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Introduction

• QFT in external electromagnetic/gravitational fields: reliable appro-
ximation (yet - not fundamental)

• Development of local perturbative interacting QFT
• Distribution of interest: ω2(x, y)−H(x, y), that is: the two-point
function of a state minus the universal Hadamard parametrix

Plan of the talk

1. The tool: Quantum Energy Inequalities

2. The method:

• long times of measurement possible close to the horizon
• mutual bounds on energy densities of two ground states

3. The results: energy densities of grounds states of compact objects



(1) Quantum Energy Inequalities

• Classically positive, nonlinear quantity (T00(t, ~x) ≡ %) can be negative
for quantum fields

• Smeared in time by the Lorentzian function

f (t) =
T

π(t2 + T 2)

the energy-density operator fulfills (massless scalar fields on Minkow-
ski spacetime)

%ψ − %Ω > − 1
100T 4

for all Hadamard states ψ

• T means the duration of measurement
• the essential message of QEIs: for long measurements, the energy
density can not be very negative



QEI facts:

• QEIs can be established for arbitrary smearing functions f (t)
• QEIs also hold in a curved-spacetime context; there the RHS becomes
a functional QΩ[f, ~x] of similar nature.

• Large negative densities allowed only for very short times: energy
density equivalent to −%water can last for 10−20s.

Figure 1: Experimental evidence for negative energy densities, which are
compatible with QEIs (Polzik, Carri, Kimble, PRL 1992).



(2) Fundamental geometric observation
Consider two static spacetimes. One of them will contain a compact object
(“gravastars”). Both are isometric in the Schwarzschild exterior region.
Long sampling times, T , are possible close to the horizon!

T = 4RS ln(L/`)

Figure 2: Spacetimes under consideration. The largest double cone cannot
cross into the region with matter.



Mutual bounds on energy densities of ground states

• Consider ground states: B for the Schwarzschild spacetime, and G for
the gravastar.

• Energy-density operator % (smeared with a test function localized in
O) is an element of the algebra W(O).

• Locality and covariance:

W(Schwarzschild) ⊃ W(O) ⊂ W(gravastar)

• QEI with respect to B (bound from below on %G)

%G − %B > QB

• QEI with respect to G (bound from above on %G)

%B − %G > QG



(3) Results: bound from below on %G
Close to the horizon we get:

%G(L)− %B(L) > −
I [f ]
ln2(L/`)

|%B(L)|,

where L is the position where we measure, and ` is the distance from the
gravastar’s surface to the (would-be) horizon.

• ` appears only in the indicated manner `→ 0 leads to
%G(L)− %B(L) > 0.

• I [f ] is comes from the sampling function f (t) (supported on an inte-
rval of unit length); can be optimized over (I . 50).

• Bound comes from a scaling argument, with the maximal allowed time
of measurement T ; (bound scales as 1/T 2).

• %B = −~c/480 π2L4 = −%water for L ≈ 1Angstrom.



Bound from above (work in progress)

• If KMS and ground states exist for a gravastar, which is the case if
∂r(f · h) > 0, for the metric (ds)2 = f (dt)2 − (dr)2/h − r2(dΩ)2,
then,

%G(L)− %B(L) 6 −
function(r)

T

• The bound at present assures only the required decay with T for a
single spacetime.

• The function can in principle depend on `, apart from L
• I expect the limit `→ 0 to be regular.
• For a concrete bound, only the low-frequency part of the two-point
function ω2(t, L, 0, L) is necessary.

• Can we say anything more, without considering a concrete spacetime?



Summary

• Quantum energy inequalities put severe bounds on the allowed sub-
ground-state energy densities

• If there are horizons, long measurement times are granted
• The energy density for a compact object (a “would-be black hole”)
is anchored against the energy density of the Boulware state, which
diverges to the minus infinity at the horizon


