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Overview

This diploma thesis deals with the canonical equilibrium behaviour of a
semiflexible homopolymer near an attractive substrate within the frame of a
mesoscopic coarse-grained model.

Its outline is as follows:

In chapter [, the problem of polymers near surfaces is motivated. Some es-
tablished knowledge about the bulk behaviour of self-avoiding self-interacting
polymers in solution, in particular the f-transition, is shortly reviewed. And
some reasons to use a mesoscopic coarse-grained model rather than an all-atom
approach are given.

Chapter B introduces the studied model including intrinsic polymer interac-
tions, surface interaction as well as the applied boundary conditions. Also the
measured observables are motivated and introduced.

Chapter Bl deals with the Monte Carlo techniques applied in this thesis. After
a short overview of the Monte Carlo method in general and its applications in
statistical physics in particular, the concept of Markov processes is explained
and the different updates used to generate new configurations are explained in
detail. The main technique employed here is a generalised ensemble method:
The multicanonical method. It is introduced as well as the multicanonical recur-
sion that is used to generate the necessary weights. The concept of reweighting
generated conformations in order to estimate canonical expectation values for
different external parameters will also be outlined and explicitly described for
T, s and €5. Additionally the idea of “Replica Exchange Monte Carlo”, that was
used for some additional studies, and of the specially biased algorithm “Energy
Landscape Paving” to find global energy minima is given. The chapter is con-
cluded with some words on the applied Jackknife analysis for error estimation.

Chapter H finally presents the results obtained. Here, the main focus is on the
behaviour of a polymer near an attractive substrate (section EIl). The canoni-
cal expectation values over a wide range of surface attraction and temperature
are presented together with the density of states and low energy conformations.
All gained informations are summarised in a pseudophase diagram and com-
pared with lattice results. Similarities and differences are discussed. In section
B2 some additional results on the behaviour with varying solvent quality is
presented.

Last but not least, the summary chapter Bl compiles the main facts in a short
form.






1 Introduction

In this chapter the problem of polymers near or at substrates is motivated and
some reasons to use a mesoscopic coarse-grained modelling approach are given.

1.1 Motivation

Polymers near surfaces is a fascinating field for both physicists and chemists. It
provides a rewarding playground for basic and applied research. With the ad-
vent of new sophisticated experimental techniques with its enormous potential
in polymer and surface research the interest in the hybrid interface of organic
and inorganic matter has increased. Such techniques at the nanometer scale
are, e.g., atomic force microscopy (AFM), where it is possible to measure the
contour length and the end-to-end distance of individual polymers [1] or to
quantitatively investigate the peptide adhesion on semiconductor surfaces [2].
Or optical tweezers that are an experimental tool with an extraordinary reso-
lution in positioning (+1nm) a micron-sized colloid and in the measurement of
forces (£50fN) acting on it [3]. It can be used to probe the behaviour of single
polymer molecules such as DNA, titin or myosin.

Applications for adsorption phenomena in polymeric solutions can be found in
such different fields as lubrication, adhesion and surface protection, steric stabili-
sation of colloid particles [4] as well as biological processes of membrane-polymer
interaction. To understand the latter is important for the reconstruction of cell
processes. An understanding of interfaces is also a prerequisite for making micro-
or nanostructures because their behaviour is dominated by surface effects rather
than gravitation or inertia.

Despite much effort, the problem of a dilute polymer solution of variable solvent
quality exposed to an adsorbing substrate is not fully understood. In the case of
a long flexible single chain in a good solvent, and no other interactions present
than the excluded volume effect, polymers are modelled by self-avoiding walks
(SAWs) on a regular lattice. De Gennes showed, that their scaling properties in
the limit of an infinite number of steps N may be derived from a formal n — 0
limit of the O(n) vector model at its critical point [B]. Also the Ising model
(n = 1), the XY model (n = 2) and the Heisenberg model (n = 3) belong to
this family. These models that do not intrinsically contain any boundary condi-
tions, as is, e.g.,introduced by a substrate, have been investigated intensively by
various different methods including mean field approaches, perturbation theory,
transfer-matrix methods but also by exact enumerations and Monte Carlo simu-
lations. So it is, e.g., well established that the radius of gyration of SAWs scales
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with N as (R?) ~ N where v ~ 0.5874(2) for N — oo or that in a solvent the
chain exhibits a transition from a compact globule to an expanded state when
the temperature is increased. This transition is called collapse, coil-globule or
0-transition and is induced by an effective attractive monomer-monomer inter-
action that is mainly due to van der Waals forces.

An illustrative lattice argument on what happens at this transition can be found
in the book of M. Doi [6]. First, for an ideal chain on a lattice that has no
intrinsic interaction whatsoever and can be mapped onto a random walk, the
radius of gyration has to be derived for comparison. It is defined as

1L /72 = \2 _ 1N L
<R§yr>:N;<<Rn_Rcm) > with Rcm:N;Rn, (11)

which is equivalent to

9 1 N N o LN 2
<ngr> = W ngl mgl <(Rn — Rm) >
1 N N m m . .
o anz:l mz::1 i:;Jrl k:zn:ﬂ (7 )
Ly oy ¥ @
B 2N2 n=1m=11i=n+1 7’1
1 N N 2
B 2N2 nzl mzz:l |n ; m|
N>1 b N N )
& gyzo dnJy dmln—m|==Nb
Here ﬁn denote positions of monomers
d 7, = R,,—R,,_1 are bond vectors such
0/0]0/0]0[0)0/0]0]0]0)C) Ikl s Tl .
Q00000000000 that Fm = Rn = > i, 7i and it was
OlOOIOIOIOI0IOI0O 6 used that there are no correlations be-
0l@O0 0000 >eoe O tween the directions of different bond vec-
@ OO0 [@) tors: (7} -7%) = <7:;2>52k = b%0;,, where
oeel I I ee O b is the bond length. Thus the typical
OO0 0®) O polymer size of an ideal chain scales as
Q0000 O@®O®O  (Rgy) ~ NVb, with v = 1/2.
0/0/0)0)®) 00)®)
OO0 000 For real polymers two effects have to
OlOI0OOIOI0OOICI0O be taken into account: the excluded vol-
OO0DIOICIODICIOIOIO ume effect and the solvent effect. The
ideal chain model permits widely sepa-
Figure 1.1: Lattice model of the ex- rated segment along the chain to occupy

cluded volume chain. The solid circles are
the segments of the polymer and the hol-
low circles are the solvent molecules. Pic-
ture adapted from [6].

the same region in space. This physical
impossibility is accounted for in an ex-
cluded volume chain (Fig. [CT)) that cor-
responds to a self-avoiding walk by im-
posing the condition that two segments
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cannot occupy the same lattice site. It is intuitively clear, that this condition
shifts the size distribution to higher values since it is mainly the dense confor-
mations that are forbidden now. To quantify this effect, one considers W (R)dR,
the total number of excluded chains with the Nth step a distance between R
and R+ dR away from the origin. W(R) has to be proportional to the distribu-
tion function of R since all possible paths have the same weight. One estimates
it by considering Wy(R)dR for an ideal chain and multiplies it with the prob-
ability that an ideal chain configuration is also allowed under excluded volume
condition p(R) to get W(R) = p(R)Wy(R). Since the distribution function for
long ideal chains is known to be Gaussian and the overall number of ideal chains
with N steps is 2V, where z is the coordination number, it holds

. 3 \*? 3R?
_ . N 2 _ N 2 —
Wy (R) =2z"47R*P(R,N) = 2z 47R (277Nb2> exp ( SN | (1.2)

p(R) can be estimated under the assumption that the polymer segments are
evenly distributed in a region of volume R3. If the volume of one lattice element
is denoted as v, the number of lattice sites in R? is R3/v.. Subsequently, if one
places N segments on the sites the probability that one particular segment does
not overlap with any other one is given by 1 —v./R3. The probability that none
of the N(N — 1)/2 possible overlaps occurs is now

2
p(R) = (1= ve/ R = exp BN (N =1)In (1~ %)] e <N VC) :

which together with eq. (CZ) gives

(1.4)

W (R) = p(R)Wo(R) o R?exp (— 31 N2”°‘> .

INbB2 2R3

Being interested in the behaviour of the radius of gyration and knowing that
W (R) is proportional to the probability that the end-to-end distance of the
excluded volume chain is R, one can use this expression to see how the maxima
of W(R) and Wy(R) relate to each other. Wy(R) has its maximum at R} =
(2Nb%/3)Y/2. Denoting the maximum of W(R) by R* and differentiating the
logarithm of eq. () one gets (R*/RY)® — (R*/R%)® = (9v6v.)/(166°)V/N,
which yields for N > 1

1/5
N1/2
R* ~ R} (%) x N33, (1.5)

This confirms the expectation that an excluded volume chain extends faster
with IV than an ideal chain. Extensive simulations found (Rgy,) ~ N"b, with
v = 0.588.., which is close to the estimated value.

The presence of a solvent has a considerable influence on the configuration of
the polymer that has not been taken into account yet. If the polymer has a high
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affinity with the solvent, the polymer is easily dissolved and in such a good sol-
vent polymer conformations are extended random coils. On the other hand, in a
bad solvent compact conformations are favoured. This solvent effect is modeled
with a parameter s in this thesis, but is mainly considered to be constant. In
the lattice model one can account for this effect by introducing a solvent that
consists of single particles occupying all lattice sites that are not occupied by the
polymers. Neighboring sites are assigned the energies —¢,, for two polymer seg-
ments, —egs for two solvent molecules and —e,, for a solvent molecule-polymer
segment interaction. Since these interactions are van der Waals energies, €,
€ss and €5 are positive. This leads to an overall system energy for any config-
uration with N, polymer-polymer contacts, Ngs solvent-solvent contacts and
N,s polymer-solvent contacts of

E = —Nppepp — Nos€ss — Nps€ps. (1.6)

Since this changes the probability of an excluded volume chain in solution to
have size R to

P(R) «c W(R)exp <i;§)> , (1.7)

one is interested in the average energy E(R) of a polymer of size R. Assuming
again that all polymer segments are uniformly distributed in a volume R? and
denoting the probability that a lattice site in this region is occupied by a polymer
segment by ¢ = Nv./R3 one can estimate the average number of contacts to
be Ny =~ zN¢/2, Ngs =~ NO — [2N¢/2 + 2N (1 — ¢)] and Nps ~ zN(1 — )
respectively, where N2, is the number of neighboring solvent pairs if there would
be no polymer in the system. Substituting this into eq. (CH) gives

1
E(R) ~ —§ZN¢(€pp + €55 — 2€ps) + terms independent of ¢
1.8)
N2 (
- _Z ngc A€ + terms independent of R,
where Ae = %(epp + €55) — €ps is the decrease in energy when two polymer

segments touch. Hence for Ae > 0 compact conformations are energetically
favourable and costly for Ae < 0. Plugging eq. (L)) into eq. (L) finally yields

(1.9)

3R? N2y, zAe
P 2exp [ — _ 2l o .
(R) o R exP( N 2\ kBT)>

Using the same trick as before, one finds that eq. (L3) is valid again if one

substitutes v, by v = v.(1 — kiZTAe), such that the scaling is the same.

Comparing eq. ([CY) with eq. (C2), one can see now that the polymer behaves
like an ideal polymer if ¥ = 0. The temperature at which this is the case is
called the f-temperature given by

g 28 (1.10)
kg
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Especially for large IV, close to the #-temperature only a small change in tem-
perature leads to a big change in the size of the polymer, e.g., below the 6-
temperature, the size is much smaller than that of an ideal chain. In parti-
cular, an interacting self-avoiding polymer below the f-temperature scales as
(Rgyr) ~ N3,

However, the behaviour of the system is strongly affected by the presence of an
attractive surface. In its vicinity the monomer-monomer attraction responsible
for the collapsed state below the 6-transition and the surface-monomer attrac-
tion responsible for the adsorption will compete. This competition gives rise to
to a variety of interesting new conformations. The polymer will adsorb to the
surface, if the temperature is lowered, but at high temperatures only a finite
number of monomers lie on the surface, even if the polymer is grafted to it. This
is due to the lower entropy of conformations spread out on the surface compared
to those floating freely in solution.

Numerous detailed studies have been performed to elucidate the conformational
behaviour close to and on a substrate for homo- as well as for heteropolymers.
Compared to experiments computer simulations have the advantage that com-
binations of parameters can be varied at wish. Also, in many experiments it is
not completely clear, if the system is entirely thermodynamically equilibrated
or if, e.g., polymers that were initially in solution get irreversibly adsorbed at
the substrate. The structure found can differ considerably [7]. In simulations
these conditions can be adjusted at will.

Theoretical studies have, e.g., been performed analytically with scaling the-
ory [8; ], mean-field density functional theory [I0] and series expansion [L1};
[T2] and numerically with off-lattice models such as a bead-spring model of a
single polymer chain grafted to a weakly attractive surface [I3], multiscale mod-
elling [T4], Monte Carlo studies of self-avoiding walks [8]; [15) [16) [T7; [18; [T9
[20], molecular dynamics combined with a stretching of an adsorbed homopoly-
mer [Z2I] or exact enumeration [22]. Also adsorption-desorption dynamics were
investigated with molecular dynamics of coarse-grained models [23].

1.2 Coarse-graining

The noticeable frequency with which coarse-grained models, that include lat-
tice models, are applied has good reasons. First, one has to understand the
complexity of the problem posed by naturally occurring macromolecules with
up to ten thousands of atoms. Although the physical interactions present are
in principle known, the long-range overlap of many-body orbitals, the screening
by the positively charged cores, the interaction with the solvent etc. make a
precise prediction of the behaviour of the system based on ab initio quantum-
mechanical calculations practically impossible. For the related problem of pro-
tein folding, classical models with many effective parameters (“force fields”) have
been developed in the past decades to study folding dynamics or to predict na-
tive structures in computer simulations. So, e.g. the SMMP (Simple Molecular
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Mechanics for Proteins) [24] implementation of the ECEPP /3 (Empirical Con-
formational Energies for Proteins and Polypeptides) force field has seven differ-
ent parametrisations of hydrogen, depending on the chemical group it belongs
to. In a different approach one starts with a simple ansatz for the interaction
potential and calibrates against pertaining data to folding properties of whole
chains. This is implemented in the package PROFASI (PROtein Folding and
Aggregation SImulator) [25].

But even those simplified models are still hard to manage even by sophisticated
algorithms and powerful capability computers. And if one does, it turned out
that the folding behaviour sensitively depends on the choice of the force field
parameters, such that predictions of different models do not frequently coincide.
Despite the exciting development and the successes in this field and its need if
one wants to look closer at detailed structures, for our purposes it is sufficient
to work on even coarser grains.

A linear polymer is a chain of molecular subunits called monomers. These can
be identical (homopolymer) or vary along the polymer (heteropolymer). Here,
we are only interested in general properties of semiflexible homopolymers and
their adsorption properties on a substrate. General properties are those that
are independent of the detailed chemical structure of the polymer. Hence also
the model applied can be reduced to the basic properties of the system and the
polymer is regarded as a chain of point-like effective monomers. This parametric
reduction is called coarse-graining |26}, 27]. In particular, in a coarse-grained
model, the number of monomers and the degree of polymerisation are not nec-
essarily the same thing. In fact, several chain segments are merged to form one
effective monomer (Fig.[[C2). Hence the coarse-grained model has fewer degrees
of freedom than those actually present in the system and the relevant length
scales are increased. To work with a coarse-grained model has thus two advan-
tages: Unnecessary details are disregarded and the computational analysis is
much faster.

