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Section 1: Gravitomagnetism/rotating spacetimes

Weak field limit of General Relativity:

Perturbations h̄ab of flat spacetime by a spherically symmetric source:

ds2 = [1 + V (r)] dt2 − [1 − V (r)] d~x2 +Ai dx
i dt

are found from (∂2
t −∇2)h̄ab = Tab, which simplify to:

~A(~x) =

∫
ρ~v(~y)

|~x− ~y| d
3y, V (r) = −

∫
ρ(~y)

|~x− ~y| d
3y.

which are the same as the electromagnetic potentials for the charge conf. (ρ,~v).

Physical consequences (roughly):

Typical effects associated with ~A: as of magnetic fields with ~B = rot ~A, which is
the tendency of particles (geodesics) to circulate in the plane perpendicular to ~B.
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Relativity of inertia in rotating systems

(Newtons bucket and Mach’s considerations)

Result for a heavy sphere rotating with angular velocity ~Ω:
inside of the sphere:

the Newtonian potential V (~x) = const

the vector potential ~A(~x) ∼ ~Ω × ~x

homogeneous ~B - a Coriolis-type effect.

Outside of the sphere:

the Newtonian potential V (~x) = −M/r

the vector potential ~A(~x) ∼ ~Ω × ~x · 1
r3

~B drops off as 1/r3.

Proportionality factors of order RSchw/R.
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Strong-field results

Strong field results for compact objects

Perturbative method of Hartle: find the spacetime of a rotating star for a
given non-rotating configuration. Perturbation in Ω (strong fields).
Dragging of inertial frames stronger for more compact objects. Usually
ωdrag ≪ Ω, but if R→ Rs then ωdrag becomes a significant fraction of Ω.

Figure: Rotating incompressible fluid stars; Chandrasekhar and Miller, MNRAS 167, 63.
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Geodesics for (some) rotating spacetimes

ds2 =
(
dt+Ai(~x)dx

i
)2 − hij(~x) dx

i dxj , i, j = 1 . . . 3

Consider ~A(~x) as a vector field on a surface H (section) with the metric hij

Geodesics? Equivalent problem: trajectories in the static spacetime

ds2 = (dt)2 − hij(~x) dx
i dxj

in a magnetic field corresponding to Fij = ∂iAj − ∂jAi.

More precisely finding geodesics requires solving for the trajectory ~x(s)

d2xj

ds2
+ Γj

ij

dxi

ds

dxk

ds
= E Fij ẋ

i

(Γ′s of hij) together with the equation for t(s)

ṫ+Aiẋ
i = E.
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Summary of gravitomagnetic results

Message:

For weak gravitational fields there is an almost complete analogy between
magnetic and gravitomagnetic fields

Gravitomagnetic fields have an effect similar to a rotating frame of reference;
presence of massive rotating bodies alters the definition of an inertial
(non-rotating) frame

Effect much stronger if the “sources” are very compact
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Section 2: Homogeneous gravitomagnetic fields

Cold quantum phases rotate/are magnetized in a different way than “normal”
phases. Resulting configurations are homogeneous and anisotropic.

Figure: Lattice of vortices (rotation of a superfluid, MIT Group); Lattice of
magnetic-field vortices in type II superconductor (Hess et al. PRL 62, 214).

quantization of velocity circulation,
∫

vortex
~v · ~dx = n h

m

quantization of the magnetic flux,
∫

vortex
~A · ~dx = nhc

2e

cf. velocity profile of a normal rotating fluid
cf. magnetic field in type I superconductor; frame dragging in Kerr spacetime
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Gödel models and their (global) causal structure:

Gödel’s models: the homogeneous section H (hij) is: Lobachevsky
(hyperbolic) plane, sphere or a flat plane plus a free, distinguished direction z.

gravitomagnetic field of ~A, ~B = (0, 0, B), is homogeneous on H

d(Rs)2 =
(
dt+H(r)dϕ

)2 − dr2 −D2(r)dϕ2 − dz2

with

H(r) =







2B sinh2(r/2),

2B sin2(r/2),
1
2 Br

2,

D(r) =







sinh(r),

sin(r),

r,

parameters: R (scale) and B

circles x = const are closed timelike lines for sufficiently large r; they
correspond to (some) “outward” acceleration; by homogeneity - such curves
pass through every point.

projections of light-like and time-like geodesics to (r, ϕ) are “circles” (special
cases of the result for general hij)
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Spinless waves in Gödel’s spacetime

Problem: determine solutions of the wave equation

�Ψ(t, ~x) =
1√−g ∂a

[√−ggab∂bΨ
]

= 0

(usual formula for the Laplacean in curved coordinates; here: spacetime)

Ansatz: general solution Ψ is a linear combination of solutions determined by
separation of variables,

Ψ(t, ~x) =
∑

I=(E,p,...)

cIΨI(t, ~x), ΨI(t, ~x) = e−iEteipzψ(r, ϕ)

(a sum, not insisting on “initial value formulation”)

In all cases, all solutions can be found explicitly. In most cases: by algebraic
methods (ladder operators). Resulting functions are elementary functions of
w = tanh(x/2)eiϕ, e.g. ψLLL = (1 − ww)λwm with λ ∈ R+, m ∈ N.
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Sketch of the solution...

