

2
r2 ≈ N

2π
. (4.2)We have two di�erent types of mean distan
es between monomers in 
ompa
t
onformations. Neighboring monomers on the 
hain have distan
e one, whilefor all others the most favourable distan
e is rmin,LJ ≈ 1.1225. So we expe
tfor 
ompa
t 〈R‖

〉 on the surfa
e to hold: √13/2π ≈ 1.438 <
〈
R‖,13

〉
< 1.615 <

rmin,LJ

√

13/2π and √20/2π ≈ 1.784 <
〈
R‖,20

〉
< 2.026 < rmin,LJ

√

20/2π. Thesimulated data are R‖,13 = 1.45 and R‖,20 = 1.81 that ni
ely �t the estimate.Trying the same thing in 3D however does not work that well. The most 
om-pa
t shape in 3D is the sphere, that we assume to be �lled uniformly with Nmonomers, N = 4πr3/3. Corresponding 
on�gurations are found as free 
om-pa
t 
hains (DC) as well as adsorbed 
ompa
t 
on�gurations (AC) for weaksurfa
e attra
tion. Here the radius of gyration is given by
Rball

gyr
2

=
1

4πr3/3

∫

r′≤r
d3r′r′2 =

3

5
r2 ≈ 3

5

(
3N

4π

)1/3

. (4.3)This leads to the estimate 1.130 < Rgyr,13 < 1.268 and 1.684 < Rgyr,20 < 1.464.But the simulated data are smaller: Rgyr,13 = 1.023 and Rgyr,20 = 1.242. Thisslight deviation 
an however be explained by the fa
t, that the mass of thepolymer is not uniformly distributed in the sphere as assumed in the 
al
ulation.For a 
ompa
t pa
king of dis
rete monomer positions, it is far more realisti
, thatthe outer thin shell of the sphere does not 
ontain any monomers. Performingthe integration not from r′ = 0 to r′ = r but only to r′ = r − ε, redu
ed theestimated radius of gyration signi�
antly already for small ε due to the in
reasedweight of the outer shells in higher dimensions. Taking into a

ount this e�e
t,the absolute values of 〈Rgyr〉 obtained, seem to be very reasonable.
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(a) (b)Figure 4.7: (a) ˙

R‖

¸ of the 20mer. (b) d
˙

Rgyr,‖

¸

/dT of the 20 polymer. The small linesrepresent the simulated data. The 
olour 
ode is interpolated.The most noti
eable transition that 
an be seen in the Rgyr-
omponents is thestrong layering transition at ǫs ≈ 2.8 for N = 13 and ǫs ≈ 3.3 for N = 20 thatseparates regions of planar 
onformations (AE1, AC1) in the surfa
e attra
tion-temperature plane from more 
ompa
t 3D 
onformations (AG, AC2b) at lowtemperatures.In a paper of J. Kraw
zyk et al. [16℄ a latti
e argument 
an be found that ni
elyillustrates what happens here. The polymer is modeled as a self-avoiding walk ona 3D 
ubi
 latti
e in a half-spa
e intera
ting via a nearest-neighbour intera
tionof di�erent monomers with ǫm being the 
ontributions per 
onta
t. In additionea
h polymer-surfa
e 
onta
t lowers the energy by another ǫs su
h that theoverall energy of a 
on�guration with ns surfa
e 
onta
ts and nm intrinsi
 
on-
(a) (b)Figure 4.8: (a) ˙

R‖

¸ of the 13mer. (b) d
˙

Rgyr,‖

¸

/dT of the 13mer. The 
olour 
ode is asin Fig. 4.7.
(a) (b)Figure 4.9: (a) ˙

R‖

¸ of the 20 polymer. (b) d
˙

Rgyr,‖

¸

/dT of the 20mer; 
olour 
ode as inFig. 4.7.
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ts is given by
EN = −nmǫm − nsǫs. (4.4)Now one 
onsiders the zero-temperature situation, where for positive self-attra
tion and surfa
e attra
tion, the polymer will take on some 
ompa
t 
on-�guration tou
hing the surfa
e. For a 
ubi
 latti
e model this is likely to bea re
tangular parallelepiped with square 
ross-se
tion parallel to the surfa
e ofsite length w (Fig. 4.10). If the height to the surfa
e is l, and there are N = lw2monomers in the polymer, the total energy El, negle
ting 
ontributions fromedges and 
orners) is

El (ǫm, ǫs) ∼ −
(
w2 (l − 1) + 2 (w (w − 1)) l

)
ǫm − w2ǫs

= −
(

N

l
(l − 1) + 2

(√

N

l

(√

N

l
− 1

))

l

)

ǫm − N

l
ǫs

= −Nǫm +
N

l
ǫm + 2

√
Nlǫm − Nǫm − N

l
ǫs

= −2ǫmN + (ǫm − ǫs)
N

l
+ 2ǫm

√
lN.

(4.5)
For �xed N the energy 
an be minimized with respe
t to l to see how the layerthi
kness depends on ǫm, ǫs and N . One obtains for the minimum 
on�guration

l3/2 =

(

1 − ǫs

ǫm

)

N1/2. (4.6)A plot of l vs. ǫs/ǫm 
an be found in Fig. 4.11. Sin
e there are only integervalues of l possible � there is nothing like half a layer � a parti
ular layer willbe stable for a range of ǫs/ǫm. So, using this argument, for instan
e a singlelayer 
on�guration is stable for ǫs ≥ ǫm and for some values of ǫs < ǫm given byrelation 4.6. If ǫs is in
reased at �xed ǫm the system's energy is minimised by

Figure 4.10: Exempli�ed 
ompa
t 
onfor-mation for a self-avoiding polymer on a 3Dlatti
e with w = 5 and l = 3 to illustrate theargument of J. Kraw
zyk et al..
N = 100000

N = 50

N = 20

N = 13

~~~~~~
ǫs

ǫm

l

10.80.60.40.20

43.532.521.510.50
N = 100000

N = 50

N = 20

N = 13

~~~~~~
ǫs

ǫm

l

10.80.60.40.20

43.532.521.510.50Figure 4.11: Plotted is l = (1 −

ǫs/ǫm)2/3N1/3 vs. ǫs/ǫm for four di�erent
hain lengths on the latti
e. For N = 13only double- and single-layer stru
tures arestable while for N = 20 also triple-layer and
N = 50 even four layer stru
tures seem tobe energeti
ally favourable for a low ǫs/ǫm-ratio.
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(a) (b)Figure 4.12: (a) 〈R⊥〉 of the 20mer. (b) d 〈Rgyr,⊥〉 /dT of the 20mer. The small linesrepresent the simulated data. The 
olour 
ode is interpolated.smaller values of l. This is exa
tly what is observed here with de
reasing 〈R⊥〉 atlow temperatures with in
reasing ǫs. Sin
e the total surfa
e area is minimised ifthe layers are uniform layers with a roughly equal number of monomers in ea
hlayer, the polymer jumps from (l+1) layers to l layers at some value of ǫs with ajump in the internal energy rather than 
ontinuously de
reasing the o

upationnumber of the top layer. This is also 
on�rmed by the sharp layering transitionfrom single- to double-layer stru
tures for both 
hain length and ground stateenergy 
onsiderations and suggests that the transition is �rst-order like with atransition region that gets sharper for larger N , see Fig. 4.11.However, one striking dis
repan
y between latti
e theory and the data from our
ontinuous model is observed: While the argument predi
ts that for ǫs ≥ ǫmonly single layer 
on�gurations are stable, our single layers are only stable for
(a) (b)Figure 4.13: (a) 〈R⊥〉 of the 13mer. (b) d 〈Rgyr,⊥〉 /dT of the 13mer. The 
olour 
ode is asin Fig. 4.12.
(a) (b)Figure 4.14: (a) 〈R⊥〉 of the 20mer, (b) d 〈Rgyr,⊥〉 /dT of the 20mer. The 
olour 
ode is asin Fig. 4.12.
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ǫs/ǫm & 3. We 
onje
ture that this substantial di�eren
e is due to the di�erent
oordination number of both models. Inside the bulk of a 
ompa
t polymer onan s
 latti
e, ea
h monomer has maximally z = 6 nearest neighbours while inthe 
ontinuous model hexagonal 
lose pa
king is observed at low temperatureswith z = 12 nearest neighbours. This gives more 
ompa
t 
onformations with ahigher l in our 
ontinuous model an additional stability. In fa
t, repeating theargument in eq. (4.5) for a hexagonal latti
e, one obtains

El (ǫm, ǫs) ∼ −
(

4
N

l
(l − 1) + 3

(√

N

l

(√

N

l
− 1

))

l

)

ǫm − N

l
ǫs

= −4Nǫm + 4
N

l
ǫm + 3

√
Nlǫm − 3Nǫm − N

l
ǫs

= −7ǫmN + 4
N

l
ǫm + 3

√
Nlǫm − N

l
ǫs.