Suitable potentials are needed that
give rise to the self-avoidance of
the polymer, i.e. different parts of
the chain should not be allowed to
overlap, and reflect the interaction
between different monomers. Also
a bending-stiffness or torsional po-
tential could be taken into account.

Figure 1.2: Transition from the chemical poly-
The solvent is implicitly modeled mer to the coarse-grained model.

by the interaction between the

monomers, which again decreases the degrees of freedom and increases the
speed with which the simulation can be done. In real polymer solutions with
a good solvent, the monomers and the solvent molecules attract each other.
Consequently, solvent molecules accumulate between monomers and push the
monomers apart. This can be modeled with a repulsive interaction between the
monomers. In a bad solvent, it is just the other way around: repulsive interac-
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tion between monomers and solvent molecules but also entropic forces act like
an effective attractive potential between the monomers and the polymer shrinks
to form a globular conformation. There are several models that satisfy these
conditions. The one applied here is described in more detail in the next chapter.
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INTRODUCTION




2 The Model

In this chapter, a complete description of the studied model including intrin-
sic polymer interactions, surface interaction as well as the applied boundary
conditions will be given. Also the measured observables will be motivated and
introduced.

2.1 Definition of the Polymer

The model applied here is a coarse-grained model of a semiflexible homopolymer.
It is adapted from the AB model [29; B0], an off-lattice generalisation of the HP
model [31], where the monomers are constrained to the grid points of a simple
cubic lattice and the polymer is modeled by a self-avoiding walk. But while AB
and HP model are heteropolymer models with hydrophobic (A, H) and polar
(B, P) monomers, we restrict ourselves to homopolymers, such that only one
kind of monomers is taken into account that builds up the whole polymer by
mere repetition of always the same unit.

Our model is a coarse-grained model, that is not constrained to a lattice. The
associated additional computational cost is accepted in order to get rid of un-
desired effects of the underlying lattice symmetries of lattice models. As on the
lattice, the distance between adjacent monomers is fixed and set to unity in
good relation to the monomer-monomer-potential, but the angles are now free
to rotate. The energy function has three terms:

Etotal = Ebend + ELJ + Esur, (21)

the bending energy Fpeng, a Lennard-Jones interaction energy Er,y and a surface
attraction energy Fg,. A torsional potential is not considered. A sketch of a

Figure 2.1: A segment of the semiflexible polymer model. The distance between two adjacent
monomers is fixed and set to unity. The bonding angle at the (k + 1)th monomer is denoted
by 9% and the vector between the kth and (k + 2)th monomer by Tit2,kx = Tht2 — Tk-
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polymer segment of this model without the surface can be seen in Fig. ZT1 If
the position vector of the kth monomer, kK = 1,..., N, is denoted by 7%, the
condition of fixed monomer-monomer distance reads as

Pl — 7 =1  V k=1,...,N—1. (2.2)

A polymer with N monomers has N — 1 bonds between neighboring monomers
and N — 2 bending angles ¥, k= 1,..., N — 2, that are defined by

cos (V) = (Th1 — k) + (Frao — Tra1) - (2.3)
05
ol T e
04
5
/:: 10 § 0.3
= 2
5 si -2 — 3
15 N § 02
§ =42 s
s=+45
20 0.1
25 0
0 0.5 1 15 2 25 3 0 o -
Tij Vg

Figure 2.2: Lennard-Jones potential in Figure 2.3: Bending energy for one bond-
different solutions. For s > 0 the poten- ing angle. It has its minimum at ¥, = 0
tial has a minimum at rmin = ¥/2/s where (straight bond) and its maximum at ¥, =7
the attraction between two monomers is (maximal bending).

FrLi("min) = —s2. For s < 0 the potential is

purely repulsive.

With those definitions both intrinsic energy terms can be defined. The Lennard-
Jones term that is always repulsive at short ranges is given by

N—2 N 1 1
ELJ:4Z Z (Tﬁ_sr_(}) (24)
i=1 j=i+2 \ % ij

with s being a constant inverse solubility parameter. For s < 0 the monomers
repel each other which leads to spread out conformations as can be found in
good solvents (Fig. ZZ). On the other hand for s > 0 the monomers attract
each other which for high enough attraction leads to globular conformations like
in a bad solvent. The minimum of the Lennard-Jones potential between two
MONOMErs Iy = {’/% changes with s and equals the distance of neighboring
monomers along the chain at s = 2. The depth of the potential goes with s
as Frj(rmm) = —s?. Hence, if one only wants to model attractive monomer-
monomer interactions, it might be just as reasonable to fix s and vary the whole
Lennard-Jones interaction FErj linearly. We mainly choose s = 1 to model
hydrophobic peptides, but also start to investigate the behaviour for s € [—2, 5]
for a short chain. The bending stiffness is defined as (Fig. Z3))

1N—2

Ebend = Z Z (1 — COS (ﬂk)) . (2.5)
k=1
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The angle Jj is in the interval [0, 7) and the bending stiffness can be viewed as
a penalty introduced for bonds that deviate from the straight conformation.

2.2 The Surface Potential

To define a suitable attractive surface potential, we first assume that the surface
is made up of a single type of lattice planes, that are arranged in layers to form
a crystal. The upper layer is in contact with the polymer and forms a regular
lattice where next neighbours of an arbitrary atom with distance [; and Iy lie
in the direction of the unit vectors d; and ds, respectively. Thus, the surface
lattice can be completely described by the lattice vectors @; and dy. Now, the
interaction of a single monomer with the crystal V (§,z) can be expressed in
terms of a two-dimensional vector §, that gives the position of the monomer in
an zy-plane parallel to the surface, and the z-distance to the wall. Due to the
periodic structure of the surface, this potential is a periodic function

V(5 2z) =V (§+ 4] + laaz, 2) , (2.6)

with integer [ and lo. The natural way of representing a periodic function such
as eq. (ZH) is a Fourier series:

V(52)=Vo(2)+ > Vy(2) ™ (2.7)
q#0

Here V{(z) is a mean over the whole surface and the sum is over all two-
dimensional reciprocal lattice vectors ¢ = 27 (nlgl + nggg) with natural num-
bers ni, ng. ai, as, 51 and 52 are defined such that a7 - 51 =1=a5- 52 and
dj-by = 0 = a3 -by holds. If the sum is neglected and one only works with Vj (2),

the wall is modeled as completely smooth and formless in lateral direction. This
is what we are going to employ.

We assume that the interaction between polymer units and the substrate is of
van der Waals type, modeled by the usual Lennard-Jones 12-6 expression

() =ec| (7) = (9)]- (2.5)

In order to simplify the problem on mesoscopic scales, we integrate this potential
over the plane parallel to the surface, since the potential only depends on the
distance z to the surface. This is best done using cylindrical coordinates for
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=0
2=z
attractive substrate
!
Z— o0

Figure 2.4: Graphical representation of the integration over all surface layers.

which d37 = d?5dz = pdpdpdz and r = /p? + 22 holds:

o . 12 o 6
[ vooes = e [ | ‘“”[(ﬁ) (ﬁ)]

12 6
— Smeso? Ulo/oodp __r _04/00(1/) __r
0 VP2 + 22 0 VP2 + 22

1/(10210) 1/(424)

~ 2o 2(2)"- (2)]. (2.9

Multiplying this with the density pgu.t of the atoms in the area gives the inter-
action energy of a monomer with an area a distance z away:

2 so0\10 o\4
VLJ,plane (z) = 27T€Spsurf0-2 |:g (;) - (;) :| . (2.10)

To model a compact wall, that consists not only of a single layer of atoms,
but of plenty of them reaching from distance z to oo (Fig. Z4l), an additional
integration over the z-component has to be performed:

Vows (2) = /:0 VL3 plane (2') 42’
ot [0 (5] 0
(

2 o\ 1
= 27respsurf02 [4—50’ (—) —30’
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This finally is the potential we use in our simulations of hybrid systems. It is
similar to the one derived in Ref. [32]. The underbraced constant factor as well
as o is set to unity in all the simulations. Different surfaces are modeled by
varying 5. The functional dependence is represented in Fig. 28

All energy contributions of our homopolymer near an attractive substrate sum
up to give the total energy:

N—-2 N 1 1 1N72 N 92 1 9 1 3
E = 4 Z <r12 r6_> +ZZ(1—cosa9k)+eéz [E (Z—) - (Z—) ]
=1 j=i+1 ) 9 k=1 i=1
(2.12)
2
g =1 —r
€ =2
1t € =3 ——
eszf_L _
ol es =5
-1t i
=
£ o2t 1
o~
31 i
4 L i
51 i
0 1 I2 3 4 5

z

Figure 2.5: The surface potential II) plotted for various values of €;. The minimum is
attained at z = (2/5)"/® ~ 0.858.

2.3 Definition of Measured Observables

In order to extract as many information as possible about the canonical equilib-
rium behaviour out of the simulations, suitable measurable quantities have to be
defined. Additionally to these quantities, it is very instructive to also consider
their fluctuations.

The canonical expectation value of any quantity O is given by

Ep
O,e” T
T) = Lyem On _ (2.13)

_Eu
ZuEM e T

and its fluctuation is obtained from the temperature derivative of the expecta-
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tion value:
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(2.14)

Considered are the following energetical and structural quantities and their fluc-
tuations.

Energy: The total energy F given in eq. (ZI2) is measured over the whole
parameter regime of interest. The heat capacity is defined as fluctuation of the
energy

d(E)
= 2.1
c=U (215)
which is according to eq. ([ZI4]) equivalent with:
E?) - (E)?
RGP oo

Radius of Gyration: The radius of gyration is a measure used to describe the
extension of a polymer chain. It is defined as the mean distance of a monomer
from the centre-of-mass of the polymer:

, LN B N . - LN
Rlo=~> <(Rn - Rcm> > with Fen =+ B (2.17)
n=1 n=1

This representation is completely equivalent to

L NN o
Rl = 55 Zl Zl <(Rn ~ ) > , (2.18)

as can be proven quite easily. What makes the radius of gyration an interesting
property is that it is related to the pair correlation function

1 X I,
92> (6 (F= (Fn—Ea))) (2.19)
n=1m=1

of polymer segments and can be measured experimentally with static light scat-
tering as well as with small angle neutron- and X-ray scattering which allows
to check theoretical predictions against experiments [6; 33, 34].

Since the substrate introduces a structural anisotropy into the system, it is not
only worthwhile to look at the overall compactness of the polymer expressed
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by (Rgyr), but also to study the expected different behaviour of its components
parallel and perpendicular to the surface:

gyr I = 2N2 Z Z < — Tm) 2+ (Yn — ?/m)2> (2.20)

n=1m=1

and

gyrl N2 Z Z < - Zm > . (2.21)

n=1m=1

Here R, = (Zn, Yn, 2n) and R, = (T, Ym, 2m) such that ngr = ngr I +ngr Ir

What we determined is (Rgyr) <ngr7||> and (Rgy 1), for which (ngr>2 #
(Ryge )° + (Rgyr,1)%. Add1t1onally, the thermal fluctuations d(Rgy.) /dT,

d <ngr7||> /dT and d (Rgyy, ) /dT were measured using eq. (ZT4)).

We also estimated the end-to-end distance R.. = Ry — R; but gained no addi-
tional information from it.

Distance of the Centre-of-Mass of the Polymer to the Surface: This quan-
tity is useful since it provides clear evidence if the polymer is on average freely
moving in the box or very close to the surface. Apart from that it is very easily
implemented, since one only needs to average over the z-components that one
needs in the simulation anyway:

1 N
=¥ >z (2.22)
=1

Again, (zem) and its thermal fluctuations d (Rey,) /dT were measured both.

Mean Number of Surface Contacts: Not only the distance to the surface, but
in particular also the number of monomers docked to the surface, gives a useful
contribution to identify pseudo-phases. So all monomers attached corresponds
to a single layer structure, none attached to a free polymer and all the exciting
things happen in between. The surface potential is a continuous potential and
in order to differentiate monomers docked to the substrate from the ones not
docked, it is necessary to introduce a cutoff. After regarding eq. (ZII) we
decided somewhat arbitrarily but reasonably to define a monomer with z <
ze = 1.2 as a docked monomer. The corresponding measured quantity is the
average ratio (ng) of monomers docked to the surface to the total number of
monomers. This can be expressed as:

N N
ng = W with N, = 2@ (ze — 2i), (2.23)
1=
where ©(z) is the Heaviside step function. Again also its thermal fluctuation

d(ns) /dT is measured. Note that (ng) also reflects the energy contribution
from the surface attraction FEgy;.
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Mean Number of Intrinsic Contacts: The mean number of intrinsic contacts
is a measure of the overall compactness of the polymer just as the radius of
gyration is and reflects the contribution of the intrinsic Lennard-Jones energy.
Again, there is no obvious way how to define a monomer-monomer contact and
we decided to introduce a cutoff as follows:

N. N-2 N
nm = With Ny = Zl 'ZM@ (E. — ELy (r35)) - (2.24)
=1 )=

Here Eyj (r;5) =4 (ri_jlz - sri_j6> as in Fig. and E, = —0.2. O(F) is again

the Heaviside step function. This definition works for varying s although for
small s ng is always zero. (n,,) and d (n,,) /dT are looked at.

2.4 Boundary Conditions

steric wall, periodic boundary

. conditions in
no potential

x- and y-direction

2
y
x

attractive substrate

Figure 2.6: Schematic representation of the boundary conditions applied.

In the simulations, two different kinds of boundary conditions were used. Paral-
lel to the wall — in z-direction — the boundary conditions are purely steric, i.e.,
an update is simply rejected if it suggests to cross the wall at z = 0 or z = L.
At z = 0 the attractive surface potential is applied. This steric wall is necessary
to prevent the peptide from escaping to large z away from the wall with the
short range interaction that we want to investigate. Since the exact form of the
density of states depends on the box height Ly, also all observables depend
on the choice of Lpoc. As soon as the box size however exceeds the polymer
size, the influence on the observables is reasonably small. For smaller boxes,
interesting deviations in the thermodynamic behaviour can be observed [35].

Perpendicular to the wall in xy-direction, periodic boundary conditions with the
minimum image convention are applied. This is strictly speaking not necessary
and one might just as well apply no boundary conditions at all. They are
applied here to allow for a possible addition of a second or more polymers into
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40

35+

30 b

(a)

Figure 2.7: (a) (zem) of the 13mer, (b) d {zem) /dT of the 13mer in cubic boxes of different
sizes. The errors are indicated for Lpox = 40 and 9, resp.

the systems that would rarely ever meet each other if there were no boundaries.
On the other hand, the periodic boundary conditions for not too small boxes
hardly have any influence on the results, since the monomer-monomer potential
Erjy is short-ranged.

To get an impression of how much the box really influences our re-
sults, we performed some test runs for cubic box sizes Ly, =
4,5,6,7,8,9,10,20,40,80 and s = 1 and ¢, = 1. In Fig. 7 the
average centre-of-mass distance of the polymer to the surface (zem)
and its thermal fluctuation are shown for various box sizes Lpox.
This quantity clearly is the one
that depends the most on the box
size. For high temperatures, the
polymer can move freely within
the box such that (zem) & Lpox/2.
For low T however the polymer
prefers to stay close to the surface.
Accordingly, also the fluctuation of
(zem) depends on the box size and
] as indicated in Figure Z7(b) the
B e BT Iy R peak height depends very strongly

' ' T ' ' on it. Also the peak position shifts

. . ) to lower temperatures if the box
Figure 2.8: (Rgy.) of the 13mer in cubic boxes of . . One has to k thi
different sizes. The errors are indicated for Ly = S1Z€ Increases. Une has to Xeep this

40. dependence in mind when deciding
to concentrate on a fixed box size
as we do.