There are five Killing vectors (generators of symmetries). Three of them
K0,K1,K2 fulfill the SU(1,1) algebra commutation relations. The remaining
ones are Ka

T = (∂t)
a and Ka

z = (∂z)
a.

Remarkable identity:

� = (K2
1 +K2

2 −K2
0 )

︸ ︷︷ ︸

Casimir op. of SU(1,1)

+ (1 −B2)(∂t)
2 − (∂z)

2

︸ ︷︷ ︸

lin. comb. of K2

T
and K2

z

In Gödels original case: B =
√

2; using our Ansatz it remains to determine
eigenvectors of the Casimir operator to positive eigenvalues.

This can be done algebraically (as for spherical harmonics), note that

K+ = w2∂ − ∂ − (EB)w,

K− = −w2∂ + ∂ − (EB)w,

K0 = w∂ − w∂ − (EB), ∂ =
∂

∂w

We get base vectors annihilated by K− (and K+), and generate the rest by
applying K+ (or K−).
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Summary the results for homogeneous spacetimes:

Message:

Gödel’s spacetimes are gravitational analogs of constant magnetic fields.

Geodesics (trajectories of classical particles) and wave equations can be
solved in these spacetimes exactly and are expressed by elementary functions.
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Section 3: Superfluid models of spacetimes

Observation made by W. Unruh:

Unruh extended the usual derivation of wave equation in hydrodynamics to
arbitrary (irrotational) flows ρ(t, ~x), ~v(t, ~x), and small perturbations of this flow
(δρ, δ~v),

parametrize the perturbations via δ~v = ~∇φ, δ~ρ = − ρ
c2

d
dt
φ

with (∂t + ~v · ~∇), c2 = ∂p
∂ρ

equations of hydrodynamics, fulfilled by (ρ,~v), lead to an equation for φ:

d

dt

[
1

c2
dφ

dt

]

− 1

ρ
∂i(ρ ∂

iψ) = 0.

this is exactly the wave equation for spin-0 fields on the spacetime

ds2 =
ρ

c

[

c2 dt2 − (~dx− ~v dt)2
]
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Rotating irrotational flows and their acoustic spacetimes

Analogy works only for irrotational background flows, ∇× ~v = 0

There are so-called irrotational vortices in hydrodynamics; ~v ‖ φ̂, behaving as
|~v| = const

r

Often: finite empty core (always ρ(0) = 0); for normal fluids - models break
down within a finite core, which often rotates rigidly (analogy does not work)

Superfluids fulfill the assumptions perfectly... for distances larger than the
(small) healing length, where the “quantum pressures” modify the
hydrodynamic equations.

Stationary, axially symmetric spacetimes without the axis of rotation (if core
empty) are pathological (way too ambiguous); one cannot exclude
redefinitions of (t, ϕ) variables leading to scaling of the angle and
introductions of regions with CTCs (gravitational Abrikosov vortices)

Comparison with superfluid sound-scattering data provides a tool for
determining an effective modification of the rotating spacetime in the core
region
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Two questions...

1 What is the acoustic spacetime corresponding to a (very large) lattice of
vortices?

2 Is it possible to find an acoustic model of locally rotating spacetimes of Gödel
type (which share the symmetry of the vortex lattices)?
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Summary of the talk

Summary of the talk

Rotating matter in GR leads to the appearance of “gravitomagnetic” fields,
which relativize (set the context for) our notion of non-rotating frames.

Among examples of this effect the simplest are provided by Gödels
spacetimes, which are homogeneous and anisotropic

Physics in Gödel’s spacetimes is not technically too difficult, but can be
conceptually demanding...

Small sound on given background superfluid flows provides an arena
essentially equivalent to test spin-0 fields in curved spacetimes. To some
extent rotating spacetimes can be modeled in this way, but challenges remain
in the core of vortices.

It is not clear what type of a spacetime corresponds to a rotating
vortex-lattice.
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