(4.7)
This yields for the equivalent of eq. (4.6) on a hexagonal latti
e

l3/2 =
2

3

(

4 − ǫs

ǫm

)

N1/2, (4.8)whi
h predi
ts a single-double layer transition for N = 13 at ǫs/ǫm = 3.235and for N = 20 at ǫs/ǫm = 3.384. Thus even if one approximates the more
ylindri
al shaped observed layered stru
tures by a 
ubi
, this argument givesa rather good estimate of the lo
ation of the layering transitions if a hexagonallatti
e stru
ture is assumed.Although for the short 
hains 
onsidered in this se
tion there are no triple layersobserved, the 
omponents 〈R‖,⊥

〉 indi
ate some a
tivity at lower surfa
e attra
-tion. For N = 13, ǫs ≈ 1.2 is the lowest attra
tion strength at whi
h thereare still stable double layer 
on�gurations found below the freezing transition.For N = 20 this is at ǫs ≈ 1.4. What follows at lower ǫs is a low-temperaturephase of surfa
e atta
hed 
ompa
t 
onformations that we 
all AC2a. AC2a
onformations o

ur if the monomer-surfa
e attra
tion is not strong enough toindu
e a layering in the 
ompa
t atta
hed stru
ture. One has to be 
areful inwhat exa
tly these 
onformations look like. On the one hand, the surfa
e at-tra
tion is strong enough to atta
h the polymer, on the other hand the 
ompa
t
onformation of a free polymer below the θ-transition shouldn't be distortedtoo mu
h - no layering. We found two distin
t stru
tures that �t this s
heme:1. 
ompletely undistorted 
ompa
t 
onformations lo
ated at the surfa
e and2. roughly semi-spheri
ally shaped stru
tures do
ked to the surfa
e. Both are
learly observed over a substantial range of surfa
e attra
tions ǫs. Comparingwhere whi
h kind of those two stru
tures is observed at both 
hain length di�er-en
es are found. For N = 13 both, d 〈Rgyr,⊥〉 /dT and d
〈
Rgyr,‖

〉
/dT indi
atea transition at ǫs ≈ 0.45. This transition is the wetting transition [13; 10℄,that has already attra
ted some interest in literature. We will meet this tran-sition again, when dis
ussing the e�e
t of solvent variation (se
tion 4.2). Here
ompa
t polymers that only move 
lose to the surfa
e at low T and lower ǫsatta
h to form semi-spheri
ally shaped stru
tures at higher ǫs that are stable



48 CHAPTER 4. RESULTSuntil at ǫs ≈ 1.2 a seemingly 
ontinuous pseudophase transition to double layerstru
tures takes pla
e.Without the additional information from the extra
ted low energy states, itwould hardly be possible to lo
ate this transition, although the radius of gyrationas well as its 
omponents indeed 
hange their absolute values at this ǫs a littlebit.For N = 20 no analog to the wetting transition at ǫs ≈ 0.45 for N = 13 wasobserved. Already at an attra
tion strength of ǫs ≈ 0.2 adsorbed 
onformationsare found at low temperatures but only d 〈Rgyr,⊥〉 /dT shows some very smalltransition peak at the interse
tion of the freezing transition at T ≈ 0.25 and theadsorption transition line that will be dis
ussed below. The AC2a pseudophasehere seems to 
onsist of a mixture of 
ompa
t 
onformations do
ked to thesurfa
e and the mentioned semi-spheri
al 
onformations without any transitionbetween them. This is also 
on�rmed by regarding the low energy 
onformationsfound in this regime. At ǫs ≈ 1.4 the 
ontinuous transition to double-layerstru
tures (AC2b) takes pla
e. The higher ǫs the higher the amount of semi-spheri
al 
onformations found in the AC2a phase, but a 
lear 
ut from the
ompa
t adsorbed 
onformations does not exist.This di�eren
e in the wetting transition for N = 13 and N = 20 might be dueto the fa
t, that the most 
ompa
t 
onformation for N = 13 is an almost perfe
ti
osahedron (Fig. 4.15). �Almost� be
ause the Lennard-Jones energy minimumdi�ers from the distan
e of neighboring monomers for s = 1. For s = 2 the most
ompa
t stru
ture is indeed a perfe
t i
osahedron. This additionally stabilisesthe 
onformation and is already known in 
luster physi
s, where 13 spheres 
anform one of Ma
kay's i
osahedrons [59℄ with their typi
al �vefold symmetry.Sin
e also the globular stru
ture of the 13mer has a higher symmetry than thatof the 20mer, it is not unexpe
ted that the wetting transition for the 13meris sharper than for the 20mer. It might be worthwhile to study the wettingtransition also for other 
hain length in order to be able to predi
t a trend forlonger 
hains whi
h is not possible only knowing the behaviour for those twoinvestigated 
hain lengths.Raising the temperature, polymers from the AC2a as well as from the AC2bregime form adsorbed and still rather 
ompa
t 
on�gurations above the freezing
(a) (b) (
)Figure 4.15: (a) Most 
ompa
t 
onformation of the 13mer found for s = 2. (b) The same
onformation as in (a), but all outer monomers are 
onne
ted to show the i
osahedral shape.(
) Most 
ompa
t 
onformation of the 13mer found for s = 1.
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(a) (b)Figure 4.16: (a) 〈zcm〉 of the 20mer. (b) d 〈zcm〉 /dT of the 20mer. The small lines representthe simulated data. The 
olour 
ode is interpolated.temperature that are mu
h like a drop on the surfa
e. This pseudophase is
alled Surfa
e-Atta
hed Globule (AG) and sometimes also SAG. It has been�rst 
onje
tured from short exa
t enumeration studies in 2D poor solvent [60℄,but was also found for instan
e in Ref. [15℄ and [16℄.At even higher temperatures, two things 
an happen dependent on whetherthe monomer-monomer or the monomer-surfa
e intera
tion is stronger. If theformer is the 
ase, the polymer �rst desorbs from the surfa
e (from AG to DG)and expands at even higher temperatures (from DG to DE). In the latter 
ase,the polymer expands while it is still on the surfa
e (from AG to AE2) anddesorbs at higher temperatures (from AE2 to DE). The point in the phase dia-
(a) (b)Figure 4.17: (a) Centre-of-mass distan
e 〈zcm〉 of the of 13mer to the surfa
e. (b) d 〈zcm〉 /dTof the 13mer. The 
olour 
ode is as in Fig. 4.16.
(a) (b)Figure 4.18: (a) Centre-of-mass distan
e 〈zcm〉 of the of 20mer to the surfa
e. (b) d 〈zcm〉 /dTof the 20mer. The 
olour 
ode is as in Fig. 4.16.