1.9

But as soon as the box is clearly larger than the average size of the polymer,
the influence of the box on the conformation of the polymer is not so striking
any more. This is shown in Figure EL§ where the radius of gyration is displayed
for varying Lyox. As soon as Lpox 2 N, the change with Ly, gets smaller than
the statistical error. We chose Loy = 20 for N = 13 and Lo = 40 for N = 20.
Although this reduction of the phase space will always effect the entropy, this
choice allows us to still draw valueable conclusions out of the simulation.
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3 Monte Carlo Simulations

The Monte Carlo method is a numerical method that computes its results by
repeated random sampling of states. This is done by drawing pseudo random
numbers that are generated by special algorithms, the so called random number
generators |36 B7]. We only give a very short sketch of the idea here and refer
for more informations to the standard literature |38} [39; A0; E1].

The term Monte Carlo was coined in the 1940s by physicists working on nuclear
weapon projects in the Los Alamos National Laboratory and was clearly sup-
posed to reflect some of the glamour of the eponymous city that is famous for
its gambling — another area where random numbers play a role. The idea to use
random numbers is, however, older and was, e.g., applied to estimate integrals
or T.

For Monte Carlo integration one uses that the expectation value of the mean
over a finite number of random variables f(z;) with x; drawn according to the
probability density p(z) is identical with the expectation value of f(x) over the
underlying distribution:

D=t @), wheeT==3"f(@), mxpl@). 61

Knowing that the original definition of the expectation value is an integral over
the distribution

F@)=[p@ @) de=lin 23 f @), mxpl@),  (2)

one can see that the mean f in eq. (1), that is a random number fluctuating
around the theoretically expected value, approximates the integral in eq. ([B2)
with an error that diminishes proportional to 1//n. All true random sampling
techniques behave like this as a universal consequence of the central limit theo-
rem. What can be influenced by smart sampling techniques is the prefactor of
n~1/2 that depends on the variance of the function being sampled. A very helpful
observation is the fact that the n~/2-behaviour is independent of the dimension.
Thus, especially for high-dimensional integrals, Monte Carlo simulations are the
method of choice. Other numerical methods like quadrature rules based on
interpolating functions [A2] sometimes converge faster at low dimensions, but
even for low-dimensional cases where Monte Carlo is not the most efficient
method it may be an interesting way to produce a crude estimate due to its
simplicity. Thanks to its great generality the Monte Carlo technique can be
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applied to various problems and especially for ones with a high phase space
dimensionality like in our case, there is no better method known.

In statistical physics, the canonical expectation value of an observable O is given
by eq. (ZI3). Exact enumeration — or integration for continuous systems - is
impossible for realistic models due to the overwhelming large number of possible
configurations that scales exponentially with system size. In order to neverthe-
less get an estimates of canonical expectation values, Monte Carlo simulations
are needed. Here one takes a random subset R from some probability distribu-
tion p, that is specified cleverly beforehand instead of the whole configuration
space and estimate the expectation value as follows:

ZﬂER @ (Eu) eiE”/T/pu
Z,uGR 67E“/T/pﬂ

This estimate is rather poor if all p, are equal (simple sampling), because it is
only possible to sample a very small fraction of the total number of states. On
the other hand, if one picks those states that make an important contribution
to eq. (ZI3) and ignores others, which is called important sampling, one can do
rather well. How we choose such important states for our model is explained in
the next section.

(OEN(T) = (3:3)

3.1 Generation of Relevant Configurations

If one would randomly generate new configurations that satisfy the given con-
straints of fixed bond length, the danger of generating many thermodynamically
irrelevant high-energy conformations with two or more monomers in unphysical
close proximity is high. One would effectively suggest all configurations with
equal probability and perform a simple sampling with the mentioned poor per-
formance. Hence it became common practice to generate new conformations
using a Markov process, i.e. given a system in state p a new state of that system
v is generated that still resembles state p and so forth. The probability for
the transition from p to v is called transition probability P (1 — v) and for a
true Markov process P (u — v) does not vary over time and should depend only
on the properties of the states p and v and nothing else. Also the constraint
>, P(p—r) =1 has to hold since the Markov process must generate some
state v when handed a system p, including p itself.

Different updates generate some random new state v if given state p that still is
very similar to the old one. Unlike e.g. for the Ising model, where it is possible
to update (flip) a single spin which only affects its nearest neighbours, no local
updates exist for our continuous model, i.e. every update affects more than
just its nearest neighbours. This is due to the long-range interactions of the
monomers such that monomers that are far away along the chain, are spatially
in close proximity and interact. That is why individual updates are more time
consuming for our model and the acceptance ratio (eq. (1)) decreases for dense
conformations.
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In order for the Markov chain to produce a subset of states v distributed with
probability p,, the following two important conditions have to be met:

1. Ergodicity: With the applied sequence of updates it should be possible to
reach any configuration in the configuration space from any other during
the simulation. If the simulations contains more than N, updates, this

reads as
Ns—1
Pu—v)y=Pp— )| [[ PO =) | POy, —v).  (34)
=1

2. Detailed balance: If a system is in equilibrium, the rate at which the
system enters and leaves any state u must be equal:

Zp#P(M—»y):ZpVP(V—»M), (3.5)

which is equivalent (using >, P(u—v) =1) top, =, p.P (v — p).
But this condition alone does not guarantee that the Markov chain will
have the desired probability distribution p,, due to the possibility of so-
called limit circles [41]. Thus one requests the stronger condition of de-
tailed balance

pul (0 —v)=p,P (v — p) (3.6)

that ensures a generation of states with p,,.

We now need to implement a Markov chain with transition probabilities that
satisfy the conditions given above. To do so, a trick is used: The transition
probability P (u — v) is split up into two parts:

Pp—v)=gp—v)A(p—v). (3.7)

The quantity g (u — v) is the selection probability with which, given a state p,
the update generates a new state v, and A (u — v) is the acceptance probability
which gives the fraction of times that the generated state is adopted. This leaves
complete freedom to choose an update to generate new states, since the rest can
be taken care of with the right acceptance probabilities.

We chose a combination of updates that is ergodic and for which g (p — v) =
g (v — p). Then the condition of detailed balance (eq. [BH])) reduces to

P Pw—p) gv—opArv—p) A -—p)

pw _Pp—v) gp—v)A(p—v) Ap—v) (3.5)

In the following, the updates used in the simulations are described in detail.
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3.1.1 Spherical update — Forwards (F) and Backwards (B)

Figure 3.1: Graphical representation of the spherical update. One monomer is moved on
the surface of a spherical sector around its preceding monomer. The change in the bonding
angle is called AY and the rotation angle is named A¢. All following monomers are moved
by the same difference

One possible update is to pick one bond at random, rotate it and attach the
following bonds without rotation (Fig. Bl). If the chosen bond is 7= 711 — 7,
the rotated (k+1)th monomer moves on a spherical surface around the kth one,
since the bond length is fixed. This explains the name ’spherical update’ [A3].

There are several ways and means how to implement this update. The im-
plementation used here is adopted from Ref. [44]. We replace the vector
¥ = 11 — T by its rotated version r’:

1 = cos AYE, + sin Ad sin Apé, + sin A cos Apey. (3.9)

Since 7 = |r| €, = €, and 7 L €, L €y this is the rotation of " = cos AVE, +
sin Adéy, some unit vector with Z(7, 7’7’) = A4, an arbitrary angle Ay about 7.
For reasons of efficiency, we would like to have a restriction on AY that we
choose to be AV = 5°. Furthermore, to distribute the 7 evenly on the
surface of the spherical cap (dA = cos¥dddp) cos A has to be chosen evenly
from the interval (cos A¥max, 1] and Ay from the interval [0, 27). Although the
first suggested implementation proves that this equidistribution is not necessary
to guarantee g (u — v) = g (v — ), it is still a way to make sure, that it holds.

In practice, it is easiest to only use cartesian coordinates since they are already
implemented. Our choices were

. T . 1 —Y . 1 —Iz
er = z ) ewzﬁ g ) eﬁ:\/TTy? x2—_€2y2
with & = (25522 if 22 + 52 > 0.1 and o
R (0 I S T DR S
: NEr varz\

(3.11)
otherwise. The distinction is made to avoid problems for x ~ y ~ 0, where €,
and €y are not well defined for the first choice.
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This update reaches all configurations with the first monomer fixed at its original
position. If one uses this update not only in one direction, but also in backwards
direction (the kth monomer rotates around the (k -+ 1)th) all configurations can
be obtained. These are two independent updates.

Especially in globular configurations, spherical updates might be energetically
disadvantageous, since often large parts of the polymer are moved against each
other. Here a semi-local update, that only moves one monomer at a time could
help.

3.1.2 Semi-Local Update (L)

Figure 3.2: Graphical representation of the semi-local update. Here only one monomer is
rotated by a random angle o around the axis defined by the two neighboring monomers.

The semi-local update is inspired by the corner-flip update on a 2D lattice. But
due to the continuous space, the rotation angle is not restricted to one angle
(180°) anymore. One rather rotates the kth monomer, that is chosen randomly
with 1 < k < N, about the connection vector ¥/ of its neighboring monomers

§— Tkl = Thot (3.12)
|Tht1 — Th—1]

by a random angle « € [0,27) (Fig. B2). This is done by applying the rotation
matrix R (¥,«) (eq. (BId)) to the connection vector ¥ = 7} — 7,_1, such that
the final position of the kth monomer is given by

-

7 — = 22
" }_?(v,_(‘)z)r+7“k71 (3.13)
4+ re_1.
This update alone is not ergodic, because the monomers at the edge are left
unchanged. But at least g (1 — v) = ¢g (v — p) holds.

3.1.3 Rigid-Body Rotation (R)

Since the surface introduces a spatial anisotropy, the energy is not invariant
under rotation. So as an additional update, a rotation of the whole polymer
about its centre of mass is introduced. The centre of mass was defined within a
second coordinate system without periodic boundary conditions to circumvent
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the problems in defining a centre of mass in a periodic system. Again the
rotation matrix R (7, «) is applied, that rotates the molecule about the axis of
rotation ¢ by an angle «:

vav1 (1 — cos a) + vz sin« cosa +v3 (1 — cosa) vaV3 (lfcosa — 1 sma

cosa—l—v% (1 —cosa) vive (1 —cosa) —wv3zsina  v1v3 (1 — cosar) + v2 sina
R (¥, )
v3v1 (1 —cosa) —vasina  v3vz (1 — cosa) + vy sina cosa +v3 (1 — cosa)

(3.14)

We did not restrict this rotation to small angles, such that a good choice for ¥
is

V1 sin ¥ cos
v=1| vo | = | sindsinep (3.15)
V3 cos U

with cos ¥ € (1,—1], ¢ € [0,27) and « € [0, 27).

After the rotation, the position 7 of the kth monomer is replaced by
'), = R (T, ) (P — Tom) + Fem- (3.16)

Just as the translation, this update does not influence the intrapolymeric in-
teractions but only the interaction with the surface. It keeps the shape of the
polymer fixed.

3.1.4 Translation (T)

The combination of updates introduced so far hardly changes the distance to
the attractive surface. This causes the polymer to need many sweeps to finally
feel the influence of the surface if the simulation is initialised with a random
conformation in the middle of the box. On the other hand, once caught at the
surface, it will take a long time to desorb.

Introducing a translation of the whole molecule eliminates the problem. We
first implemented a translation by a length [ chosen at random in the interval
[ € ]0,1) in arbitrary direction but decided soon that with only a single polymer
in the system and translational invariance in xy-direction, it is sufficient to only
translate in z-direction.

3.1.5 Sweep Sequence
One sweep consists of an ergodic mixture of all of those updates and contains
as many updates as the polymer contains monomers.

With the one-letter codes F, B, L, R and T given in the preceding subsection
headings, a typical chain of updates is:

TFBRFBLFB TFBRFBLFB T...
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3.2 Multicanonical Sampling

The technique we mainly used is multicanonical sampling [40; @5l 46l A7].
Its basic idea is to sample states with a flat energy histogram and to reweight
the data to get the canonical expectation values for the relevant temperature
range (see section B3)). This approach has several advantages. Unlike with
multihistogram techniques [4T); B8], there is no need to create several histograms
in order to accumulate enough statistics for each energy bin, but all the necessary
statistics is generated and reweighted in a single simulation. So in a way multiple
canonical simulations are substituted by a single long run which explains the
name “multicanonical”.

Even more important is the ability of this technique to sample configurations
with low probability. A canonical simulation samples states with the Boltzmann
distribution of energies

p(E,B) x Q(E) e PE = ¢ BE+IMAUE) _ —6F (3.17)

Hence, states with rare realizations (low Q(E)) or high energies (low e #F)
are suppressed. Because of the “rough” free energy landscape, the simulation is
likely to get trapped in local free energy minima with an exponentially growing
autocorrelation time 7 o< €52F | where AF is the free energy barrier to over-
come between two local free energy minima. Thus multicanonical simulations
that ideally perform a random walk in energy space significantly reduce the
autocorrelation time and the probability to not sample important states of the
phase space that would not be reached by canonical simulations due to energy
barriers, allowing to gain much more accurate results in a given CPU time.

In order to sample states with a flat histogram one needs multicanonical weights
Winuea (E) satisfying

Pmuca (E) = Q (E) Wiuea (E) & const.. (3.18)
The reweighting back is then done via
= Zz O (Ei) Wiuca (Ei))il e P
Zi (Wmuca (Ez))_l e~ PEi ’
which in principle works for all kinds of weights and should give the same canon-

ical expectations values, but the performance depends crucially on the choice of
W (E). So, e.g., for W(E) = e PF_ the canonical ensemble is recovered.

(0) (B) (3.19)

Before the actual multicanonical simulation can be performed, the weights
Winuea (E) have to be constructed. We use the multicanonical recursion [45];

47 to do so.

Altogether the method consists of the following three steps:

1. Determining the weights Wiyca (E)
2. Simulation run with fixed weights and high statistics

3. Reweighting to obtain the canonical expectation values
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3.2.1 Multicanonical Recursion

The idea of the recursion is that the weights should be inversely proportional
to the density of states, that is a priori unknown [45); 47]:

1
Winuea (E) m — o~ InQUE) — —S(E) (3.20)
Using the dimensionless, microcanonical free energy
F(E) U(E)-TS(E)

IO =5m =" 1®

= B(E)E — S (EB) (3.21)

this can be rewritten as

Winuea (E) ox e BEIEFFE), (3.22)

But f(E) and §(E) are not independent. A relation between them can be
derived considering

1

B(E) = e =

s 9B(E) Of(E) _S(E+e¢) —S(E)
T(E) 0E a

BE)+ B OF oE €

(3.23)
according to the first law of thermodynamics dU = T'dS — pdV and eq. (BZI).

This requires
LOB(E) _0f (B)

9E 9B 0 (3.24)
to hold true, which is ensured by the relation
f(E)=f(E—¢)=(B(E)-F(E—e)E, (3.25)

where € is the smallest energy difference. This is a simplification, but since the
recursion is implemented on a computer, one has to discretise anyway.

Using some initial values Wiucao (E) that corresponds to some fo(E) and
Bo (F), the initial run can be performed to gain the histogram Hy (E). We
used Winuca,0 (E) = 0, VE, that gives the same weight to all energiedd. The
histogram in turn is used to determine f; (£), £ (E) and hence Winyca1 (E),
a better estimate for the multicanonical weights. This is done recursively such
that H, (E) is used to find Wiucan+1 (£) until the histogram eventually gets
flat enough.

