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External field QED

• The electromagnetic field separated (uniquely up to a homogeneous solution)
into:

– the classical arena, produced by some external currents and fixed: Aa(t, ~x),
– the quantum (photon) field A.

• The Dirac field ψ propagates on A:

(iγa∂a + eγaAa −m)ψ = 0,

and causes no back-reaction (test field).

• Interaction of ψ and A can be included with the help of the causal perturbation
theory.
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General remarks

• This theory is not fundamental. It is also (probably) much more complicated
then a fundamental one (∼ pre-quantum understanding of the H-atom).

• In this way also the QFT in curved spacetimes is constructed. QED is however
simpler (trivial causality structure, uniqueness of geodesics etc.)

• It is possible to ask questions about the range of validity of this theory, because
the full QED is known. However: substantial (infra-red) problems are present
in the QED if there are charges (? universality of the electric charge) ; precisely
these charges are meant to produce the external field Aa(x).
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Plan of the talk

1. Quantization of the Dirac field in external potentials

2. The locality principle: variations of the external field

3. Consequences of the locality principle

Theoretisches Seminar 3



1. Quantization 2004/10/25

1. Quantization of the free Dirac field (standard)

Task: represent ψ(f), which fulfill the CAR, as operators on a Hilbert space

{ψ(f), ψ∗(g)} = (f, g)H =
∫
d3x

4∑
B=1

f+
B (~x) gB(~x),

here (f, g)H is the scalar product of test functions (scalar product for classical Dirac
fields - elements of H);

ψ(f) =
∫
d3x f+(~x)B ψB(~x) fB(~x) : bi-spinor test functions

• Given a reference state Ω it is possible to construct a representation of the CAR

• Pure reference states (Ω) are in 1:1 correspondence with projections on H.

Problem: there are plenty of projection operators in H !
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Example: ground state representation (static background)

Ground state is defined via a projection on the positive part of the spectrum of
the classical Hamiltonian H. The field operator:

ψB(~x) =
∫
d3p

[
us

B(~x, ~p)as(~p)+vs
B(~x, ~p)b∗s(~p)

]
+

∑
n

us
B(~x, n)as(n)+

∑
m

vs
B(~x,m)b∗s(m)

ψ(f) = a(P+f) + b∗(P−f)

here: uB(~x, ~p) - continuum eigenfunctions (of positive fq-cy); uB(~x, n) - bound
state eigenfunctions.

a’s and b’s fulfill the standard anti-commutation relations. The representation
is based upon the vector Ω:

a]Ω = 0, b]Ω = 0.
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Comparison of representations

Example: two physically motivated choices of reference states
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States (and the associated representations) Ω, Ω can be: globally equivalent,
locally equivalent or disjoint.

• Global equivalence: ∃ a unitary U, such that Ω = UΩ. There are finitely many
excitations in Ω (when measured against Ω).

• Local equivalence: the relative density of excitations in Ω (when measured
against Ω) is finite.

• Significant progress is possible if one restricts considerations to the Hadamard
states, which all have the same singular part of their two-point functions.

– If ω is Hadamard in a neighborhood of a Cauchy surface, then it is Hadamard
everywhere (for all times)

– If the external field is static for a definite period of time, then the ground state
is a Hadamard state.

– Any two Hadamard states are locally equivalent.
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Non-linear observables and the normal ordering

In QFT all observables must be constructed with the help of field operators.
Nonlinear observables are much more interesting, then (multi)linear ones (eg. the

photodiode-response operator
∫
d3x f(~x) ~E(t, ~x) ~E(t, ~x)). They involve products of

(operator valued) distributions. It is necessary to regularize them

ja(x) = lim
y→x

[
ψ(x)γaψ(y)− Ja(x, y)

]
.

here Ja(x, y) a number-valued distribution. Standard choice:

: ja(x) :Ω ⇐⇒ Ja(x, y) =
(
Ω, ψ(x)γaψ(y) Ω

)
,

is equivalent to the normal-ordering. Problem: which reference state Ω should be
employed? Are only differences(

Ω, ψ(x)γaψ(y) Ω
)
−

(
Ω, ψ(x)γaψ(y) Ω

)
physically relevant?
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2. The locality principle: variations of the external fields

Example from NR quantum mechanics: the current operator

ji(~x) =
e

m

[
−ih̄∂i −

e

c
Ai(~x)

]
.

The current operator at ~x depends evidently only on Ai(~x). The expectation value
of this current corresponds to the electric current of a given state.