50 CHAPTER 4. RESULTSgram where the four phases AG, AE2, DG and DE 
oin
ide was found to be for
N = 13 at ǫs ≈ 1.57 and T ≈ 1.15 and for N = 20 at ǫs ≈ 1.9 and T ≈ 1.38.Due to the higher relative number of monomers in the bulk in 
ompa
t longer
hains, the θ-temperature in
reases as explained above. Sin
e at the adsorptiontransition there seems to be ǫs ∝ T , the four-phases-
oexisten
e point is alsoshifted to higher ǫs for longer 
hains.The adsorption transition 
an be dis
ussed best when looking at the mean num-ber of surfa
e 
onta
ts and the distan
e of the 
entre of mass of the polymer tothe surfa
e.Centre-of-Mass Distan
e of the Polymer to the Surfa
eThe 
entre-of-mass distan
e of the polymer to the surfa
e is the observable thatdisplays the adsorption transition sharper than all the others, although one hasto keep in mind the dependen
e on the size of the simulation box (se
tion 2.4).As 
an be seen in Figs. 4.16, 4.17 and 4.18, for large temperatures and low ǫs thepolymer 
an move freely within the simulation box without feeling the in�uen
eof the surfa
e too mu
h. Thus the average 
entre-of-mass distan
e 〈zcm〉 of thepolymer above the surfa
e is just half of the height of the simulation box. Sin
ewe 
hose the simulation box for N = 13 to be Lbox = 20 and for N = 20 tobe Lbox = 40 this yields 〈zcm〉 = 10 for N = 13 and 〈zcm〉 = 20 for N = 20 ifthe attra
tive in�uen
e of the wall 
an be negle
ted. The steri
 in�uen
e is of
ourse still there. On the other hand, for dominant surfa
e attra
tion at high
ǫs and low temperatures, the polymer will preferably sit on the surfa
e and thedistan
e will be 〈zcm〉 ≈ 0.858, 
orresponding to the minimum of the surfa
eattra
tion potential, for single layer stru
tures and a bit bigger for double-layerand globular stru
tures.When looking at 〈zcm〉 and d 〈zcm〉 /dT as presented in Figs. 4.16, 4.17 and 4.18,one noti
es �rst a quite sharp adsorption transition that divides the proje
tionof 〈zcm〉 into an adsorbed (bright/green) regime and a desorbed (dark/blue)regime. This transition looks like a straight line in the phase diagram su
h thatthere seems to hold: ǫs ∝ T on the transition line. Intuitively, this makes sensesin
e at higher T the stronger Brownian �u
tuation is more likely to over
omethe surfa
e attra
tion. One 
an, however, also dedu
e it from the latti
e modelin Ref. [15℄ that we will 
he
k our results against at the end of the 
urrent
hapter.The model in question is a minimalisti
 simple-
ubi
 (s
) ex
luded volume latti
emodel, where the polymer 
an move between two in�nitely extended parallelwalls, separated by a distan
e zw expressed in latti
e units. One wall is attra
tiveto the monomers while the other one has a pure steri
al in�uen
e to preventthe polymer to es
ape into outer spa
e. The energy term of su
h a polymer isgiven by

E (ns, nm) = −ǫsns − ǫmnm, (4.9)where ns is the number of nearest-neighbour monomer-substrate 
onta
ts, nm
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e Attra
tion Strengths 51the number of nearest-neighbour, but nonadja
ent monomer-monomer 
onta
tsand ǫs and ǫm are the respe
tive 
onta
t energy s
ales. The restri
ted parti-tion sum for a ma
rostate with ns surfa
e 
onta
ts and nm monomer-monomer
onta
ts is then given by
ZT (ns, nm) =

∑

n′
s,n′

m

δn′
s,nsδn′

m,nme−E(n′
s,n′

m)/kBT = gns,nme−E(ns,nm), (4.10)where gns,nm is the 
onta
t density that only depends on the geometry ofthe system, in parti
ular zw and N . The partition fun
tion is hen
e Z =
∑

ns,nm
ZT (ns, nm) and more interestingly one 
an de�ne the spe
i�
 
onta
tfree energy as a fun
tion of the 
onta
t numbers ns and nm:

FT (ns, nm) = −kBT ln
(

gns,nme−E(ns,nm)/kBT
)

= E (ns, nm) − TS (ns, nm) ,(4.11)identifying kB ln gns,nm ≡ S (ns, nm) as a �mi
ro
onta
t� entropy. If one nowminimises this with respe
t to ns, one �nds
dF (ns, nm)

dns
=

d

dns
(−kBT ln gns,nm + E (ns, nm))

= −kBT
d

dns
ln gns,nm − ǫs = 0

⇔ ǫs = −kB

(
d

dns
ln gns,nm

)

T ∝ T (4.12)be
ause the fa
tor in front to T does not depend on ǫs and T . This argumentshould also be valid in our model sin
e the surfa
e energy is proportional to
ǫs and short ranged and the 
ontribution of the other energy terms that donot depend on the number of surfa
e 
onta
ts vanishes while di�erentiating.Our simulation yields ∆T/∆ǫs ≈ 0.8806 for N = 13 and ∆T/∆ǫs ≈ 0.9342for N = 20 what should 
orrespond to −1/(dgns,nm/dns) for the ns at theadsorption transition that is naturally around one.Looking at 〈zcm〉 and d 〈zcm〉 /dT in the adsorbed phases in more detail oneobserves the low temperature transitions between AC2a, AC2b and AC1 thatwere already dis
ussed above. But sin
e the data are so similar to what is foundfor the main number of surfa
e 
onta
ts in that regime, we will skip a moredetailed look here to go to the mean number of surfa
e 
onta
ts immediately.Mean Number of Surfa
e Conta
tsThe mean number of surfa
e 
onta
ts provides a 
lear measure of the fra
tionof monomers adsorbed to the surfa
e but gives no information on what happens



52 CHAPTER 4. RESULTS
(a) (b)Figure 4.19: (a) Mean number 〈ns〉 of surfa
e 
onta
ts per monomer of the 20mer. (b)

d 〈ns〉 /dT of the 20mer. The small lines represent the simulated data, the 
olour 
ode isinterpolated.in the desorbed states. Hen
e, it is a good observable to study the 
onfor-mational behaviour in the adsorbed regime. For example, the regime, wheresingle-layer stru
tures dominate (AC1, AE1) 
an be identi�ed easily, be
ause
〈ns〉 ≈ 1 (dark/blue regime in Fig. 4.19, 4.20 and 4.21), whi
h 
oin
ides ni
elywith the region, where 〈R⊥〉 ≈ 0. One 
an also see that the average number ofsurfa
e 
onta
ts are very similar in the phases AG, AC2a, AC2b, AE2, wheremost of the monomers are atta
hed, with a monotoni
 de
rease of 〈ns〉 within
reasing T . The adsorption transition 
an be found at lower T as for 〈zcm〉and is less sharp.
(a) (b)Figure 4.20: (a) Mean number 〈ns〉 of surfa
e 
onta
ts per monomer of the 13mer. (b)

d 〈ns〉 /dT of the 13mer. The 
olour 
ode is as in Fig. 4.19.
(a) (b)Figure 4.21: (a) Mean number 〈ns〉 of surfa
e 
onta
ts per monomer of the 20mer. (b)

d 〈ns〉 /dT of the 20mer. The 
olour 
ode is as in Fig. 4.19.
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e Attra
tion Strengths 53At low temperatures d 〈ns〉 /dT indi
ates the following transitions:transition N = 13 N = 20adsorption transition T ≈ 0.2 T ≈ 0.2transition between AC and AC2a T ≈ 0.5 �transition between AC2a and AC2b T ≈ 0.9 T ≈ 1.7layering transition between AC2b and AC1 T ≈ 2.8 T ≈ 3.4Unlike on the latti
e, where one �nds 〈ns〉 ≈ 1 for a single layer stru
ture,
〈ns〉 ≈ 1/2 for a double layer stru
ture, 〈ns〉 ≈ 1/3 for a triple layer stru
tureet
. [16℄, our double layer stru
tures have 〈ns〉 > 1/2. This indi
ates that whileon the latti
e, in order to obtain a 
ompa
t 
on�guration, all layers 
ontainabout the same amount of monomers, in our o�-latti
e model, there are alwayssome more monomers in the layer on the surfa
e. Sin
e this only happens at theouter part of the layer, the di�eren
e is more pronoun
ed the shorter the 
hain is.