To get the most out of the simulations done so far, it makes sense to perform
an error weighted average

Bus1 (B) = () Bu (B) + (1 — n.(E)) B (E). (3.20)
The new estimate (3, (E) from the last simulation is determined considering
- 1 _3 W, (E)
muca,n E N~ S"(E) — AR 2
Winuca,n ( )O(Q(E) e x H, (E) (3.27)

'Note that this corresponds to fo (E) = 0 and () (E) = 0 which is the same as canonical
sampling at infinite temperature.
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and eq. (B2Z3):
G (B) = Sy (E+¢€) — Sy (F)

€
In I/T/muca,n (E) —In I/T/muca,n (E + 6)
€
In(Hyp (E+¢€) —In(Hy (E)) — (In Wiucan (E + €) — In Wiyean (E))
€

_ ln(Hn(EﬁLf)Z*ln(Hn(E))+6H(E). (3.28)

Taking the logarithm of empty histogram bins seems to be a problem here,
but one can get around this considering the weights k (E) in eq. (B2 that
disappear for empty histogram entries.

k (E) has to be inversely proportional to the variance of Bn (E). According to

eq. BZ]) this is

(B (B) = o (3 () 4 T LI LD | I ED g )
02 (B, (E)) vanishes since 3, (E) is kept fixed in each simulation.
For the remaining terms it can be used that
oc?(nH,(E)) = [In(H,(E)+ AH, (E))—In(H, (E))

B AH, (E) 2
= [lan (E) + B In H, (E)
_ [AH,(B)]? 1
B [ H, (E) } X H (B) 330

where AH,, (E) is the fluctuation in the nth histogram which is known to grow
with the square root of the number of entries, AH,, (E) < \/H, (E) < H, (E),
which allows a Taylor-expansion.

This yields
1 1

o2 (gn (E)) S RETRS I (3.31)

Now, k (F) is found by introducing

_ Hn(E+€)Hn(E) 1
P =g (E+ o)+ Hy(B) 2 <3n (E)) (3:32)

and normalising it to all simulations so far:

p(F)
p(E)+pn(E)

pn (E) is the sum of all previous p (F) and k(E) = 0 if p, (E) = 0 and/or
p(E)=0.

K (E) = (3.33)
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Matters can be simplified further if one rewrites the recursion in eq. (B:228]) with
eq. B2Z3) to
InH, (E+¢)—InH,(F)

Bni1(E) = Bn (E) + £ (E) ; (3.34)
and use this together with the ratio of weights defined as
- uca (B —B(E)E+f(E)
R(E) = VmealE) € (3.35)
Winuea (E +¢€) e BE+)(E+e)+f(E+e)
to get an expression of the recursion in terms of the ratio of weights:
H, (E+¢)\"®

This allows to calculate R, (E) out of Hy, (E). We fixed Winucant1 (Fmax) = 1
and got Winuca,n+1 (£) for all E from the ratios.

3.3 Reweighting

What we are interested in are canonical expectation values at different values of
T, €5 and s, respectively. To obtain them, one can save a considerable amount of
CPU time by using each generated peptide configuration several times, i.e. cal-
culate its contribution to each combination of T', €5 and s of interest and average
over those reweighted data. How this is done is described in more detail below.

The crucial point of this simple trick is to generate enough relevant configura-
tions (configurations with a high probability p(E) = Q(FE) exp(—E/T)) over the
whole reweighted regime. This is necessary, since it is the relevant regime that
mainly contributes to the average and low statistics here result in high statisti-
cal errors. For reweighting in T this is achieved with a the flat multicanonical
energy histogram and how it is achieved for reweighting in ¢, and s is explained
in section B4l

3.3.1 Reweighting in T’

As long as enough relevant states are generated, it is always possible to ob-
tain the canonical expectation values by averaging over the reweighted ob-
servables to the temperature of interest. More specifically, if a Markov chain
is generated with probability distribution p, = Q(E,)W (E,), where e.g.
W (E,) = exp(—E,/Ty), kp = 1, for a canonical simulation at temperature
Ty, the canonical expection value of an observable O at temperature T is given
by eq. (B3)). Using this equation, all our canonical averages are obtained. In a
multicanonical simulation W (E,) = Wiuca (E,,), while for a canonical simula-
tion at temperature Tg this expression simplifies further to

<O (E)> (T) _ Zﬂ ) (EM) e*Eu/T/efEu/To _ Z“ o) (EM) e~ (1/T—1/To)E,
Zu e*Eu/T/e*Eu/To Zﬂ e—(1/T—1/T0)E,

(3.37)
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For systems with discrete energies, it is actually more common to store his-
tograms H (E) and O (F) and obtain the canonical expectation values with a
sum over all energies. But for models with a continuous energy spectrum, it is
recommendable to sum over the time series since this works without any sys-
tematic discretisation errors. If the observable O does not explicitly depend on
E the time series approach works as before with O (E,) being the value of O
at MC time step p and E, being the corresponding energy. In the histogram
approach, O (E) has to be replaced by the estimated multicanonical expectation
value of O at fixed F.

Along the same lines of this well established reweighting procedure [47] for
a reweighting in temperature, we derived a way to also reweight the canonical
expectation values to different surface attraction strengths e, and different intra-
polymeric Lennard-Jones attraction strengths s.

3.3.2 Reweighting in ¢,

Most of the results obtained in this thesis were obtained by multicanonical
simulations with €, and s set constant. This requires a long multicanonical run
for every fixed combination of €5 and s and the canonical expectation values at
various 71" are found by reweighting.

But reweighting in €, and s is also possible. To see this, take a closer look at
the energy:

N-—-2 1N 2 N 2 1 9 1 3
i=1 j=i+1 ZJ ” k:l i=1

= Erji2+sELye + Eyend + €5 Egur. (3.38)

To calculate Erj 12, Ery6, Fbend and Eg, all one needs is the configuration of
the polymer. Once knowing those four quantities, the Boltzmann weight of the
given configuration can be found for arbitrary T, €; and s. In order to simplify
the interpretation of the data, only the influence of either ¢, or s is analysed at
a time while the other one is kept fixed. Choosing first s to be constant and
renaming Ey,j 12 + sEpje = Erj, the canonical weight reads

E Erj utEvend, utesEsur,pu
_ EH.€s _ JHp end,p ’
P,r(E,) x e 17 = e T

_ ELJ,,U,"'Ebend,u"'ESO Esur,u _ ELJ,/,L"'Ebend,u"’esESUT’M + EL(],[,L+Ebelld,/,L+6SO Esur,u
= e T e T T
(€s—€so)Esur,u

= e T P6507T (EM)

(3.39)
So, if the simulation was done at e4,, the expectation value corresponding to
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neighboring €; can be found via

Z“e/\/t Ou (Euvﬁs) FPe,r (Eu)

0] Tes) =
(O)can (T’ €5) S o P (B
- (es—eso)Esur,u (340)
_ Z,ue./\/l Ou (Epe.) Pe,yr (Eu)e T
o _ (587680)ESH!‘,[J.
ZMEM PesoyT (E,U«) e T

3.3.3 Reweighting in s

Similarly, starting with eq. (ZI2)) and choosing €5, = 1, the canonical weight for
arbitrary s is given by

_ Bus _ Erjia2,uts ELye,ut Ebend,utEsur,p
P,r(E,) o« e T = e T
_ Brjia2,utso Brye,utEoend,utEsur,p
— (&} T
_ Brjia2,uts Brye,utEoend,utEsur,p n Eryi2,u+50 Pry6,utFbend,ptFsur,p
X e T T
_ (s=s0)PLy6,u
= ¢ T PSO7T (E,u) 9
(3.41)
which yields for the corresponding expectation values
ZueM Ou (Eu,s) Ps,T (E“)
<O>Can (T’ S) = P E
ZMEM s, T ( u)
_ (s=esg)BLyeu (3'42)
_ ZueM O (Eu,s) Py, m (Eu) € T
- _ (5=50)BL] 6,
ZMEM PSO,T (Eﬂ) e T

3.4 Replica Exchange Monte Carlo

When using the reweighting in €, or s, one has the problem, that those are fixed
parameters inserted into the simulation. So if we, e.g., perform a multicanonical
simulation at s such that we obtain all expectation values for all T at that s by
reweighting in 7" and want to also have all expectation values for all T" at s+ ds,
one has to be carefull. The problem is, that there might be configurations that
are important at s+ ds, that are not so important at s and hence have not been
sufficiently sampled. This is well known for the reweighting in 7" in canonical
simulations where the reweighting range, in that one can still expect reliable
results, is limited to the width of the input histogram [A7]. Multicanonical
simulation resolves that problem.

For s we use a technique called replica exchange Monte Carlo (REMC). REMC
appears to have been discovered independently by various researchers [49; 0]

*We will only argue for s here, not for e, since the calculation is completely analogous.
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and is also known as parallel tempering, multiple Markov chain Monte Carlo
and exchange Monte Carlo search. It has been successfully applied to the off-
lattice protein folding problem [51] and several other applications can be found

in Ref. [52].

In short, we perform several simulations with several not too different s at the
same system and reweight to the s in between. Every so often, one swaps the
states of the system in two of the simulations with a certain probability which
is chosen so that the states of each system still follow the distribution p, one
wants to have, in our case the flat distribution obtained by the multicanonical
weights.

Consider two multicanonical simulations that run in parallel, one with s = s; the
other one with s = s2. Since the multicanonical weights are different for different
s, we denote the corresponding weights by Winuca,1(E1) and Wiyyea 2(E2) and
the energies in both systems as well as its constituents get the same indices.
On the majority of time steps, we simply do one step in the simulation of each
system. But, every so often, we want to swap the states, i.e. the values of the
coordinates in each of the two simulations are set to those in the other. If
simulation 1 has configuration p (p1) and simulation 2 has configuration v (v9)
and a swap is suggested, the acceptance probability is

i

DPurps/Pusv if Duyps /Puive < 1,
A (g — vipg) = { 1 i/ Pravs Othe;MWQiéef“ 2 (3.43)

The proof that this satisfies ergodicity and detailed balance can, e.g., be found
in Ref. [41]. In the case of two parallel canonical simulations at Biow and Bhigh,
pu1ﬂ2/pu11/2 simplifies to pl/1,u2/p,u11/2 = exp [~ (Biow _ﬁhigh)AE]; with AE =
FEhigh — Flow. For our two multicanonical simulations at s; and s with different
weights, this gets a bit more complicated:

Py s o Pry . Pus o Wmuca,l (ELJ,12,V + SlELJ,G,V + Ebend,u + Esur,u)

Puivs Pur DPus Wmuca,l (ELJ,12,M + SlELJ,G,u + Ebend,,u + Esur,u)

(3.44)
Wmuca,2 (ELJ,12,,u + 52ELJ,6“u + Ebend,u + Esur,u)
Wmuca,2 (ELJ,12,V + S2ELJ,6,1/ + Ebend,u + Esur,u) )

where the notations are analogous to eq. (BE35]).

This method is used for the results presented in section E2 Two parallel simula-
tions at similar s were performed and swapped from time to time. Expectation
values in between are calculated using all generated configurations and pre-
sented. Probably, it would also be sufficient to calculate the expectation values
from the data of two independent simulations that do not swap configurations.
This should provide sufficiently many relevant configurations if the simulation
is long enough. However, swapping from time to time helps a bit to prevent
the simulation to get stuck and does at least not cost much if it is not done too
often, e.g., 1000 independent sweeps followed by one swap move.
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3.5 Energy Landscape Paving (ELP)

Although it is not the primary goal here to search for global energy minima, it
is very instructive to investigate how the nature of the energy minima changes
with €5. In order to do so, an algorithm specialised on finding global energy
minima was applied: The Energy Landscape Paving (ELP) [53]. It is easily
implemented and has successfully proven to be applicable to find global energy
minima in rough energy landscapes of AB heteropolymers [43]. Its central idea
is to perform low-temperature canonical Monte Carlo simulations, but with an
energy expression that is modified after each step in order to steer the search
away from regions that have already been explored. Here, we use for the modi-
fied statistical weight of a state the simple version

wE)=ePT  with E=FE+H(E1), (3.45)

where H (E,t) is the histogram of energies at MC step ¢. In a regular low-
temperature Metropolis simulation the probability to escape a local minimum
depends only on the height of the surrounding energy barriers. ELP locally
flattens the energy landscape by filling up such local energy minima. This again
decreases the weight of states within those minima and consequently increases
the probability to escape. So, initially when H (E,t) ~ 0 ELP will favour low
energies and avoids the sampling of unphysical high-energy conformations. Af-
ter getting stuck in a local energy minimum, the energy landscape gets deformed
and higher energies will be explored until eventually another local energy min-
imum is found or the higher energy histogram entries have similar frequencies
and the original energy landscape gets approximately restored up to a constant
irrelevant factor. Due to this bias, ELP violates detailed balance and is there-
fore inappropriate to unravel thermodynamic properties of the system. It also
cannot distinguish between different structures of the same energy. However to
find low-energy states, it is efficient and easy to implement.

3.6 Error estimation

Any data, experimentally determined or simulated, can only be trusted, if they
come along with a reliable error estimation.

Markov chain MC update algorithms have autocorrelation times that enter di-
rectly into the statistical errors and can be dealt with using autocorrelation
analysis as will be explained in the first subsection. This, however, becomes
quite cumbersome for quantities that are not directly measured in the simula-
tion but a nonlinear combination of those directly measured quantities, e.g., the
heat capacity. In this case, error propagation has to be applied, if one wants to
be very precise, but usually another simpler approach is preferred. This is the
Jackknife method shortly explained in section BE2l All our errors are Jackknife
errors.
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3.6.1 Autocorrelation Time

Successive states of Markov chain MC methods are correlated. This is imme-
diately obvious considering any of the updates introduced above. The polymer
after one update is still in a configuration very similar to the configuration be-
fore. Thus the variance of estimates produced from Markov chain MC simula-
tions may be much higher than from the same amount of configurations that are
sampled independently — without knowing how the configuration before looked
like. To quantify this effect, the autocorrelation function is introduced:

(0iO0itk) — (0i) (Oivr)
(0%) —(0:)* '

A(k) = (3.46)

The expectation value (O;O;) is the correlation between observable O at time
i and a later time ¢ + k. If the value of O at both times is uncorrelated,
the correlation factorises to the product of the individual expectation values
(0;0i+1) = (O;) (O;4k) and the autocorrelation vanishes. The denominator is
just for normalisation, i.e. A (0) = 1. In equilibrium, time translation invariance
holds. Hence (O;) = (O;+) and in the numerator (O;) (O;1) simplifies further
to (0;)?. The autocorrelation function is a measure for the similarity of an
observable at time ¢ with itself at time ¢ + k. For small k, A (k) ~ 1 since each
state still resembles the preceding one. On the other hand, for very large k, any
configuration might have been reached and A (k) ~ 0. For not too small k, the
autocorrelation decays exponentially,

A (k) =2 gek/mexn, (3.47)

which defines the ezponential autocorrelation time 7y, and a is some constant.
Even more useful is another definition of autocorrelation time: the integrated
autocorrelation time

1 N kE\ N>Texp 1 N
/ _ Nexp - _ .
k=1 k=1
Here it turns out that
)

as is derived in ME 0y, =(0F) — (0;)? is the variance of the individual mea-
surements and in the case of uncorrelated measurements 025 = o%i /N. Hence
the variance is increased by a factor of 27y for correlated data. This effect can
be quite significant. It is instructive to introduce a parameter

N

N, eff =
2Tint

<N (3.50)

3In this definition of Tin, Tiny = 1/2 for uncorrelated measurements. Some authors define
Tint = 0 for uncorrelated measurement, which is a bit more intuitive, but eq. (BZ9) wouldn’t
look that nice.
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that gives the effective statistics, i.e., the number of uncorrelated data one
obtains from N measurements that are correlated with an integrated autocorre-
lation time 7y,¢. Hence only every 27, iterations, the produced data are uncor-
related again. This knowledge is an important input of the Jackknife method
described below. What is left to explain is how to determine 7i,¢. An estimator
A (k) of A(k) is obtained by substituting the expectation values (0;O;,1) by
the mean values O;O0;. . This, in practice leads to very noisy tails of A (k), since
there is less statistics for large time separations k. Summing over all available
A (k) to obtain 7y, would thus introduce a considerable error. One still gets a

decent estimate of Ty by introducing a cut-off

kll’l ax

Tint (Kmax) = % + ) Ak). (3.51)

This approaches 7y in the limit of large kmax. But as soon as fl(k:) gets
very small, it reaches a plateau and its statistical error increases rapidly. A
compromise between those systematic and statistical errors is to determine an
optimal knax self-consistently by cutting off as soon as ~kmax > 67int (kmax) as

done here. Other choices such as cutting of as soon as A (k) first subtends the
base line can also be applied.

