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Outline of the talk

1. Quantum Field Theory and harmlessness of Black Hole horizons

2. Quantum Field Theory on curved spacetimes: state-independent re-
sults

3. Estimate of the ground-state energy densities of Quasi Black Hole
Objects



(1) The meaning of Horizons and Black Holes

• Horizons are harmless null surfaces distinguished only asymptotically
(non-locally); “one might be passing though this room and we would
not notice”

• Schwarzschild horizon is harmless in GRT, but the QFT on the
Schwarzschild spacetime distinguishes the horizon (Boulware state).

• It is a problem of the Boulware state (similar to the Fulling state in
Rindler space). Other states, representations, (eg. Hartle-Hawking)
lead to well defined QFT (away from the central singularity). QFT is
regular, all effects finite (and negligible) at the horizon.

• Static observers in Schwarzschild geometry 6= uniformly accelerated
observers in Rindler space; before collapse all the matter of a star is
assumed to be in the ground state.

• Surface of a star is time-like, whereas the horizon is null-like. The
respective ground states have nothing in common. It might happen
that the divergence of the energy density of the Boulware state is a
sharp-boundary effect.



The meaning of Horizons and Black Holes ...

• But energy densities for ground states of compact objects which only
nearly avoid collapse (such as MM-spacetimes, with the surface of
the object at 1Angstrom from the would-be horizon) likely possess
substantial negative energy densities (explained later).

• Such objects are unlikely to form if matter is a fluid with an equation
of state p = f (%). For neutron stars QFT effects are negligible.

• The pressure of quantum systems is not clearly defined once there
are external fields. Hydrodynamic formulation of an order-parameter
theory (∼Gross-Pitaevski) does not lead to simple EOS. For spherical
objects it is more likely that % = f1(r), p = f2(r), as in the MM-
spacetime. Besides, the Fermi-liquid approximation has been tested
in systems with binding energy small w.r.t. mc2 of fermions.



(2) QFT on curved spacetimes: challenges and results

• (multi-) linear observables of the theory can be determined (eg.
electric-field operators and their products at different points)

• No condition for distinguishing the reference state (eg. for the de
Sitter space the state is either the ground state or does it share the
symmetry of the spacetime)

• Related: non-uniqueness of definition of products of fields (energy
density operators); normal ordering abandoned in favor of Hadamard
point-splitting regularization

• Search for state-independent results:
– Ground states for spacetimes with horizons (Schwarschild, de Sit-
ter, Rindler) have: %B = −~c/480 π2L4 = −%water for L ≈
1Angstrom.

– Once the reference state is chosen, all other states must fulfill
Quantum Energy Inequalities (magnitude times duration like in-
equalities for non-linear densities).



Quantum Energy Inequalities

• Classically positive, nonlinear quantity (T00(t, ~x) ≡ %) can be negative
for quantum fields (even arbitrarily negative if not smeared)

• Time-integrated with the Lorentzian function

f (t) =
T

π(t2 + T 2)

the operator fulfills

%ψ − %Ω > − 1
100T 4

for all Hadamard states ψ

• T means the duration of measurement; the essential message of QEIs:
large negative energy densities can be present only for short times eg.
on Minkowski space energy density equivalent to −%water can last for
10−20s.



(3) Quasi Black-Hole spacetimes and QFT thereon

• Class of static objects, isometric to Schwarzschild almost up to the
horizon

• No local argument (TOV+EOS) for their existence
• Long sampling times, T , are possible close to the horizon:

T = 4RS ln(L/`)

Figure 2: Spacetimes under consideration.



Universal bounds on the energy density of ground states %G
Close to the horizon we get a bound from below on %G(L):

%G(L)− %B(L) > −
g1(L)
T 2

and an anticipated form of the bound from above

%B(L)− %G(L) > −
g2(L)
T 2

Remarks:

• In the limit of small ` (Quasi Black Hole Objects), we get essentially
%G(L) ≈ %B(L).

because

T = 4RS ln(L/`)

• The function g1 (related to Boulware mode sums) is known explicitly
close to the horizon; the form of g2 can only be anticipated (without
solving the scattering problem for small frequencies)



Summary and outlook

• The ground states of quantum fields in spacetimes of Quasi Black Hole
Objects will exhibit substantial negative energy density effects close
to the would-be horizons (Boulware-state result does not disappear
for horizon-free spacetimes)

• The classical approximations employed for fermions in gravitational
fields need a reexamination:

– Fermionic ground states for QBHOs will likely also exhibit non-
negligible energy densities (stress tensors)

– The Thomas-Fermi approximation appears to contradict the Ha-
damard form of the ground state of free quantum Dirac-field.
(which possesses terms containing derivatives of the external po-
tential, divergent for large Fermi energies)