In QFT observables are constructed from field operators and distributions.
Question: does

ji(x) = lim
y→x

[
ψ(x)γiψ(y)− (Ω, ψ(x)γiψ(y) Ω) · 1

]
depend locally on the external field?
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Formulation of the locality principle for QFT

General formulation: whenever one has two external field arenas, say
A and Ã, which for some (arbitrary) open region U are identical (up
to a gauge transformation), then it is required that the algebras of
observables associated to these regions are isomorphic. These algebras
contain non-linear observables (such as currents and interacting-field
operators).

Simple consequence: if a distribution t is employed in a definition of an
observable, then

δ t(f)
δA(x)

= 0

if x ∈/supp(f). (There should, first of all, be a systematic way to define t for
different external fields!)
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Nonlocality of the two-point function and Hadamard states

For static external fields, the two-point function of the ground state is

(Ω, ψB(~x)ψC(~y) Ω) =
∫
d3p

∑
s

vs
B(~x, ~p)vs

C(~y, ~p).

The RHS depends evidently not only on the external field in a neighborhood of ~x
and ~y. If expectation values (with respect to some state) are employed in definitions
of observables, then these will violate the locality principle (algebras of observables
of A and Ã will not be isomorphic). For Hadamard states, there holds

(Ω, ψ(x)ψ(y) Ω) =

(i∂/+ eA/+m)
(
u(x, y)

Γ
+ v0(x, y) ln Γ + less singular terms

)
+w(x, y),

Γ = (x − y)2. The singular term is local (it is the Hadamard parametrix); the
smooth term w(x, y) contains the whole state-dependent information.
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Locality demands, that the algebra of observables

supported in a region U remains unchanged if the

external field is varied outside of this region. As a

consequence no normal-ordering prescription is local.
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3. Consequences of the locality principle

• The theory currently employed in the derivation of experimentally testable
predictions (such as corrections to the energy levels of highly ionized uranium
ions), the Furry picture of QED, appears to be using normal-ordered expressions
(see eg. eq. (7) of Phys. Rep. 293 (1998), 227).

• Because these predictions are compared with experiments (the quality of which
grows constantly) we ask: in what way the non-locality of normal ordered
products affects the predictions?

• A direct calculation of the same predictions from the local QED appears out of
scope at the moment. Problem: for realistic (even static) external fields one
needs to find (essentially: the expectation value of the local-current density)

lim
y→x

[
(Ω, ψB(~x)ψC(~y) Ω)− Hadamard parametrix

]
= lim

y→x
w(x, y).
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Expectation values of local observables

• Little is known about the local current-densities of ground states.

• A related problem is the expectation value of the local energy-density.

• In there are boundaries (Casimir effect), then energy-densities of ground states
generally diverge as one approaches these. The leading divergence is related to
the local geometry of the boundary (Candelas).

• For boundaries modeled by smooth external fields the divergence disappears
(ground states are Hadamard states).

• So-called quantum inequalities, when applied together with the locality principle,
provide general bounds.
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Quantum Inequalitites

Let Ω be the ground state for a static arena. QI:

〈ρ(f)〉ω − 〈ρ(f)〉Ω ≥ −QΩ[f ], (1)

where

ρ(f) =
∫
dt T00(~x, t) f(t), (2)

Here: f(t) a probabilistic weight function and QΩ[f ], is a functional of f , constructed
with the help of the reference state Ω (for instance, QΩ[f ] =

∫
E2|f̂(E)|2 dE).

• The “longer” the support of f(t), the smaller the value of Q[f ],

• the energy density of an arbitrary state ω can fall substantially below the
ground-state level Ω only for a short period of time.
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Figure 1: A static arena: in the region A it has no external field. For static
observers close to the surface only “small” double-cones can be constructed,
which do not include parts of the surface.

Let ω, Ω be two ground states on two spacetimes, with isometric regions. Then
we develop QIs with respect to both of these states :

QΩ(~x)[f ] ≥ 〈ρ(~x, f)〉Ω − 〈ρ(~x, f)〉ω ≥ −Qω(~x)[f ],
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• The energy-density of the ground state can be approximated by that of the
vacuum in free space (which is zero) in the interior region,

• consequently the expectation value of the energy-density of the ground state
is small (with a bound provided by QIs) within a region of no external fields;
substantial difference is allowed only close to the surface.

• An intuitive understanding can be formed: the difference of expectation values
(in ground states) of local and normal-ordered (non-local) observables cannot be
substantial within a region of constant external potential.
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Summary:

• Quantization of the Dirac field in external potentials suffers from a lack of
preferred vacuum state.

• Observables within a region U should depend only on the external field within
this region.

• Expectation values of the local energy density differs from the normal-ordered
one. The difference is small if there is a region of vanishing external fields.
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