It is important to notice, that the autocorrelation time can be significantly
reduced by choosing efficient Monte Carlo algorithms. So, for instance, a multi-
canonical simulation, that ideally executes a random walk in energy space, has
a lower autocorrelation than the Metropolis algorithm, that more or less stays
in the same energy regime. Hence, it produces effectively more statistics.

Also note, that while 7., only depends on the algorithm but is theoretically
independent of the observable under consideration, 7;,; depends on the observ-
able. More mathematical details can be found in [T E8]. We only performed a
short autocorrelation analysis in order to have a rough estimate, how to choose
the bins for the Jackknife analysis.

3.6.2 Blocking Jackknife Technique

To employ the whole autocorrelation analysis described above would result in
a considerable effort to get accurate statistical errors. Thus, general but less
accurate methods have been developed to estimate the error of a Monte Carlo
run on a daily basis. These are the Binning and the Jackknife methods [54]
that both divide the time series of N correlated measurements O; in blocks.
The Binning analysis considers a number Np = N/k of equidistant blocks of

length £ (Fig. B3):

k
OB,n = ZO(nil)kJ’,l’ n = 1,...,NB. (352)
i=1

| =

The idea of this binning is to choose k larger than the autocorrelation time
and thus to create with Op,,, n =1,... Np, a new, shorter time series which is



3.6 Error estimation 37

| | | | | | \ | O

[ OB ] | | | | | | O

\ [ Op.2 | \ \ \ \ | 042

\ \ [ OB | \ \ \ | 043

} | | [ OB.a | | | | OJa

| | | | | | [OB.Ng | Ogng
k

Figure 3.3: A schematic representation of the block Jackknife error estimation. The block

on the top represents all N correlated measurements. Its block average is denoted by O. In
the following blocks, the grey blocks represent the Jackknife blocks with block average O
and the white blocks the binning blocks with block average Op,n, n = 1,..., Np, and block
length k. It holds: N = Ngk.

almost uncorrelated and can thus be analysed by standard means. The Jackknife
blocks O, contain all data, but the ones of the binning blocks,

NO - kOg,

OJ,nE N _ k )

n=1,...Ng. (3.53)

O denotes the common mean value of the all N measurements. The advantage
of those larger blocks is that the statistics of each block is better and fluctuations
of individual blocks are reduced compared to the binning approach. For linear
quantities like energy or radius of gyration there is no difference in the estimated
error and both methods give an analytically equal result. Differences however
occur, when nonlinear quantities like the specific heat are treated due to the bias
of the estimator that reduces for larger sets of data as 1/N. After correction
for the trivial correlation of the jackknife bins — every value of the time series
is used N — 1 times — the Jackknife error of O is given by

N, 1 s, 2

B — J—

G =05= " > (0sn—0)". (3.54)
B n=1

It is beneficial to choose k rather large. k > 7 has to hold and it is an
empirical rule that £ ~ 67y gives good results. Choosing k£ even larger does

not alter 625 much, but choosing it too small underestimates the error.
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4 Results

In this chapter, various informations about the canonical equilibrium behaviour
of short polymers near an attractive substrate are presented. The main focus is
on the behaviour at varying surface attraction strength and temperature.

The overall goal aimed at is to summarise all those informations and construct
a pseudophase diagram. This pseudophase diagram should contain information
about the quality and position of conformational phases present and indicate
transitions between them. We want to stress that all phases and transitions
mentioned here are no phases in the strict thermodynamic sense, since we are
dealing with finite chain lengths. But even for those short chains that are
considered here, we obtain a good picture about the behaviour of the polymer
at the surface and most of the phases are believed to still exist for longer chains.

4.1 Adsorption Behaviour for Various Surface
Attraction Strengths

In this section, I present the results gained for various observables of two ex-
emplified short peptide sequences with 13 and 20 monomers, respectively. Mul-
ticanonical simulations at 51 different surface attraction strengths e, ranging
from e, = 0,...,5, were performed and reweighted to 7' = 0,...,5. Since the
main structural activity takes places below T' = 3, usually only the lower tem-
perature regime is displayed. Every simulation consists of 10% sweeps and was
at least performed with 2 different random number seeds to assure that trap-
ping that sometimes occurred, does not entail any systematic deviation. The
interpolymeric interaction is regarded constant here with s = 1.

All implemented updates and boundary conditions were tested against sev-
eral independent works on short hydrophobic-polar heteropolymers of the AB
model [44); BAk 6k B

4.1.1 Observables

Energy and Specific Heat

The total energy of the single polymer has already been defined in eq. [ZIZ).
With s = 1, this simplifies to

4]\[2:2 (rl L) J&NZ:Q 1 — cos vy +eéz [15 (Zl)g— (%)3] :

i=1 j=i+1 ) ) =1 i=1
(4.1)
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Figure 4.1: (a) Energy of the 20mer. (b) Heat capacity of the 20mer. The small lines
represent the simulated data, the colour code is interpolated.

In Fig. BTl a 3D plot of the energy and specific heat of the 20mer vs. €, and T'
is shown. The projections onto the surface-attraction-temperature plane, as ob-
tained for the 13- and 20mer for both quantities, are plotted in Figs. B2l and B3]
For both investigated polymer lengths the energy varies smoothly with chang-
ing €, and T'. The global minimum is reached at maximal surface attraction
and minimal temperature. This is not unexpected since at low temperatures,
energy dominates over entropy and hence lower energy conformations are more
frequently assumed. Also for ever higher surface attractions, any given confor-
mation close to or at the surface corresponds to lower energies.

Although the total energy varies smoothly with e; and T, this does not hold
true for the individual compositions, because many internal monomer-monomer

5

(b) €,

Figure 4.2: (a) Energy of the 13mer. (b) Heat capacity of the 13mer. The colour code is as
in Fig. E£11

5 5
4 4
3 3
T T
2 2
1 1
_ 0 0
0 1 2 3 4 5 0 1 2 3 4 5
() . (b) .

Figure 4.3: (a) Energy of the 20mer. (b) Heat capacity of the 20mer. The colour code is as
in Fig. 11
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contacts correspond to a high intrinsic energy while many monomer-surface
contacts correspond to a high surface contribution to the energy (see section
ETH). Those quantities indeed perform considerable fluctuations and jumps as
will be discussed below.

The heat capacity turns out to be insufficient to characterise all phase transi-
tions, since the chains are very short. Only two transitions can be identified as
ridges in the profile: The first one is the adsorption transition between desorbed
and adsorbed configurations. Where exactly in the projection plane desorbed
and adsorbed configurations dominate is among others displayed below in the
pseudophase diagram in Fig. The adsorption transition exhibits indica-
tions to be first-order like, as it is characteristic for such short chains. For an sc
lattice model it was shown in [I5], that for a finite chain length (179mer) the
free energy minima of adsorbed and desorbed conformations are separated by
a gap when plotted versus monomer-monomer and monomer-surface contacts,
i.e. none of the possible conformations in between are stable in equilibrium which
reflects the first-order like behaviour for finite chains. But The other transition
that can clearly be identified by the strong ridges in the specific heat landscape
is a freezing transition at low temperatures. At roughly T &~ 0.25 the heat
capacity exhibits a strong peak and rapidly goes to zero at lower temperatures
independent of the surface attraction strength. This and the crystalline struc-
tures found at those low temperatures indicate a freezing transition. Although
the freezing temperature seems to be rather constant, the type of crystalline
structure adapted by the peptide depends strongly on €;. But to identify the
shape of the peptide one has to take a closer look at conformational quantities
like the radius of gyration.

Radius of Gyration

The radius of gyration provides an excellent measure of the overall compactness
of the polymer. Figures EL0, and 4 reveal that the most compact conforma-
tions dominate at low temperatures and low surface attractions. If the surface
attraction is weak the polymer behaves like a free polymer and the transition
from globular (DG) to random coil (DE) configurations (Fig. EE20]) corresponds
to the well known 6-transition [6l; B, where the repulsive excluded volume effect
balances the attractive forces between the segments and the polymer behaves
like an ideal chain (see chapter [[). For the 13mer we found #;3 ~ 0.94 and
for the 20-polymer 659 ~ 1.28 from the peaks in d (Rgy,) /dT at €5 = 0. The
higher value for the larger polymer is due to finite size effects. The overall
polymer-polymer interaction per monomer (that corresponds to €py) is higher
for longer chains, because less monomers are at the outer part in the energeti-
cally favourable compact conformations which leads to a higher ¢,,. This again
increases the 6-temperature.

Also the freezing transition can be found at the same temperatures as it was
already clearly visible in the heat capacity. The adsorption transition hardly
effects the overall size of the polymer and can thus hardly be seen in the radius
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Figure 4.4: (a) Radius of gyration of the 20mer. (b) d (Rgy:) /dT of the 20mer. The small
lines represent the simulated data. The colour code is interpolated.

of gyration.

To extract further information out of the radius of gyration, it is more illustra-
tive to take a closer look at its parallel (Figs. EE7] and EER)) and perpendicular
(Figs. and EET3) component to the surface, respectively. These quantities
are expected to behave different since the surface introduces a spatial anisotropy.
So for instance, for €5 > 2.8 for the 13mer and ¢, > 3.4 for the 20mer and low
temperatures (R, ) vanishes while (R|) attains low values at lower ¢;. A van-
ishing (R, ) corresponds to a configuration where the polymer is spread out
flat on the surface without any extension into the third dimension. These
configurations

(2) €s (b) €s

Figure 4.5: (a) Radius of gyration of the 13mer. (b) d (Rgy.) /dT of the 13mer. The colour
code is as in Fig. B4
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Figure 4.6: (a) Radius of gyration of the 20mer. (b) d (Rgy.) /dT of the 20mer. The colour
code as in Fig. A



4.1 Adsorption Behaviour for Various Surface Attraction Strengths 43

are called adsorbed compact (AC1) and adsorbed expanded (AE1) (Fig. E26l).
The ‘1’ is added to distinguish those regions from regions that extend into the
third dimension. AC1 and AE1 are separated by the freezing transition such
that configurations in AC1 at lower temperatures are maximally compact while
configurations in AE1 are less compact and more flexible but still mainly flat
on the surface.

In order to confirm that conformations in AC1 are indeed maximally compact
single layers, one can consider a simple argument. It is well known that the
most compact shape in the 2D continuous space is the circle. Thus one can
calculate <R||> for a circle and compare it with the simulated value. Assuming
N monomers to be distributed evenly in the circle, N ~ 7r?, where r is the
radius of the circle in units of the mean distance of neighbouring monomers.
The radius of gyration in the same units is thus given by

gyr 2

) 1 1 N
Rgre? <% Rﬁ) - / *r’r? = —r? x —. (4.2)
r’'<r 2

We have two different types of mean distances between monomers in compact
conformations. Neighboring monomers on the chain have distance one, while
for all others the most favourable distance is rmin,s ~ 1.1225. So we expect
for compact <R||> on the surface to hold: /13/27m ~ 1.438 < <R||713> <1615 <

Fmin,L3y/13/2m and /20/27 &~ 1.784 < (R} 20) < 2.026 < rmin,L3\/20/27. The

simulated data are R) ;3 =1.45 and R 9 = 1.81 that nicely fit the estimate.

Trying the same thing in 3D however does not work that well. The most com-
pact shape in 3D is the sphere, that we assume to be filled uniformly with N
monomers, N = 4713 /3. Corresponding configurations are found as free com-
pact chains (DC) as well as adsorbed compact configurations (AC) for weak
surface attraction. Here the radius of gyration is given by

1 3 3 /3N\ 3
RPal® _ / Brir? =2 2 (22 ) 4.3
eyt 4113 /3 J < nr 5 75 \4n (43)

This leads to the estimate 1.130 < Rgyy,13 < 1.268 and 1.684 < Rgyr 20 < 1.464.
But the simulated data are smaller: Rgy; 13 = 1.023 and Rgyy 20 = 1.242. This
slight deviation can however be explained by the fact, that the mass of the
polymer is not uniformly distributed in the sphere as assumed in the calculation.
For a compact packing of discrete monomer positions, it is far more realistic, that
the outer thin shell of the sphere does not contain any monomers. Performing
the integration not from r’ = 0 to 7/ = r but only to r’ = r — ¢, reduced the
estimated radius of gyration significantly already for small € due to the increased
weight of the outer shells in higher dimensions. Taking into account this effect,
the absolute values of (Rgy;) obtained, seem to be very reasonable.



44 CHAPTER 4. RESULTS

(By) (e T)

NN
ISR CFNCN

(a)

(b)

Figure 4.7: (a) (R)) of the 20mer. (b) d (Rgy,, ) /dT of the 20 polymer. The small lines
represent the simulated data. The colour code is interpolated.

The most noticeable transition that can be seen in the Rgy,-components is the
strong layering transition at e; ~ 2.8 for N = 13 and €5 = 3.3 for N = 20 that
separates regions of planar conformations (AE1, AC1) in the surface attraction-
temperature plane from more compact 3D conformations (AG, AC2b) at low
temperatures.

In a paper of J. Krawczyk et al. [16] a lattice argument can be found that nicely
illustrates what happens here. The polymer is modeled as a self-avoiding walk on
a 3D cubic lattice in a half-space interacting via a nearest-neighbour interaction
of different monomers with €, being the contributions per contact. In addition
each polymer-surface contact lowers the energy by another €5 such that the
overall energy of a configuration with n, surface contacts and n,, intrinsic con-

(2) €s (b) €s

Figure 4.8: (a) (R)) of the 13mer. (b) d (Rgy.,) /dT of the 13mer. The colour code is as
in Fig. B

Figure 4.9: (a) (R)) of the 20 polymer. (b) d(Ryy, ) /dT of the 20mer; colour code as in
Fig. E7



4.1 Adsorption Behaviour for Various Surface Attraction Strengths 45

tacts is given by
En = —npem — nges. (4.4)

Now one considers the zero-temperature situation, where for positive self-
attraction and surface attraction, the polymer will take on some compact con-
figuration touching the surface. For a cubic lattice model this is likely to be
a rectangular parallelepiped with square cross-section parallel to the surface of
site length w (Fig. EEI0). If the height to the surface is [, and there are N = lw?
monomers in the polymer, the total energy Fj, neglecting contributions from
edges and corners) is

Ei(emes) ~ —(w?(1—1)+2(w(w—1))1) e — wles

N N N N
(4.5)

N N
= —Ne¢y + Tem + 2V Nley, — Neyy, — 768
N
= =2, N + (€, — €5) 7 + 2emVIN.