N = 20

N = 13

ǫs

〈n
s
〉

543210

10.80.60.40.20Figure 4.22: 〈ns〉 vs. ǫs for small T for bothinvestigated 
hain length N = 13 and N = 20.

In Fig. 4.22, 〈ns〉 is shown as a fun
-tion of ǫs at small temperatures.
〈ns〉 is a good quantity to see lay-ering. Starting at high ǫs, �rst forboth 
hain length 〈ns〉 ≈ 1 until atthe layering transition, 〈ns〉 jumpsto 〈ns〉 ≈ 0.69 for N = 13 and to
〈ns〉 ≈ 0.65 for N = 20.Further jumps 
orresponding tofurther layering transitions are notobserved for those short 
hains. In-stead what follows is a plateauregime where the relative amountof monomers that 
over the surfa
eis rather 
onstant. When the double-layer stru
ture gets unstable at lower ǫs,

〈ns〉 starts to de
rease again. The 
onformations in AC and AC2a thus have no�xed 〈ns〉, but it rather depends on ǫs. At around ǫs ≈ 0.2, where the polymerdesorbs, 〈ns〉 de
rease rapidly until 〈ns〉 = 0 at ǫs = 0.The observable left to dis
uss is the mean number of intrinsi
 
onta
ts.Mean Number of Intrinsi
 Conta
tsSin
e, if the mean number of intrinsi
 
onta
ts 〈nm〉 is large, the polymer is very
ompa
t and its radius of gyration small, and if the mean number of intrinsi

onta
ts is small, the polymer is very stret
hed out and the radius of gyrationvery high, 〈nm〉 and 〈Rgyr〉 are 
omplementary observables and yield similarinformations.
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(a) (b)Figure 4.23: (a) 〈nm〉 of the 20mer, (b) d 〈nm〉 /dT of the 20mer. The small lines representthe simulated data. The 
olour 
ode is interpolated.One 
an see, that the proje
tion of 〈nm〉 onto the ǫs-T -plane is divided into a
ompa
t regime 
omprising AC, AG, AC2a, AC2b, DC and DG and a regime ofless 
ompa
t 
onformations. This ni
ely 
on�rms the results already obtainedfor 〈Rgyr〉. Apart from that, transitions from maximally 
ompa
t 
onformations(DC, AC) to less 
ompa
t ones (AC2a) and the θ-transition of the free polymerare 
on�rmed. And, on
e again, the layering transition from double- to single-layer 
on�gurations is strongly signalled.
(a) (b)Figure 4.24: (a) Mean number 〈nm〉 of intrinsi
 
onta
ts (without next neighbours alongthe 
hain) per monomer of the 13mer, (b) d 〈nm〉 /dT of the 13mer. The 
olour 
ode is as inFig. 4.23.
(a) (b)Figure 4.25: (a) Mean number 〈nm〉 of intrinsi
 
onta
ts (without next neighbours alongthe 
hain) per monomer of the 20mer, (b) d 〈nm〉 /dT of the 20mer. The 
olour 
ode is as inFig. 4.23.



4.1 Adsorption Behaviour for Various Surfa
e Attra
tion Strengths 554.1.2 The Pseudophase DiagramTo summarise all the informations gained from the di�erent observables, we drewthe approximate boundaries of di�erent regimes into the ǫs-T -plane and denotedthe di�erent pseudophases by the abbreviations already used (Fig. 4.26).
DE AE2DGDC AC2aAC AGAC2b AE1AC1

0 1 2 3 4 5
ǫs

0

1

2

3

T

DE AE2DGDC AC2a AGAC2b AE1AC1
0 1 2 3 4 5

ǫs

0

1

2

3

T

(a)

(b)Figure 4.26: (a) Phase diagram of the 13mer, (b) Phase diagram of the 20mer. The 
olouredstripes indi
ates the regime where the phase transitions take pla
e.
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Figure 4.27: Representative examples of 
onformation of the di�erent regions in the ǫs-
T -plane. Conformations AC1a, AC1b, AC2a, AC2b and AG are lo
ated at the surfa
e, thelo
ation of whi
h is sometimes indi
ated with blue spheres. DE, DG and DC are desorbed.
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e Attra
tion Strengths 57The pseudophases found are (Fig. 4.27):
• DE (desorbed expanded): These are free desorbed random 
oil 
onforma-tions above the θ-transition.
• DG (desorbed globular): Globular free 
onformations below the θ- andabove the freezing-transition. Polymers in this pseudo-phase 
orrespondto a liquid and are still rather �exible.
• DC (desorbed 
ompa
t): Maximally 
ompa
t, spheri
ally shaped 
on�g-urations below the freezing transition
• AE1 (adsorbed expanded single layer): Expanded 
on�gurations abovethe freezing-transition that are �at on the surfa
e but little 
ompa
t.
• AE2 (adsorbed expanded 3D 
onformations): Adsorbed expanded 
on�g-urations above the freezing-transition with usually more than half of themonomers atta
hed.
• AC1 (adsorbed 
ompa
t single layer): Adsorbed 
ompa
t 
on�gurationsbelow the freezing-transition that are �at on the substrate but 
ompa
tlike a 
ir
le.
• AG (adsorbed globular 3D 
onformations): Adsorbed 
onformations atthe surfa
e below the θ-transition, above the freezing-transition and withextension into the 3rd dimension. Like a drop on the surfa
e.
• AC2a (adsorbed 
ompa
t 3D 
onformations): Compa
t 
on�gurationat the surfa
e, that is semi-spheri
ally shaped and below the freezing-transition.
• AC2b (adsorbed 
ompa
t double layers): Adsorbed double layer 
on�g-urations below the freezing-transition. The o

upation of the layer at thesurfa
e is slightly higher than that of the other layer.
• AC (adsorbed spheri
al 
ompa
t): Conformation as in DC, but the poly-mer often tou
hes the surfa
e in this regime.4.1.3 Data for ǫs = 2 and N = 20In order to give an impression of how the simulated data look like before mergingthem together in the shown 3D plots and to stress how 
areful one has tobe in believing the sket
hed pseudophase transition positions, all observablesfor an arbitrary ǫs (ǫs = 2) and for N = 20 are presented here. A look onthe phase diagram for N = 20 tells us that we have to expe
t the freezingtransition at T ≈ 0.2, the expansion from AG to AE2 at T ≈ 1.3 and thedesorption at T ≈ 1.6. This seems less obvious when regarding Fig. 4.28. Alltemperature derivatives of 〈E〉, 〈zcm〉, 〈Rgyr〉, 〈Rgyr,‖

〉, 〈Rgyr,⊥〉, 〈nm〉 and 〈ns〉show some a
tivity at the freezing transition around T ≈ 0.2, but the exa
t
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〈Rgyr,xy〉

〈Rgyr,z〉

〈ns〉

〈nm〉 〈Rgyr〉

〈zcm〉 /10

〈E〉

T
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3210-1-2-3-4
d 〈Rgyr,xy〉
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d 〈Rgyr,z〉
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d 〈ns〉
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d 〈nm〉
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d 〈Rgyr〉

dT
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dT
/10C

T

32.521.510.50

2.521.510.50-0.5-1-1.5(a) (b)Figure 4.28: (a) Several observables for ǫs = 2 and N = 20, (b) The derivative with respe
tto T of the same observables.position of the peak varies between T ≈ 0.16 for d 〈Rgyr,z〉 /dT and T ≈ 0.35for d 〈zcm〉 /dT . This is 
learly an e�e
t of the �nite size of the polymer. Onlyin the thermodynami
 limit of very long 
hains the transitions are expe
ted totake pla
e at the same ǫs and T for all observables. For �nite 
hain length, thetransition lines still 
hange with N and are not well de�ned due to the broadpeaks that are slightly di�erent for di�erent observables.Below the freezing transition, all observables are quite 
onstant with T . Atsu
h low temperatures, those ma
rostates are formed whi
h are energeti
allyfavoured. Entropy is not yet relevant. Above the freezing transition however,entropy does play a role and the average energy in
reases, the 
onformation getsless 
ompa
t � indi
ated by in
reasing 〈Rgyr〉, 〈Rgyr,‖