For fixed N the energy can be minimized with respect to [ to see how the layer
thickness depends on €,,, €, and N. One obtains for the minimum configuration

132 = (1 - i) N2, (4.6)

€m

A plot of | vs. €5/€,, can be found in Fig. LTIl Since there are only integer
values of [ possible — there is nothing like half a layer — a particular layer will
be stable for a range of €s/€,,. So, using this argument, for instance a single
layer configuration is stable for €5 > ¢, and for some values of €5 < ¢, given by
relation If €, is increased at fixed €, the system’s energy is minimised by

3.5
N=13 —
3| N =20
I N =50 --nm-
s | N =100000
2+
1.5 ¢
1k
0.5
0
0 0.2 04 € 0.6 0.8 1
em
Figure 4.10: Exemplified compact confor- Figure 4.11:  Plotted is | = (I —

mation for a self-avoiding polymer on a 3D Es/Em)Q/SNl/3 vs. €s/em for four different

lattice with w = 5 and [ = 3 to illustrate the chain lengths on the lattice. For N = 13

argument of J. Krawczyk et al.. only double- and single-layer structures are
stable while for N = 20 also triple-layer and
N = 50 even four layer structures seem to
be energetically favourable for a low €5 /€ -
ratio.
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Figure 4.12: (a) (R.) of the 20mer. (b) d{(Rgyr,1)/dT of the 20mer. The small lines
represent the simulated data. The colour code is interpolated.

smaller values of [. This is exactly what is observed here with decreasing (R ) at
low temperatures with increasing es. Since the total surface area is minimised if
the layers are uniform layers with a roughly equal number of monomers in each
layer, the polymer jumps from (/4 1) layers to [ layers at some value of €5 with a
jump in the internal energy rather than continuously decreasing the occupation
number of the top layer. This is also confirmed by the sharp layering transition
from single- to double-layer structures for both chain length and ground state
energy considerations and suggests that the transition is first-order like with a
transition region that gets sharper for larger N, see Fig. EET11

However, one striking discrepancy between lattice theory and the data from our
continuous model is observed: While the argument predicts that for €5 > €,
only single layer configurations are stable, our single layers are only stable for

3

(2) €s (b) €s

Figure 4.13: (a) (R.) of the 13mer. (b) d (Rgyr, 1) /dT of the 13mer. The colour code is as
in Fig.

Figure 4.14: (a) (R.) of the 20mer, (b) d (Rgyr, 1) /dT of the 20mer. The colour code is as
in Fig.
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€s/€m 2 3. We conjecture that this substantial difference is due to the different
coordination number of both models. Inside the bulk of a compact polymer on
an sc lattice, each monomer has maximally z = 6 nearest neighbours while in
the continuous model hexagonal close packing is observed at low temperatures
with z = 12 nearest neighbours. This gives more compact conformations with a
higher [ in our continuous model an additional stability. In fact, repeating the
argument in eq. (A for a hexagonal lattice, one obtains

Ei(em,€5) ~ — (4?@—1)—{—3(\/? (ﬁ—l))l) €m—¥€s

= —4Ne,, + 4?67” + 3\/mem —3Ne¢,, — 765 (4.7)
= —T¢,N + 4?67” + 3v/Nle,y, — ?es.
This yields for the equivalent of eq. (Z6l) on a hexagonal lattice
2 2 <4 - €—> N2, (4.8)
3 €Em

which predicts a single-double layer transition for N = 13 at €s/e,, = 3.235
and for N = 20 at €s/€,, = 3.384. Thus even if one approximates the more
cylindrical shaped observed layered structures by a cubic, this argument gives
a rather good estimate of the location of the layering transitions if a hexagonal
lattice structure is assumed.

Although for the short chains considered in this section there are no triple layers
observed, the components <R||,J_> indicate some activity at lower surface attrac-
tion. For N = 13, e; = 1.2 is the lowest attraction strength at which there
are still stable double layer configurations found below the freezing transition.
For N = 20 this is at €5 & 1.4. What follows at lower ¢ is a low-temperature
phase of surface attached compact conformations that we call AC2a. AC2a
conformations occur if the monomer-surface attraction is not strong enough to
induce a layering in the compact attached structure. One has to be careful in
what exactly these conformations look like. On the one hand, the surface at-
traction is strong enough to attach the polymer, on the other hand the compact
conformation of a free polymer below the #-transition shouldn’t be distorted
too much - no layering. We found two distinct structures that fit this scheme:
1. completely undistorted compact conformations located at the surface and
2. roughly semi-spherically shaped structures docked to the surface. Both are
clearly observed over a substantial range of surface attractions e;. Comparing
where which kind of those two structures is observed at both chain length differ-
ences are found. For N = 13 both, d (Rgy, 1) /dT and d (Rgy, ) /dT indicate
a transition at e€; ~ 0.45. This transition is the wetting transition [I3; [I0],
that has already attracted some interest in literature. We will meet this tran-
sition again, when discussing the effect of solvent variation (section EE2). Here
compact polymers that only move close to the surface at low T and lower e,
attach to form semi-spherically shaped structures at higher e that are stable



48 CHAPTER 4. RESULTS

until at €; &~ 1.2 a seemingly continuous pseudophase transition to double layer
structures takes place.

Without the additional information from the extracted low energy states, it
would hardly be possible to locate this transition, although the radius of gyration
as well as its components indeed change their absolute values at this € a little
bit.

For N = 20 no analog to the wetting transition at e; ~ 0.45 for N = 13 was
observed. Already at an attraction strength of €5 ~ 0.2 adsorbed conformations
are found at low temperatures but only d (Rgyr, 1) /d7T shows some very small
transition peak at the intersection of the freezing transition at 7" = 0.25 and the
adsorption transition line that will be discussed below. The AC2a pseudophase
here seems to consist of a mixture of compact conformations docked to the
surface and the mentioned semi-spherical conformations without any transition
between them. This is also confirmed by regarding the low energy conformations
found in this regime. At €5 &~ 1.4 the continuous transition to double-layer
structures (AC2b) takes place. The higher €5 the higher the amount of semi-
spherical conformations found in the AC2a phase, but a clear cut from the
compact adsorbed conformations does not exist.

This difference in the wetting transition for N = 13 and N = 20 might be due
to the fact, that the most compact conformation for NV = 13 is an almost perfect
icosahedron (Fig. EETH). “Almost” because the Lennard-Jones energy minimum
differs from the distance of neighboring monomers for s = 1. For s = 2 the most
compact structure is indeed a perfect icosahedron. This additionally stabilises
the conformation and is already known in cluster physics, where 13 spheres can
form one of Mackay’s icosahedrons [0Y] with their typical fivefold symmetry.
Since also the globular structure of the 13mer has a higher symmetry than that
of the 20mer, it is not unexpected that the wetting transition for the 13mer
is sharper than for the 20mer. It might be worthwhile to study the wetting
transition also for other chain length in order to be able to predict a trend for
longer chains which is not possible only knowing the behaviour for those two
investigated chain lengths.

Raising the temperature, polymers from the AC2a as well as from the AC2b
regime form adsorbed and still rather compact configurations above the freezing

. 4 k-\\l.)
VH"A' 1
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\\ =

Figure 4.15: (a) Most compact conformation of the 13mer found for s = 2. (b) The same
conformation as in (a), but all outer monomers are connected to show the icosahedral shape.
(c) Most compact conformation of the 13mer found for s = 1.
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Figure 4.16: (a) (zem) of the 20mer. (b) d (zem) /dT of the 20mer. The small lines represent
the simulated data. The colour code is interpolated.

temperature that are much like a drop on the surface. This pseudophase is
called Surface-Attached Globule (AG) and sometimes also SAG. It has been
first conjectured from short exact enumeration studies in 2D poor solvent [G0],
but was also found for instance in Ref. [15] and [16].

At even higher temperatures, two things can happen dependent on whether
the monomer-monomer or the monomer-surface interaction is stronger. If the
former is the case, the polymer first desorbs from the surface (from AG to DG)
and expands at even higher temperatures (from DG to DE). In the latter case,
the polymer expands while it is still on the surface (from AG to AE2) and
desorbs at higher temperatures (from AE2 to DE). The point in the phase dia-
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Figure 4.17: (a) Centre-of-mass distance {zcm) of the of 13mer to the surface. (b) d (zem) /dT
of the 13mer. The colour code is as in Fig.
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Figure 4.18: (a) Centre-of-mass distance (zcm) of the of 20mer to the surface. (b) d (zem) /dT
of the 20mer. The colour code is as in Fig.
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gram where the four phases AG, AE2, DG and DE coincide was found to be for
N =13 at ¢, = 1.57 and T = 1.15 and for N = 20 at ¢, =~ 1.9 and T ~ 1.38.
Due to the higher relative number of monomers in the bulk in compact longer
chains, the f-temperature increases as explained above. Since at the adsorption
transition there seems to be €5 o« T', the four-phases-coexistence point is also
shifted to higher ¢, for longer chains.

The adsorption transition can be discussed best when looking at the mean num-
ber of surface contacts and the distance of the centre of mass of the polymer to
the surface.

Centre-of-Mass Distance of the Polymer to the Surface

The centre-of-mass distance of the polymer to the surface is the observable that
displays the adsorption transition sharper than all the others, although one has
to keep in mind the dependence on the size of the simulation box (section EZ4)).

As can be seen in Figs. L1060l BT and EET8] for large temperatures and low e, the
polymer can move freely within the simulation box without feeling the influence
of the surface too much. Thus the average centre-of-mass distance (zcp) of the
polymer above the surface is just half of the height of the simulation box. Since
we chose the simulation box for N = 13 to be Ly, = 20 and for N = 20 to
be Lo = 40 this yields (zem) = 10 for N = 13 and (z¢p) = 20 for N = 20 if
the attractive influence of the wall can be neglected. The steric influence is of
course still there. On the other hand, for dominant surface attraction at high
€s and low temperatures, the polymer will preferably sit on the surface and the
distance will be (zem) ~ 0.858, corresponding to the minimum of the surface
attraction potential, for single layer structures and a bit bigger for double-layer
and globular structures.

When looking at (zem) and d (zem) /dT as presented in Figs. ET6] ET7 and IS,
one notices first a quite sharp adsorption transition that divides the projection
of (zem) into an adsorbed (bright/green) regime and a desorbed (dark/blue)
regime. This transition looks like a straight line in the phase diagram such that
there seems to hold: €5 oc T" on the transition line. Intuitively, this makes sense
since at higher T' the stronger Brownian fluctuation is more likely to overcome
the surface attraction. One can, however, also deduce it from the lattice model
in Ref. [I5] that we will check our results against at the end of the current
chapter.
The model in question is a minimalistic simple-cubic (sc) excluded volume lattice
model, where the polymer can move between two infinitely extended parallel
walls, separated by a distance z,, expressed in lattice units. One wall is attractive
to the monomers while the other one has a pure sterical influence to prevent
the polymer to escape into outer space. The energy term of such a polymer is
given by

E (ns,nm) = —€sns — €Ny, (4.9)

where ng is the number of nearest-neighbour monomer-substrate contacts, n,,
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the number of nearest-neighbour, but nonadjacent monomer-monomer contacts
and €, and ¢, are the respective contact energy scales. The restricted parti-
tion sum for a macrostate with ng surface contacts and n,,, monomer-monomer
contacts is then given by

ZT (nS? nm) = Z 5”;7"85n$mnme_E(ng7n;n)/kBT = g’ILleme_E(ns’nm)? (410)
ng,n

where gy, n,, is the contact density that only depends on the geometry of
the system, in particular z, and N. The partition function is hence Z =
> nemy, 21 (Ns;14,) and more interestingly one can define the specific contact
free énergy as a function of the contact numbers ng and n,,:

Fr (ns,ny) = —kpTIn <gns7nmefE("S’"m)/kBT> = FE (ns,nm) =TS (ns,nm)

(4.11)
identifying kpln g, n,, = S (ns,nm) as a “microcontact” entropy. If one now
minimises this with respect to ng, one finds

dF (ns,nm) d
—_— = —kpTIngn, n,, + E (ng,nm
dn, dn, ! o o + B (0, 7m)
= —k:BTdns Ingn, n, —€s =0
d
& e = —/<:B< In gy, nm)T x T (4.12)
dng ’

because the factor in front to T does not depend on €, and 7. This argument
should also be valid in our model since the surface energy is proportional to
€s and short ranged and the contribution of the other energy terms that do
not depend on the number of surface contacts vanishes while differentiating.
Our simulation yields AT/Aes ~ 0.8806 for N = 13 and AT/Aes ~ 0.9342
for N = 20 what should correspond to —1/(dgn, n,,/dns) for the ng at the
adsorption transition that is naturally around one.

Looking at (zem) and d (zem) /dT in the adsorbed phases in more detail one
observes the low temperature transitions between AC2a, AC2b and ACI1 that
were already discussed above. But since the data are so similar to what is found
for the main number of surface contacts in that regime, we will skip a more
detailed look here to go to the mean number of surface contacts immediately.

Mean Number of Surface Contacts

The mean number of surface contacts provides a clear measure of the fraction
of monomers adsorbed to the surface but gives no information on what happens
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Figure 4.19: (a) Mean number (n) of surface contacts per monomer of the 20mer. (b)
d(ns) /dT of the 20mer. The small lines represent the simulated data, the colour code is
interpolated.

in the desorbed states. Hence, it is a good observable to study the confor-
mational behaviour in the adsorbed regime. For example, the regime, where
single-layer structures dominate (AC1, AE1) can be identified easily, because
(ns) ~ 1 (dark/blue regime in Fig. ET9 and EZ2T]), which coincides nicely
with the region, where (R, ) ~ 0. One can also see that the average number of
surface contacts are very similar in the phases AG, AC2a, AC2b, AE2, where
most of the monomers are attached, with a monotonic decrease of (ns) with
increasing 7. The adsorption transition can be found at lower T as for (zcp)
and is less sharp.
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Figure 4.20: (a) Mean number (ns) of surface contacts per monomer of the 13mer. (b)
d (ns) /dT of the 13mer. The colour code is as in Fig. LT
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Figure 4.21: (a) Mean number (ns) of surface contacts per monomer of the 20mer. (b)
d(ns) /dT of the 20mer. The colour code is as in Fig. EET9
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At low temperatures d (ng) /dT indicates the following transitions:

transition N=13 N=20
adsorption transition T=02 T=0.2
transition between AC and AC2a T=~05 -

transition between AC2a and AC2b T~09 T=17
layering transition between AC2b and AC1 | T~ 2.8 T ~34

Unlike on the lattice, where one finds (ngs) ~ 1 for a single layer structure,
(ng) =~ 1/2 for a double layer structure, (ns) ~ 1/3 for a triple layer structure
etc. [I6], our double layer structures have (ng) > 1/2. This indicates that while
on the lattice, in order to obtain a compact configuration, all layers contain
about the same amount of monomers, in our off-lattice model, there are always
some more monomers in the layer on the surface. Since this only happens at the
outer part of the layer, the difference is more pronounced the shorter the chain is.
In Fig. 222 (ns) is shown as a func-
tion of €5 at small temperatures.
(ng) is a good quantity to see lay-
ering. Starting at high e, first for
both chain length (ns) ~ 1 until at
the layering transition, (ns) jumps
to (ns) ~ 0.69 for N = 13 and to
(ng) ~ 0.65 for N = 20.

1}

08 |

06 |

(ns)

04}

02}

0 s s ; ' | Further jumps corresponding to

o " further layering transitions are not

Figure 4.22: (ns) vs. ¢, for small T for both observed for those ShO.I“t chains. In-

investigated chain length N =13 and N = 20. stead what follows is a plateau

regime where the relative amount

of monomers that cover the surface

is rather constant. When the double-layer structure gets unstable at lower e,

(ng) starts to decrease again. The conformations in AC and AC2a thus have no

fixed (ng), but it rather depends on €. At around €5 =~ 0.2, where the polymer
desorbs, (ns) decrease rapidly until (ns) =0 at e = 0.

The observable left to discuss is the mean number of intrinsic contacts.

Mean Number of Intrinsic Contacts

Since, if the mean number of intrinsic contacts (n,,) is large, the polymer is very
compact and its radius of gyration small, and if the mean number of intrinsic
contacts is small, the polymer is very stretched out and the radius of gyration
very high, (n,,) and (Rg) are complementary observables and yield similar
informations.
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Figure 4.23: (a) {(n.) of the 20mer, (b) d (n,,) /dT of the 20mer. The small lines represent
the simulated data. The colour code is interpolated.

One can see, that the projection of (n,,) onto the es;-T-plane is divided into a
compact regime comprising AC, AG, AC2a, AC2b, DC and DG and a regime of
less compact conformations. This nicely confirms the results already obtained
for (Rgyr). Apart from that, transitions from maximally compact conformations
(DC, AC) to less compact ones (AC2a) and the #-transition of the free polymer
are confirmed. And, once again, the layering transition from double- to single-
layer configurations is strongly signalled.
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Figure 4.24: (a) Mean number (n,,) of intrinsic contacts (without next neighbours along
the chain) per monomer of the 13mer, (b) d (nm) /dT of the 13mer. The colour code is as in
Fig.
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Figure 4.25: (a) Mean number (n,,) of intrinsic contacts (without next neighbours along
the chain) per monomer of the 20mer, (b) d (n,,) /dT of the 20mer. The colour code is as in
Fig.
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4.1.2 The Pseudophase Diagram

To summarise all the informations gained from the different observables, we drew
the approximate boundaries of different regimes into the e,-T-plane and denoted
the different pseudophases by the abbreviations already used (Fig. EZ20]).

Figure 4.26: (a) Phase diagram of the 13mer, (b) Phase diagram of the 20mer. The coloured
stripes indicates the regime where the phase transitions take place.
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pseudophase example 13 example 20
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Figure 4.27: Representative examples of conformation of the different regions in the e,-
T-plane. Conformations ACla, AC1b, AC2a, AC2b and AG are located at the surface, the
location of which is sometimes indicated with blue spheres. DE, DG and DC are desorbed.
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The pseudophases found are (Fig. EEZ10):

e DE (desorbed expanded): These are free desorbed random coil conforma-
tions above the #-transition.

e DG (desorbed globular): Globular free conformations below the 6- and
above the freezing-transition. Polymers in this pseudo-phase correspond
to a liquid and are still rather flexible.

e DC (desorbed compact): Maximally compact, spherically shaped config-
urations below the freezing transition

e AE1 (adsorbed expanded single layer): Expanded configurations above
the freezing-transition that are flat on the surface but little compact.

o AE2 (adsorbed expanded 3D conformations): Adsorbed expanded config-
urations above the freezing-transition with usually more than half of the
monomers attached.

e AC1 (adsorbed compact single layer): Adsorbed compact configurations
below the freezing-transition that are flat on the substrate but compact
like a circle.

e AG (adsorbed globular 3D conformations): Adsorbed conformations at
the surface below the f-transition, above the freezing-transition and with
extension into the 3rd dimension. Like a drop on the surface.

e AC2a (adsorbed compact 3D conformations): Compact configuration
at the surface, that is semi-spherically shaped and below the freezing-
transition.

e AC2b (adsorbed compact double layers): Adsorbed double layer config-
urations below the freezing-transition. The occupation of the layer at the
surface is slightly higher than that of the other layer.

e AC (adsorbed spherical compact): Conformation as in DC, but the poly-
mer often touches the surface in this regime.

4.1.3 Data for ¢, =2 and N = 20

In order to give an impression of how the simulated data look like before merging
them together in the shown 3D plots and to stress how careful one has to
be in believing the sketched pseudophase transition positions, all observables
for an arbitrary €5 (es = 2) and for N = 20 are presented here. A look on
the phase diagram for N = 20 tells us that we have to expect the freezing
transition at T ~ 0.2, the expansion from AG to AE2 at T" =~ 1.3 and the
desorption at T = 1.6. This seems less obvious when regarding Fig. All
temperature derivatives of (E), (zem), (Rgyr): (Rayr|)s (Rgyr, 1), (nm) and (n)
show some activity at the freezing transition around 7' ~ 0.2, but the exact
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Figure 4.28: (a) Several observables for ¢, = 2 and N = 20, (b) The derivative with respect
to T' of the same observables.

position of the peak varies between T' =~ 0.16 for d (Rgyr,) /dT and T =~ 0.35
for d (zem) /dT'. This is clearly an effect of the finite size of the polymer. Only
in the thermodynamic limit of very long chains the transitions are expected to
take place at the same €5 and T for all observables. For finite chain length, the
transition lines still change with N and are not well defined due to the broad
peaks that are slightly different for different observables.

Below the freezing transition, all observables are quite constant with 7. At
such low temperatures, those macrostates are formed which are energetically
favoured. Entropy is not yet relevant. Above the freezing transition however,
entropy does play a role and the average energy increases, the conformation gets
less compact — indicated by increasing (Rgy:), <ngr7”>, (Rgyr,1) and decreasing
(nm) — and the contact to the surface loosens — indicated by decreasing (ns) and
increasing (zem). The expansion from AG to AE2 at 7' ~ 1.3 is even less well
defined. In fact, it is rather hard to locate this continuous transition. Not only
expands the polymer monotonously with 7" and it is not clear, where to define
the boundary between “compact” and “random coil” conformations. Also the
peaks of the relevant observables d (Rgy:) /AT, d (Rgyy ) /AT, d(Rgy, 1) /dT
and d (n,,) /dT are located between T' ~ 0.81 and T" =~ 1.67. This makes it
impossible to draw a clear transition line. The line in the pseudophase diagram
is a compromise between all the observables and due to the need to indicate
that in one regime compact conformations and in the other one expanded once
dominate. A clear transition line should only exist in the thermodynamic limit
just as for the @-transition of desorbed states. The desorption transition is
easier to locate, but still the peaks of C, d (zem) /dT and d (ng) /dT that mainly
indicate this transition, do not coincide. d (z¢p) /dT already shows activity at
T ~ 1.73, then (ns) at T'~ 1.6 and C at T' ~ 1.56. It makes however sense,
that when the system is cooled, the polymer first has to move to the surface
— activity in (zem) at higher T' — before monomer-surface contacts can have a
considerable effect on the energy.

This hopefully made it clear, that the pseudophase diagrams in the previous
subsection are supposed to give a good qualitative overview about the behaviour
with varying eg and T, but the positions of the phase boundaries should only
be considered as rough guidelines.
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4.1.4 Density of States

It is rather illuminating to take a look at the density of states Q(F) that was
estimated while generating the multicanonical weights. In Fig. Q(F) is
plotted both logarithmically and linearly for three investigated chain lengths
N = 13, 20, 50. For any fixed chain lengths Q(FE) behaves very similarly for
E 2> —0.25 for all €, while the behaviour of Q(FE) changes for energies below
this value. In the linear plot, hardly any differences apart from fluctuations
can be seen, but the logarithmic plot reveals, that the number of low energy
states with E < —0.25 increases with increasing e;. This is simply due to the
fact, that configurations with a low degeneracy on the surface like single layer
configurations are assigned a lower energy the lower the e¢5. The fraction of total
configurations in the simulation box, whose energy gets considerably influenced
by the surface potential present, decreases with increasing simulation box size,
which also has an influence on Q(F) and the canonical expectation values of the
observables (see section E4)).

It is also interesting to observe, how the overall shape of the density of states
changes with increasing N. For small N there is a distinct maximum of Q(F)
at £ ~ —0.25, the energy with the most microscopic realizations. As N in-
creases, the relative mount of high energy configurations increases until at some
point, Q(E) is no longer a decreasing function of E for E > —0.25, and has
no maximum any more. Configurations near the peak of Q(F) are random-
coil configurations with a high degeneracy. Higher energy configurations are
those that self-intersect which is punished by the high energy repulsive part
of the Lennard-Jones energy. The longer the chain, the more likely it gets for
the polymer to self-intersect which explains the higher amount of high-energy
configurations for higher N.

The increasing amount of high energy configurations with increasing chain
length has far less an effect on the canonical averages, especially at low tem-
peratures, than the increasing number of low energy states with increasing e;.
Fig. B30 e.g., shows the probability p(E) = Q(E) exp(—FE/T) of configurations
with energy E per monomer at temperatures close to the adsorption tempera-
ture for several €;. Due to the exponential Boltzmann weight exp(—E/T), low
energy configurations are getting more and more probable at lower tempera-
tures. Eventually low energy configurations obtain a similar probability than
configurations with £ 2 —0.25 with a lower probability for energies in between.

Since this is clearly found in Fig. B30 for short chain lengths, and we know
that lower energy configurations are attached to the surface for not to small
€s, while configurations with £ 2> —0.25 are mainly free. Hence the adsorption
transition appears to be first-order like for those short chains. But one can also
see that with the disappearing peak of Q(F) also the double peak structure of
p(E) gets less and less pronounced. Thus for longer chains, the transition might
eventually become continuous.

For even lower temperatures, the adsorbed conformations will gain more and
more weight compared to the free ones. Hence for temperatures lower than the
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Figure 4.29: Density of states Q(FE) for (a) N = 13, (b) N = 20 and (c) N = 50 and various
€s. The larger the es the lower the deepest possible energy of the polymer. Since only the
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gives the same data on a linear scale.
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absolute energy. The inset gives the same data on a linear scale.
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plotted ones, only the rare low energy configurations on the substrate are of
thermodynamic significance.

One more thing can be concluded from Fig. EE30F The adsorption temperature
increases with increasing V. This must be due to the decreasing relative amount
of monomers on the surface that makes the free compact monomer more stable
and the higher degeneracy of free conformations compared to desorbed one for
longer chains.

4.1.5 Comparison with Lattice Results

We would like to compare the results discussed with those obtained from a
similar model on an sc lattice [I5], that was already deployed to motivate the
observation that ¢, oc T at the adsorption transition in section EETT1

The polymer is modeled as a nongrafted self-avoiding polymer between two
infinitely extended parallel planar walls, separated by a distance z,, expressed
in lattice units. One wall is short-ranged attractive, while the other one has a
purely sterical influence to prevent the polymer from escaping. The energy of
the system is given by

E (ng,nm) = —elﬁns — €mNim, (4.13)

where ng is the number of nearest-neighbour monomer-substrate contacts, n,
the number of nearest-neighbour, but nonadjacent monomer-monomer contacts
and €& and ¢, are the respective contact energy scales. We add the “L” to

5.0 4

4.0

3.0

Figure 4.31: (a) Solubility-temperature
pseudo-phase diagram of a 179-mer
from [T5]. The colour codes the specific
heat as a function of reciprocal solubility
s and temperature 7 - the brighter
the larger its value. Here is e = 1
and €, = s. (b) Surface attraction-
temperature diagram of the same system
as in (a), but with €, = 1 and the surface
attraction varied. (c) The phase diagram
of the 20mer of Fig. once again for
comparison.
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distinguish the equivalent surface contact energy scales on the lattice with those
in our model. Thus, the probability for a conformation with ng surface and n,,
monomer-monomer contacts at temperature 7' and given €~ and e, is

L
Pr,eLe,, (n87 nm) = Egns7nme(es nerEmnm)/kBT, (414)

s

exp((e¥ns+emne,)/kaT). This
allows to calculate the canonical expectation values (O) (T, e, em) for all T, e
and €, for any function O(ns,n,,), if one knows gy, »,, via:

where Z is the partition sum Z = |

Ns,Mm gn57nm

(0) (Ta 6{;7 em) = Z O (ns, nm)pT,eI;,em (Nsy ) - (4.15)

Ns,Nm

The applied contact-density chain-growth algorithm in [T5] which is an im-
proved variant of the multicanonical chain-growth sampling method [61; 62]
has the advantage that it directly samples the contact density gy, »,, that only
depends on the geometry of the system, in particular z, and N. This allows
to set the two independent energy scales ¢ and ¢, after the simulation to
calculate the expectation values of interest.

In the paper, a simple rescaling was S — pR—
performed and a dimensionless re- 3
ciprocal solubility was introduced

2249
by choosing
DE 0 50
eI; =€y, €m =386 and ¢y = 1.
(4.16)
s controls the quality of the im- AR = R, 00

plicit solvent surrounding the poly-

DC 0 219

mer, with a large s corresponding AG 49 227
to a bad solvent and vice versa. — —

Having an estimate of g, n,,, with AC2a, 36 263
the specific heat (C) = ((E?) — Al R =4 2En
(E)?)/(kpT?), kp = 1, was cal- A2 o oo
culated for a range of s and T. sy e

The projection of (C)(s,T") onto AC2c . - 60 251
the solubility-temperature plane for A ‘ w 90 251
a lattice homopolymer with 179 - -

monomers in a cavity with z, = Al “\\\\W\\w 103 207

200 is shown in Fig. E3T(a). A AcCl L. 179 153

legend to the various pseudophases

can be found in Fig. EE32 Figure 4.32: Representative minimum free-

o energy examples of conformations in the different
Although the model is similar to pseudo-phases of a 179mer [I5].

our off-lattice model, with this
parametrisation it is hard to directly compare the results, since one always has




64 CHAPTER 4. RESULTS

to think, which s-T" combination in Fig. EE3T(a) corresponds to which es-7" com-
bination in Fig. EE3T(c) — where we once again show the pseudophase diagram
of the 20mer for convenience.

The rescaling of the lattice model that corresponds to the surface strength vari-
ation of our model is

eg —es6g and €, =¢ and €y = 1. (4.17)

Here ¢, is allowed to adopt different values and is the quantity that corresponds
to our €5 just as the s in eq. (EI6) roughly corresponds to our s — or more
precisely to the square root of our s. The estimate for g,, ,,, can be reused to
calculate (C) (e5,T") with this parametrisation over the same range of €; and T
than examined here. The result is depicted in Fig. E3T(b).

In order to identify the pseudophases in Fig. EE3T(b) with the help of Fig. EE3T(a)
a simple argument can be used: If the energy in the parametrisation ([EIG) is
denoted by E' = —ng — sn,, and the temperature by 7’ and the energy in the
parametrisation ([ELI7) by F = —esng — nyy, and the temperature by 7', in order
to get the same Boltzmann weight in both parametrisations for a configuration
with ng surface and n,, monomer-monomer contacts, it has to hold:

E E Ng + SNy, €sNg + Ny

T T T T

(4.18)
T 1
ST =— AN €e=-.
s s
With these relations all pseudophases in Fig. EE3T(b) were identified. The tran-
sitions between them are located with a higher precision than in our results

which is clearly due to the longer chain possible on the lattice.