〉, 〈Rgyr,⊥〉 and de
reasing
〈nm〉 � and the 
onta
t to the surfa
e loosens � indi
ated by de
reasing 〈ns〉 andin
reasing 〈zcm〉. The expansion from AG to AE2 at T ≈ 1.3 is even less wellde�ned. In fa
t, it is rather hard to lo
ate this 
ontinuous transition. Not onlyexpands the polymer monotonously with T and it is not 
lear, where to de�nethe boundary between �
ompa
t� and �random 
oil� 
onformations. Also thepeaks of the relevant observables d 〈Rgyr〉 /dT , d

〈
Rgyr,‖

〉
/dT , d 〈Rgyr,⊥〉 /dTand d 〈nm〉 /dT are lo
ated between T ≈ 0.81 and T ≈ 1.67. This makes itimpossible to draw a 
lear transition line. The line in the pseudophase diagramis a 
ompromise between all the observables and due to the need to indi
atethat in one regime 
ompa
t 
onformations and in the other one expanded on
edominate. A 
lear transition line should only exist in the thermodynami
 limitjust as for the θ-transition of desorbed states. The desorption transition iseasier to lo
ate, but still the peaks of C, d 〈zcm〉 /dT and d 〈ns〉 /dT that mainlyindi
ate this transition, do not 
oin
ide. d 〈zcm〉 /dT already shows a
tivity at

T ≈ 1.73, then 〈ns〉 at T ≈ 1.6 and C at T ≈ 1.56. It makes however sense,that when the system is 
ooled, the polymer �rst has to move to the surfa
e� a
tivity in 〈zcm〉 at higher T � before monomer-surfa
e 
onta
ts 
an have a
onsiderable e�e
t on the energy.This hopefully made it 
lear, that the pseudophase diagrams in the previoussubse
tion are supposed to give a good qualitative overview about the behaviourwith varying ǫS and T , but the positions of the phase boundaries should onlybe 
onsidered as rough guidelines.
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e Attra
tion Strengths 594.1.4 Density of StatesIt is rather illuminating to take a look at the density of states Ω(E) that wasestimated while generating the multi
anoni
al weights. In Fig. 4.29 Ω(E) isplotted both logarithmi
ally and linearly for three investigated 
hain lengths
N = 13, 20, 50. For any �xed 
hain lengths Ω(E) behaves very similarly for
E & −0.25 for all ǫs, while the behaviour of Ω(E) 
hanges for energies belowthis value. In the linear plot, hardly any di�eren
es apart from �u
tuations
an be seen, but the logarithmi
 plot reveals, that the number of low energystates with E < −0.25 in
reases with in
reasing ǫs. This is simply due to thefa
t, that 
on�gurations with a low degenera
y on the surfa
e like single layer
on�gurations are assigned a lower energy the lower the ǫs. The fra
tion of total
on�gurations in the simulation box, whose energy gets 
onsiderably in�uen
edby the surfa
e potential present, de
reases with in
reasing simulation box size,whi
h also has an in�uen
e on Ω(E) and the 
anoni
al expe
tation values of theobservables (see se
tion 2.4).It is also interesting to observe, how the overall shape of the density of states
hanges with in
reasing N . For small N there is a distin
t maximum of Ω(E)at E ≈ −0.25, the energy with the most mi
ros
opi
 realizations. As N in-
reases, the relative mount of high energy 
on�gurations in
reases until at somepoint, Ω(E) is no longer a de
reasing fun
tion of E for E > −0.25, and hasno maximum any more. Con�gurations near the peak of Ω(E) are random-
oil 
on�gurations with a high degenera
y. Higher energy 
on�gurations arethose that self-interse
t whi
h is punished by the high energy repulsive partof the Lennard-Jones energy. The longer the 
hain, the more likely it gets forthe polymer to self-interse
t whi
h explains the higher amount of high-energy
on�gurations for higher N .The in
reasing amount of high energy 
on�gurations with in
reasing 
hainlength has far less an e�e
t on the 
anoni
al averages, espe
ially at low tem-peratures, than the in
reasing number of low energy states with in
reasing ǫs.Fig. 4.30, e.g., shows the probability p(E) = Ω(E) exp(−E/T ) of 
on�gurationswith energy E per monomer at temperatures 
lose to the adsorption tempera-ture for several ǫs. Due to the exponential Boltzmann weight exp(−E/T ), lowenergy 
on�gurations are getting more and more probable at lower tempera-tures. Eventually low energy 
on�gurations obtain a similar probability than
on�gurations with E & −0.25 with a lower probability for energies in between.Sin
e this is 
learly found in Fig. 4.30 for short 
hain lengths, and we knowthat lower energy 
on�gurations are atta
hed to the surfa
e for not to small
ǫs, while 
on�gurations with E & −0.25 are mainly free. Hen
e the adsorptiontransition appears to be �rst-order like for those short 
hains. But one 
an alsosee that with the disappearing peak of Ω(E) also the double peak stru
ture of
p(E) gets less and less pronoun
ed. Thus for longer 
hains, the transition mighteventually be
ome 
ontinuous.For even lower temperatures, the adsorbed 
onformations will gain more andmore weight 
ompared to the free ones. Hen
e for temperatures lower than the



60 CHAPTER 4. RESULTS

(a)

(b)

(
)Figure 4.29: Density of states Ω(E) for (a) N = 13, (b) N = 20 and (
) N = 50 and various
ǫs. The larger the ǫs the lower the deepest possible energy of the polymer. Sin
e only therelative Ω(E) was approximated, the normalisation is some unknown number here. The insetgives the same data on a linear s
ale.
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(
)Figure 4.30: Probability p(E) = Ω(E) exp(−Etot/T ) of a polymer near a substrate to havean energy E in a 
anoni
al ensemble for di�erent ǫs for (a) N = 13, (b) N = 20 and (
)
N = 50. E on the abs
issa is normalised per monomer, while E in the exponent is theabsolute energy. The inset gives the same data on a linear s
ale.



62 CHAPTER 4. RESULTSplotted ones, only the rare low energy 
on�gurations on the substrate are ofthermodynami
 signi�
an
e.One more thing 
an be 
on
luded from Fig. 4.30: The adsorption temperaturein
reases with in
reasing N . This must be due to the de
reasing relative amountof monomers on the surfa
e that makes the free 
ompa
t monomer more stableand the higher degenera
y of free 
onformations 
ompared to desorbed one forlonger 
hains.4.1.5 Comparison with Latti
e ResultsWe would like to 
ompare the results dis
ussed with those obtained from asimilar model on an s
 latti
e [15℄, that was already deployed to motivate theobservation that ǫs ∝ T at the adsorption transition in se
tion 4.1.1.The polymer is modeled as a nongrafted self-avoiding polymer between twoin�nitely extended parallel planar walls, separated by a distan
e zw expressedin latti
e units. One wall is short-ranged attra
tive, while the other one has apurely steri
al in�uen
e to prevent the polymer from es
aping. The energy ofthe system is given by
E (ns, nm) = −ǫL