It is quite reassuring to see, that there are certain similarities between
Figs. E3T(b) and (c). For instance, for the adsorption transition one finds
in both models that e; oc T". The explanation for this noticeable transition was
already given. Different however is not only the slope, derived in eq. ([EI2)
for the lattice model, that depends on the system’s geometry and energy scales
and we do not want to go into detail here. Also while for the off-lattice model,
the extrapolation of the transition line seems to go through the origin ¢; = 0
and T = 0, there is an offset observed on the lattice such that the extrapo-
lated transition line roughly crosses e; = 0.4 and T' = 0. We speculate that
this might be due to the intrinsic cubic structure of the lattice polymer that
possesses flat surfaces at low temperatures even without a substrate. Unlike for
off-lattice models, where a compact polymer attains a spherical shape, such a
cubic conformation is likely to dock to a substrate without having to modify
its conformation. Hence an important difference between lattice and off-lattice
models is that while for not too high surface attraction strengths for off-lattice
models, there is a competition between most compact spherical conformations
that do not possess flat regions on the polymer surface and less compact con-
formations with flat regions that allow for more surface contacts but reduce the
number of intrinsic contacts, such a competition is missing for sc lattice models.
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This also explains, why a transition 1

like the one observed for N = 13 bet- | 0.8
ween AC and AC2a, the wetting tran- | DC ) AG

sition, would never be possible on the 0.6 T
lattice, since there simply is no spher- 0.4
ically docked stable conformation AC. a2 - 02

Qn the other hand, AC2 conforma- /31~N 2 _C

tions at low 7" and for €5 between the 0.2 04 0.6 0.8 10

adsorption and the single-double layer-
ing transitions can be observed in both
models. And also for both models, the Figure 4.33: Tow e, and T-section of
AG pseudophase was found when rais- Fig. E3T(b) to get a closer look at the AC2

: subphases.
ing the temperature.

€s

But while for the off-lattice model,

apart from the wetting transition, there were only the transition from AC2a
(semi-spherical shaped) into AC2b (double-layer structures) found, on the lat-
tice a zoo of pseudo-transitions within AC2 can be seen (Fig. EE33)). It turns out,
that these are the predicted higher-order layering transitions. With decreasing
surface attraction, layer after layer is added until the number of layers is the
same as in the most compact conformation. A lattice polymer has no other
choice than to form those layers at low temperatures. The layering transition
from AC1 to AC2 is very sharp for both models. Also the shape of the transi-
tion region from 2D adsorbed to 3D adsorbed conformations looks very similar.
Interestingly, also the es/€,,-ratio predicted for this transition in Ref. [I6] in
eq. (L) agrees quite well with the observed one.

What could not be clearly identified on the lattice is a freezing transition that
corresponds to the one between AC1 and AE1. There is some activity observed
at very low T in AC1, but it is hard to draw precise conclusions from it.

All the high-temperature pseudophases, DE, DC/DG, AG, AE, nicely corres-
pond to each other in both models, which suggests that their overall positions
are correctly identified.

4.1.6 Low-Energy Configurations

Using the specialised algorithm Energy Landscape Paving (ELP) introduced
in section B3 a search for low energy configurations at 100 different €, €5 =
0,0.05,0.1,...,5, was performed. Here, we did not only concentrate on the
energetical favourable conformations that change with varying e;, but also on
the composition of the energy. It turned out that while ELP works very well for
N = 13, the CPU time increased dramatically for N = 20, such that we only
present rigorous results for N = 13 here.

In Fig. B34 all energy contributions for N = 13 are shown vs. ¢5. One can
nicely see that although the total energy E changes smoothly with €4, this
does not hold true for its subunits. Until € =~ 0.45, our ELP runs did not find
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Table 4.1: Low energy configurations for the 13mer.

esrange | 0—045 05— 1.15 12-28 2.85—5
DC/AC AC2A AC2b AC1

configuration
sabgeee °°'W

low energy configurations that are docked to the surface, i.e., Egy = 0 in this
region and only Frj and Epenq contribute. This changes abruptly at € & 0.45,
where Eg,, increases to a finite value. At the same time the contribution due to
the intrinsic Lennard-Jones energy decreases. This clearly indicates a wetting
transition that is indeed observed when looking at the configurations displayed in
Table ETl FEheng also shows some activity here and decreases. But for the overall
behaviour the bending term hardly plays any role since it is much weaker than
the competing surface and intrinsic attraction that determine the behaviour.

For €, 2 0.5 the surface contribution increases linearly with €s, which is what
one would expect. Frj stays rather constant until at e; ~ 2.8 it performs a
jump down to the value attained in a compact single layer configuration. This
is the double-single layer transition where Epj exactly coincides with Egy,. For
even higher €,, Frj attains another plateau while Eg, again increases linearly

but with a higher slope than in the double-layer region.

The transition from AC2a to AC2b is not visible in Fig. E34l This structural re-
ordering from compact adsorbed semi-spherical conformation to the double-layer
neither affects the number of intrinsic contacts nor the number of monomers
docked to the surface considerably.

Q-3
gl
5k —— E = Equr + Epend + ELj
Egur

""" Eper
6 B
- .

0 1 2 3 4 5

Figure 4.34: Different energy contributions of the 13mer normalised to the number of
monomers.
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4.2 Behaviour at Various Monomer-Monomer
Attraction Strengths

Some additional work was performed on the thermodynamic behaviour of the
polymer if the surface attraction strength is set constant (es = 1), but the
solvent quality s is varied. Only the case N = 13 was considered. The hope is
to obtain a pseudophase diagram like in Fig. EE26(a) that can be compared with
the one in Fig. E3T(a). Here, we present first results of this still ongoing study.

In order to do so, the reweighting in s introduced in section was applied.
First, multicanonical weights for s = —2, —1.75, ..., 5 were generated. After-
wards, two parallel multicanonical simulations at neighboring s were performed
for every pair of neighboring values of s as described in section B4l and the
canonical expectation values for various 7" and s in between were calculated by
reweighting the conformations. This approach allowed us to measure canonical
expectation values over a wide range of s and having to generate relatively few
multicanonical weights. In addition, every generated configuration can be used
more often than in single multicanonical simulations where only a reweighting
in T is performed.

We indeed obtained promising results. However, the longer reweighting pro-
cedure after every simulation step slowed the simulations down, such that no
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Figure 4.35: Q(E) for s = —2, —1.75, ..., 0.75 and ¢, = 1. (a) Linear plot. (b) Logarithmic
plot.
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Figure 4.36: Q(E) for s =0.75, 1, ..., 5 and e, = 1. (a) Linear plot. (b) Logarithmic plot.
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Table 4.2: Low energy configurations for the 13mer.

S -2-0 0.25 0.5

configuration

configuration

final pseudophase diagram can be presented here. The statistics is not yet good
enough. Thus, for such short chains, where the generation of new conformations
is faster as for longer chains and the autocorrelation time is lower, one does not
gain much with the reweighting in s. But it might become a useful technique
for longer chains.

35 Some informations can however be
3  extracted from the simulations per-
2.5 formed. In Fig. and Fig.
2 the density of states obtained from
15 the multicanonical recursion are
1 displayed. If one first looks at
05 Fig. E38 one can see that for

s = —2 the density of states only

attains a very weak maximum at

FE =~ 1.5. The lowest energy state

found is at £ ~ —1.188. If s in-
T creases until s = 0.25 the maximum
gets more pronounced and shifted
to lower energies. The lowest en-
ergy found, however decreases only
slightly. This changes for s = 0.5. Here the maximum increases further but
the difference of the lowest energy found for s = 0.25 and s = 0.5 is consid-
erably higher than it was for smaller s. For higher s the difference gets even
more pronounced. To understand this, it helps to take a look at the low energy
conformations found for different s that are presented in Table EE2 For s < 0,
the polymer prefers to be in a stretched conformation, like a rod. This is what
one expects in this regime where individual monomers repel each other. From
the canonical expectation values of, e.g., the radius of gyration, we know that
the polymer stays rather stretched also for higher temperatures and there are
indications for an adsorption transition somewhere between 7' =0 and 7' = 1.
What is responsible for the much lower energies found for s = 0.25 and s = 0.5 is
a collapse of the polymer. This is illustrated in Table 2 where low-energy con-
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Figure 4.37: (Rgy:) vs. s and T for the 13mer.
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formations are displayed and around those values of s, one can see the polymer
to collapse which corresponds to a wetting transition on the surface. As soon
as the polymer is collapsed and monomer-monomer contacts are energetically
favourable, an increasing s yields a much lower energy of compact conforma-
tions. As a consequence, the average energy goes down rapidly. This can also be
seen in the density of states in Fig. Here for increasing s the energy range
of compact conformations gets much broader which also implies a reduction of
the peak height.

Figure EE37 shows the projection of the radius of gyration onto the s-T-plane.
Every colour stripe represents one run of two parallel multicanonical simulations.
Although the fluctuations especially at low temperatures are still rather high,
one can reliably read off that the s-T-plane is split into a region of compact and
a region of swollen conformations.

What we were not able to clearly identify is however the exact position of the
adsorption transition. Especially for high s, the polymer only moves close to the
surface without giving up its compact conformation. Hence an adsorption only
means a small reduction in energy compared the contribution of the intrinsic
contacts. On the other hand it reduces the entropy. Thus, an adsorption in this
region is only expected to happen at very low temperatures. This is different
on the lattice (see Fig. EE3T]), where a docking to the substrate is much more
favourable in bad solvents. For our model we found in several simulations con-
taining about 107 — 10% sweeps no adsorption at all. In order to gain deeper
insights into the adsorption behaviour of short polymers with this model, further
and longer simulations are necessary. This is future work.
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5 Summary & Outlook

The main objective of this work was to construct a pseudophase diagram of con-
formational thermodynamic phases of a single semi-flexible homopolymer near
an attractive substrate in dependence of the external parameters surface at-
traction strength and temperature. The semiflexible homopolymer is modeled
by a coarse-grained mesoscopic off-lattice model. In that model, a polymer
is considered as a chain of monomers with covalent bonds of fixed length, a
Lennard-Jones interaction potential for contacts between monomers being non-
adjacent along the chain, a weak bending stiffness and a surface attraction term.
The surface attraction is due to the van der Waals forces between the polymer
and the substrate and is modeled by a Lennard-Jones-like potential.

The goal to construct a pseudophase diagram was indeed achieved for polymers
of chain lengths N = 13 and N = 20. For these chain lengths, the canonical
expectation values of several observables were measured over a broad range of
surface attraction strengths. and temperature using multicanonical simulations.
Namely, the observables designed to unravel the equilibrium behaviour of such a
system are the energy, the radius of gyration as well as its components parallel
and perpendicular to the substrate, the distance of the centre-of-mass of the
polymer to the surface, the mean number of monomer-surface contacts, the mean
number of intrinsic monomer-monomer contacts and the thermal fluctuations of
all those quantities.

The pseudophase diagram was constructed using all statistical informations
about energetic and structural fluctuations. Although the computational ex-
pense to explore such a broad parameter range accurately restricted us to rather
short chains, we were still able to identify several conformational pseudophases
and pseudophase transitions. These are:

e Crystalline structures below the freezing transition. With increasing sur-
face attraction strength we identified maximally compact conformations
freely floating in solution (DC) or attached to the substrate (AC), semi-
spherical compact conformations (AC2a) that are distorted by the surface
but show no layers, double-layer conformation (AC2b) and single-layer
conformations (AC1).

e Adsorbed conformations above the freezing transition. Here three confor-
mational pseudophases were distinguished: globular, rather unstructured
three-dimensional conformations (AG), expanded flat conformations on
the substrate (AE1) and three-dimensional expanded adsorbed conforma-
tions (AE2).
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e Desorbed conformations. Compact conformations (DC) are separated by
the freezing transition from globular conformations (DG). At even higher
temperatures above the well known 6-transition random-coil conforma-
tions were found (DE).

The sharpest pseudophase transition identified is the layering transition between
single- and double-layer-structures. The surface attraction strength at which
this transition is observed coincides quite well with the one estimated for a hexa-
gonal lattice — the lattice type adopted for single- and double-layer structures
below the freezing transition. Higher-layer conformations were not found for
these short chains. In a recent study on an sc lattice, for weak surface attraction
and positive self-attraction, layering transitions were observed until a maximally
compact cubic structure is reached. This is different for our off-lattice model.
Here the maximally compact conformation is spherical and has no flat area
on its surface that can easily form many monomer-substrate contacts without
the need to deform. Hence the Lennard-Jones energy for monomer-monomer
contacts competes with the monomer-substrate contact energy. This induces
a wetting transition. For N = 13 we clearly identified this wetting transition,
while for N = 20 the transition appears to be rather continuous. This difference
might be due to the high symmetry of the most compact conformation of the
13mer that is an icosahedron. Hence it is not possible to predict the wetting
behaviour of longer chains from just those two investigated chain lengths but
more simulations at different chain lengths are needed.

At the adsorption transition the substrate adhesion strengh was found to be
proportional to temperature. This is expected since at a higher temperature the
stronger Brownian fluctuation is more likely to overcome the surface attraction.
But also a lattice argument that minimises the free energy is given and indeed
the relation was also verified on the lattice.

For a single polymer in bulk solution, it is known that three phases exist, namely
a swollen globule, a collapsed fluid globule and a solid crystalline state, that
are separated by the #- and the freezing transition, respectively. We found
those phases for low surface attraction and also identified their corresponding
adsorbed pseudophases. So, the existence of an adsorbed globule (AG) was
verified. The f-transition for adsorbed polymers between AG and AE2 shifts
to lower temperatures compared to the free polymer until it disappears at the
single-double layer transition. The freezing transition always stays at about the
same low temperature. Only the exact structure of the crystalline state changes
with €.

Due to the finite length of the investigated polymers, different observables indi-
cate transitions at slightly different positions. This yields an uncertainty in the
pseudophase transition regions indicated in the pseudophase diagrams, which
should disappear in the thermodynamics limit. For N = 20 it is not noticeably
smaller than for N = 13 which might be due to the higher possible symmetry of
the 13mer, but this needs further investigation. From a short test of the depen-
dence of the canonical expectations values on the size on the simulation box,
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we also know that they always depend on the distance to the introduced steric
wall. This dependence is however very weak for most of the observables if the
size of box is chosen to be considerably larger than the polymer extension such
that the conclusions drawn are independent on the exact box size chosen. Only
the average distance of the polymer to the surface shows a stronger dependence.
This however cannot be avoided since without it, the chance of the polymer to
find the substrate and stay in its vicinity is negligible.

The density of states for N = 13, N = 20 and N = 50 for different substrate
adhesion strengths reveals a pronounced peak for N = 13 and N = 20. The
configurations that correspond to the peak are highly degenerate random-coil
configurations. It vanishes for increasing chain length while the number of
higher-energy states increases. Accordingly, the canonical probability p(E) at
the adsorption transition exhibits at double-peaked structure for small N with a
minimum between both peaks that seems to disappear for longer chains. Hence
the transition seems to change from first-order like to continuous for increasing
chain length.

Additional studies were performed for fixed positive surface attraction strength
and varying solvent quality. The applied parallel multicanonical simulation
with a reweighting in temperature and solvent quality works in principle, but
the reweighting over a wide range of parameters after every sweep slowed the
simulation considerably down such that the statistics is not yet good enough.
However this approach might be very valuable if one only reweights to a small
number of parameters at a time or if the chains are longer such that the genera-
tion of new configurations are more expensive compared to the reweighting. We
were still able to draw some conclusions out of those simulations. So a wetting
transition induced by increasing solvent quality and a collapse transition induced
by decreasing solvent quality were identified and located. The question if the
polymer adsorbs for very high intrinsic monomer-monomer attraction strengths
and the determination of the adsorption temperature must be left open here for
future investigations.
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CHAPTER 5. SUMMARY & OUTLOOK
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