s ns − ǫmnm, (4.13)where ns is the number of nearest-neighbour monomer-substrate 
onta
ts, nmthe number of nearest-neighbour, but nonadja
ent monomer-monomer 
onta
tsand ǫL
s and ǫm are the respe
tive 
onta
t energy s
ales. We add the �L� to
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Figure 4.31: (a) Solubility-temperaturepseudo-phase diagram of a 179-merfrom [15℄. The 
olour 
odes the spe
i�
heat as a fun
tion of re
ipro
al solubility
s and temperature T � the brighterthe larger its value. Here is ǫLs = 1and ǫm = s. (b) Surfa
e attra
tion-temperature diagram of the same systemas in (a), but with ǫm = 1 and the surfa
eattra
tion varied. (
) The phase diagramof the 20mer of Fig. 4.26 on
e again for
omparison.
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e Attra
tion Strengths 63distinguish the equivalent surfa
e 
onta
t energy s
ales on the latti
e with thosein our model. Thus, the probability for a 
onformation with ns surfa
e and nmmonomer-monomer 
onta
ts at temperature T and given ǫL
s and ǫm is

pT,ǫLs ,ǫm
(ns, nm) =

1

Z
gns,nme(ǫLs ns+ǫmnm)/kBT , (4.14)where Z is the partition sum Z =

∑

ns,nm
gns,nm exp((ǫL

s ns+ǫmnm)/kBT ). Thisallows to 
al
ulate the 
anoni
al expe
tation values 〈O〉
(
T, ǫL

s , ǫm

) for all T , ǫL
sand ǫm for any fun
tion O(ns, nm), if one knows gns,nm via:

〈O〉
(
T, ǫL

s , ǫm

)
=
∑

ns,nm

O (ns, nm) pT,ǫLs ,ǫm
(ns, nm) . (4.15)The applied 
onta
t-density 
hain-growth algorithm in [15℄ whi
h is an im-proved variant of the multi
anoni
al 
hain-growth sampling method [61; 62℄has the advantage that it dire
tly samples the 
onta
t density gns,nm that onlydepends on the geometry of the system, in parti
ular zw and N . This allowsto set the two independent energy s
ales ǫL

s and ǫm after the simulation to
al
ulate the expe
tation values of interest.

Figure 4.32: Representative minimum free-energy examples of 
onformations in the di�erentpseudo-phases of a 179mer [15℄.

In the paper, a simple res
aling wasperformed and a dimensionless re-
ipro
al solubility was introdu
edby 
hoosing
ǫL
s = ǫ0, ǫm = sǫ0 and ǫ0 = 1.(4.16)

s 
ontrols the quality of the im-pli
it solvent surrounding the poly-mer, with a large s 
orrespondingto a bad solvent and vi
e versa.Having an estimate of gns,nm , witheqs. (4.14), (4.15) and (4.16)the spe
i�
 heat 〈C〉 = (
〈
E2
〉
−

〈E〉2)/(kBT 2), kB = 1, was 
al-
ulated for a range of s and T .The proje
tion of 〈C〉 (s, T ) ontothe solubility-temperature plane fora latti
e homopolymer with 179monomers in a 
avity with zw =
200 is shown in Fig. 4.31(a). Alegend to the various pseudophases
an be found in Fig. 4.32.Although the model is similar toour o�-latti
e model, with thisparametrisation it is hard to dire
tly 
ompare the results, sin
e one always has



64 CHAPTER 4. RESULTSto think, whi
h s-T 
ombination in Fig. 4.31(a) 
orresponds to whi
h ǫs-T 
om-bination in Fig. 4.31(
) � where we on
e again show the pseudophase diagramof the 20mer for 
onvenien
e.The res
aling of the latti
e model that 
orresponds to the surfa
e strength vari-ation of our model is
ǫL
s = ǫsǫ0 and ǫm = ǫ0 and ǫ0 = 1. (4.17)Here ǫs is allowed to adopt di�erent values and is the quantity that 
orrespondsto our ǫs just as the s in eq. (4.16) roughly 
orresponds to our s � or morepre
isely to the square root of our s. The estimate for gns,nm 
an be reused to
al
ulate 〈C〉 (ǫs, T ) with this parametrisation over the same range of ǫs and Tthan examined here. The result is depi
ted in Fig. 4.31(b).In order to identify the pseudophases in Fig. 4.31(b) with the help of Fig. 4.31(a)a simple argument 
an be used: If the energy in the parametrisation (4.16) isdenoted by E′ = −ns − snm and the temperature by T ′ and the energy in theparametrisation (4.17) by E = −ǫsns − nm and the temperature by T , in orderto get the same Boltzmann weight in both parametrisations for a 
on�gurationwith ns surfa
e and nm monomer-monomer 
onta
ts, it has to hold:
E′

T ′
=

E

T
⇔ ns + snm

T ′
=

ǫsns + nm

T

⇔ T =
T ′

s
∧ ǫs =

1

s
.

(4.18)With these relations all pseudophases in Fig. 4.31(b) were identi�ed. The tran-sitions between them are lo
ated with a higher pre
ision than in our resultswhi
h is 
learly due to the longer 
hain possible on the latti
e.It is quite reassuring to see, that there are 
ertain similarities betweenFigs. 4.31(b) and (
). For instan
e, for the adsorption transition one �ndsin both models that ǫs ∝ T . The explanation for this noti
eable transition wasalready given. Di�erent however is not only the slope, derived in eq. (4.12)for the latti
e model, that depends on the system's geometry and energy s
alesand we do not want to go into detail here. Also while for the o�-latti
e model,the extrapolation of the transition line seems to go through the origin ǫs = 0and T = 0, there is an o�set observed on the latti
e su
h that the extrapo-lated transition line roughly 
rosses ǫs = 0.4 and T = 0. We spe
ulate thatthis might be due to the intrinsi
 
ubi
 stru
ture of the latti
e polymer thatpossesses �at surfa
es at low temperatures even without a substrate. Unlike foro�-latti
e models, where a 
ompa
t polymer attains a spheri
al shape, su
h a
ubi
 
onformation is likely to do
k to a substrate without having to modifyits 
onformation. Hen
e an important di�eren
e between latti
e and o�-latti
emodels is that while for not too high surfa
e attra
tion strengths for o�-latti
emodels, there is a 
ompetition between most 
ompa
t spheri
al 
onformationsthat do not possess �at regions on the polymer surfa
e and less 
ompa
t 
on-formations with �at regions that allow for more surfa
e 
onta
ts but redu
e thenumber of intrinsi
 
onta
ts, su
h a 
ompetition is missing for s
 latti
e models.
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Figure 4.33: Low ǫs and T -se
tion ofFig. 4.31(b) to get a 
loser look at the AC2subphases.

This also explains, why a transitionlike the one observed for N = 13 bet-ween AC and AC2a, the wetting tran-sition, would never be possible on thelatti
e, sin
e there simply is no spher-i
ally do
ked stable 
onformation AC.On the other hand, AC2 
onforma-tions at low T and for ǫs between theadsorption and the single-double layer-ing transitions 
an be observed in bothmodels. And also for both models, theAG pseudophase was found when rais-ing the temperature.But while for the o�-latti
e model,apart from the wetting transition, there were only the transition from AC2a(semi-spheri
al shaped) into AC2b (double-layer stru
tures) found, on the lat-ti
e a zoo of pseudo-transitions within AC2 
an be seen (Fig. 4.33). It turns out,that these are the predi
ted higher-order layering transitions. With de
reasingsurfa
e attra
tion, layer after layer is added until the number of layers is thesame as in the most 
ompa
t 
onformation. A latti
e polymer has no other
hoi
e than to form those layers at low temperatures. The layering transitionfrom AC1 to AC2 is very sharp for both models. Also the shape of the transi-tion region from 2D adsorbed to 3D adsorbed 
onformations looks very similar.Interestingly, also the ǫs/ǫm-ratio predi
ted for this transition in Ref. [16℄ ineq. (4.6) agrees quite well with the observed one.What 
ould not be 
learly identi�ed on the latti
e is a freezing transition that
orresponds to the one between AC1 and AE1. There is some a
tivity observedat very low T in AC1, but it is hard to draw pre
ise 
on
lusions from it.All the high-temperature pseudophases, DE, DC/DG, AG, AE, ni
ely 
orres-pond to ea
h other in both models, whi
h suggests that their overall positionsare 
orre
tly identi�ed.4.1.6 Low-Energy Con�gurationsUsing the spe
ialised algorithm Energy Lands
ape Paving (ELP) introdu
edin se
tion 3.5, a sear
h for low energy 
on�gurations at 100 di�erent ǫs, ǫs =
0, 0.05, 0.1, . . . , 5, was performed. Here, we did not only 
on
entrate on theenergeti
al favourable 
onformations that 
hange with varying ǫs, but also onthe 
omposition of the energy. It turned out that while ELP works very well for
N = 13, the CPU time in
reased dramati
ally for N = 20, su
h that we onlypresent rigorous results for N = 13 here.In Fig. 4.34, all energy 
ontributions for N = 13 are shown vs. ǫs. One 
anni
ely see that although the total energy E 
hanges smoothly with ǫs, thisdoes not hold true for its subunits. Until ǫ ≈ 0.45, our ELP runs did not �nd
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on�gurations for the 13mer.
ǫs-range 0 − 0.45 0.5 − 1.15 1.2 − 2.8 2.85 − 5DC/AC AC2A AC2b AC1
on�guration

low energy 
on�gurations that are do
ked to the surfa
e, i.e., Esur ≈ 0 in thisregion and only ELJ and Ebend 
ontribute. This 
hanges abruptly at ǫ ≈ 0.45,where Esur in
reases to a �nite value. At the same time the 
ontribution due tothe intrinsi
 Lennard-Jones energy de
reases. This 
learly indi
ates a wettingtransition that is indeed observed when looking at the 
on�gurations displayed inTable 4.1. Ebend also shows some a
tivity here and de
reases. But for the overallbehaviour the bending term hardly plays any role sin
e it is mu
h weaker thanthe 
ompeting surfa
e and intrinsi
 attra
tion that determine the behaviour.For ǫs & 0.5 the surfa
e 
ontribution in
reases linearly with ǫs, whi
h is whatone would expe
t. ELJ stays rather 
onstant until at ǫs ≈ 2.8 it performs ajump down to the value attained in a 
ompa
t single layer 
on�guration. Thisis the double-single layer transition where ELJ exa
tly 
oin
ides with Esur. Foreven higher ǫs, ELJ attains another plateau while Esur again in
reases linearlybut with a higher slope than in the double-layer region.The transition from AC2a to AC2b is not visible in Fig. 4.34. This stru
tural re-ordering from 
ompa
t adsorbed semi-spheri
al 
onformation to the double-layerneither a�e
ts the number of intrinsi
 
onta
ts nor the number of monomersdo
ked to the surfa
e 
onsiderably.
ELJ

Ebend

Esur

E = Esur + Ebend + ELJ

ǫs

E

543210

10-1-2-3-4-5-6-7Figure 4.34: Di�erent energy 
ontributions of the 13mer normalised to the number ofmonomers.
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tion Strengths 674.2 Behaviour at Various Monomer-MonomerAttra
tion StrengthsSome additional work was performed on the thermodynami
 behaviour of thepolymer if the surfa
e attra
tion strength is set 
onstant (ǫs = 1), but thesolvent quality s is varied. Only the 
ase N = 13 was 
onsidered. The hope isto obtain a pseudophase diagram like in Fig. 4.26(a) that 
an be 
ompared withthe one in Fig. 4.31(a). Here, we present �rst results of this still ongoing study.In order to do so, the reweighting in s introdu
ed in se
tion 3.3 was applied.First, multi
anoni
al weights for s = −2, −1.75, . . . , 5 were generated. After-wards, two parallel multi
anoni
al simulations at neighboring s were performedfor every pair of neighboring values of s as des
ribed in se
tion 3.4 and the
anoni
al expe
tation values for various T and s in between were 
al
ulated byreweighting the 
onformations. This approa
h allowed us to measure 
anoni
alexpe
tation values over a wide range of s and having to generate relatively fewmulti
anoni
al weights. In addition, every generated 
on�guration 
an be usedmore often than in single multi
anoni
al simulations where only a reweightingin T is performed.We indeed obtained promising results. However, the longer reweighting pro-
edure after every simulation step slowed the simulations down, su
h that no
(a) (b)Figure 4.35: Ω(E) for s = −2, −1.75, . . . , 0.75 and ǫs = 1. (a) Linear plot. (b) Logarithmi
plot.
(a) (b)Figure 4.36: Ω(E) for s = 0.75, 1, . . . , 5 and ǫs = 1. (a) Linear plot. (b) Logarithmi
 plot.
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on�gurations for the 13mer.
s −2 � 0 0.25 0.5
on�guration
s 0.75 1 1.25 � 5
on�guration

�nal pseudophase diagram 
an be presented here. The statisti
s is not yet goodenough. Thus, for su
h short 
hains, where the generation of new 
onformationsis faster as for longer 
hains and the auto
orrelation time is lower, one does notgain mu
h with the reweighting in s. But it might be
ome a useful te
hniquefor longer 
hains.

Figure 4.37: 〈Rgyr〉 vs. s and T for the 13mer.

Some informations 
an however beextra
ted from the simulations per-formed. In Fig. 4.35 and Fig. 4.36the density of states obtained fromthe multi
anoni
al re
ursion aredisplayed. If one �rst looks atFig. 4.35, one 
an see that for
s = −2 the density of states onlyattains a very weak maximum at
E ≈ 1.5. The lowest energy statefound is at E ≈ −1.188. If s in-
reases until s = 0.25 the maximumgets more pronoun
ed and shiftedto lower energies. The lowest en-ergy found, however de
reases onlyslightly. This 
hanges for s = 0.5. Here the maximum in
reases further butthe di�eren
e of the lowest energy found for s = 0.25 and s = 0.5 is 
onsid-erably higher than it was for smaller s. For higher s the di�eren
e gets evenmore pronoun
ed. To understand this, it helps to take a look at the low energy
onformations found for di�erent s that are presented in Table 4.2. For s 6 0,the polymer prefers to be in a stret
hed 
onformation, like a rod. This is whatone expe
ts in this regime where individual monomers repel ea
h other. Fromthe 
anoni
al expe
tation values of, e.g., the radius of gyration, we know thatthe polymer stays rather stret
hed also for higher temperatures and there areindi
ations for an adsorption transition somewhere between T = 0 and T = 1.What is responsible for the mu
h lower energies found for s = 0.25 and s = 0.5 isa 
ollapse of the polymer. This is illustrated in Table 4.2, where low-energy 
on-
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tion Strengths 69formations are displayed and around those values of s, one 
an see the polymerto 
ollapse whi
h 
orresponds to a wetting transition on the surfa
e. As soonas the polymer is 
ollapsed and monomer-monomer 
onta
ts are energeti
allyfavourable, an in
reasing s yields a mu
h lower energy of 
ompa
t 
onforma-tions. As a 
onsequen
e, the average energy goes down rapidly. This 
an also beseen in the density of states in Fig. 4.36. Here for in
reasing s the energy rangeof 
ompa
t 
onformations gets mu
h broader whi
h also implies a redu
tion ofthe peak height.Figure 4.37 shows the proje
tion of the radius of gyration onto the s-T -plane.Every 
olour stripe represents one run of two parallel multi
anoni
al simulations.Although the �u
tuations espe
ially at low temperatures are still rather high,one 
an reliably read o� that the s-T -plane is split into a region of 
ompa
t anda region of swollen 
onformations.What we were not able to 
learly identify is however the exa
t position of theadsorption transition. Espe
ially for high s, the polymer only moves 
lose to thesurfa
e without giving up its 
ompa
t 
onformation. Hen
e an adsorption onlymeans a small redu
tion in energy 
ompared the 
ontribution of the intrinsi

onta
ts. On the other hand it redu
es the entropy. Thus, an adsorption in thisregion is only expe
ted to happen at very low temperatures. This is di�erenton the latti
e (see Fig. 4.31), where a do
king to the substrate is mu
h morefavourable in bad solvents. For our model we found in several simulations 
on-taining about 107 − 108 sweeps no adsorption at all. In order to gain deeperinsights into the adsorption behaviour of short polymers with this model, furtherand longer simulations are ne
essary. This is future work.
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5 Summary & OutlookThe main obje
tive of this work was to 
onstru
t a pseudophase diagram of 
on-formational thermodynami
 phases of a single semi-�exible homopolymer nearan attra
tive substrate in dependen
e of the external parameters surfa
e at-tra
tion strength and temperature. The semi�exible homopolymer is modeledby a 
oarse-grained mesos
opi
 o�-latti
e model. In that model, a polymeris 
onsidered as a 
hain of monomers with 
ovalent bonds of �xed length, aLennard-Jones intera
tion potential for 
onta
ts between monomers being non-adja
ent along the 
hain, a weak bending sti�ness and a surfa
e attra
tion term.The surfa
e attra
tion is due to the van der Waals for
es between the polymerand the substrate and is modeled by a Lennard-Jones-like potential.The goal to 
onstru
t a pseudophase diagram was indeed a
hieved for polymersof 
hain lengths N = 13 and N = 20. For these 
hain lengths, the 
anoni
alexpe
tation values of several observables were measured over a broad range ofsurfa
e attra
tion strengths. and temperature using multi
anoni
al simulations.Namely, the observables designed to unravel the equilibrium behaviour of su
h asystem are the energy, the radius of gyration as well as its 
omponents paralleland perpendi
ular to the substrate, the distan
e of the 
entre-of-mass of thepolymer to the surfa
e, the mean number of monomer-surfa
e 
onta
ts, the meannumber of intrinsi
 monomer-monomer 
onta
ts and the thermal �u
tuations ofall those quantities.The pseudophase diagram was 
onstru
ted using all statisti
al informationsabout energeti
 and stru
tural �u
tuations. Although the 
omputational ex-pense to explore su
h a broad parameter range a

urately restri
ted us to rathershort 
hains, we were still able to identify several 
onformational pseudophasesand pseudophase transitions. These are:
• Crystalline stru
tures below the freezing transition. With in
reasing sur-fa
e attra
tion strength we identi�ed maximally 
ompa
t 
onformationsfreely �oating in solution (DC) or atta
hed to the substrate (AC), semi-spheri
al 
ompa
t 
onformations (AC2a) that are distorted by the surfa
ebut show no layers, double-layer 
onformation (AC2b) and single-layer
onformations (AC1).
• Adsorbed 
onformations above the freezing transition. Here three 
onfor-mational pseudophases were distinguished: globular, rather unstru
turedthree-dimensional 
onformations (AG), expanded �at 
onformations onthe substrate (AE1) and three-dimensional expanded adsorbed 
onforma-tions (AE2).
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• Desorbed 
onformations. Compa
t 
onformations (DC) are separated bythe freezing transition from globular 
onformations (DG). At even highertemperatures above the well known θ-transition random-
oil 
onforma-tions were found (DE).The sharpest pseudophase transition identi�ed is the layering transition betweensingle- and double-layer-stru
tures. The surfa
e attra
tion strength at whi
hthis transition is observed 
oin
ides quite well with the one estimated for a hexa-gonal latti
e � the latti
e type adopted for single- and double-layer stru
turesbelow the freezing transition. Higher-layer 
onformations were not found forthese short 
hains. In a re
ent study on an s
 latti
e, for weak surfa
e attra
tionand positive self-attra
tion, layering transitions were observed until a maximally
ompa
t 
ubi
 stru
ture is rea
hed. This is di�erent for our o�-latti
e model.Here the maximally 
ompa
t 
onformation is spheri
al and has no �at areaon its surfa
e that 
an easily form many monomer-substrate 
onta
ts withoutthe need to deform. Hen
e the Lennard-Jones energy for monomer-monomer
onta
ts 
ompetes with the monomer-substrate 
onta
t energy. This indu
esa wetting transition. For N = 13 we 
learly identi�ed this wetting transition,while for N = 20 the transition appears to be rather 
ontinuous. This di�eren
emight be due to the high symmetry of the most 
ompa
t 
onformation of the13mer that is an i
osahedron. Hen
e it is not possible to predi
t the wettingbehaviour of longer 
hains from just those two investigated 
hain lengths butmore simulations at di�erent 
hain lengths are needed.At the adsorption transition the substrate adhesion strengh was found to beproportional to temperature. This is expe
ted sin
e at a higher temperature thestronger Brownian �u
tuation is more likely to over
ome the surfa
e attra
tion.But also a latti
e argument that minimises the free energy is given and indeedthe relation was also veri�ed on the latti
e.For a single polymer in bulk solution, it is known that three phases exist, namelya swollen globule, a 
ollapsed �uid globule and a solid 
rystalline state, thatare separated by the θ- and the freezing transition, respe
tively. We foundthose phases for low surfa
e attra
tion and also identi�ed their 
orrespondingadsorbed pseudophases. So, the existen
e of an adsorbed globule (AG) wasveri�ed. The θ-transition for adsorbed polymers between AG and AE2 shiftsto lower temperatures 
ompared to the free polymer until it disappears at thesingle-double layer transition. The freezing transition always stays at about thesame low temperature. Only the exa
t stru
ture of the 
rystalline state 
hangeswith ǫs.Due to the �nite length of the investigated polymers, di�erent observables indi-
ate transitions at slightly di�erent positions. This yields an un
ertainty in thepseudophase transition regions indi
ated in the pseudophase diagrams, whi
hshould disappear in the thermodynami
s limit. For N = 20 it is not noti
eablysmaller than for N = 13 whi
h might be due to the higher possible symmetry ofthe 13mer, but this needs further investigation. From a short test of the depen-den
e of the 
anoni
al expe
tations values on the size on the simulation box,



73we also know that they always depend on the distan
e to the introdu
ed steri
wall. This dependen
e is however very weak for most of the observables if thesize of box is 
hosen to be 
onsiderably larger than the polymer extension su
hthat the 
on
lusions drawn are independent on the exa
t box size 
hosen. Onlythe average distan
e of the polymer to the surfa
e shows a stronger dependen
e.This however 
annot be avoided sin
e without it, the 
han
e of the polymer to�nd the substrate and stay in its vi
inity is negligible.The density of states for N = 13, N = 20 and N = 50 for di�erent substrateadhesion strengths reveals a pronoun
ed peak for N = 13 and N = 20. The
on�gurations that 
orrespond to the peak are highly degenerate random-
oil
on�gurations. It vanishes for in
reasing 
hain length while the number ofhigher-energy states in
reases. A

ordingly, the 
anoni
al probability p(E) atthe adsorption transition exhibits at double-peaked stru
ture for small N with aminimum between both peaks that seems to disappear for longer 
hains. Hen
ethe transition seems to 
hange from �rst-order like to 
ontinuous for in
reasing
hain length.Additional studies were performed for �xed positive surfa
e attra
tion strengthand varying solvent quality. The applied parallel multi
anoni
al simulationwith a reweighting in temperature and solvent quality works in prin
iple, butthe reweighting over a wide range of parameters after every sweep slowed thesimulation 
onsiderably down su
h that the statisti
s is not yet good enough.However this approa
h might be very valuable if one only reweights to a smallnumber of parameters at a time or if the 
hains are longer su
h that the genera-tion of new 
on�gurations are more expensive 
ompared to the reweighting. Wewere still able to draw some 
on
lusions out of those simulations. So a wettingtransition indu
ed by in
reasing solvent quality and a 
ollapse transition indu
edby de
reasing solvent quality were identi�ed and lo
ated. The question if thepolymer adsorbs for very high intrinsi
 monomer-monomer attra
tion strengthsand the determination of the adsorption temperature must be left open here forfuture investigations.
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