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Introduction to the problems addressed in this talk

The problem: what is the contribution of quantum fields to the energy of matter?

A calculation of the energy density of quantum fields motivated by the success of
quantum mechanics in condensed matter is quite wrong (Nernst 1916, Paulia

1920s: the radius of the static Einstein universe with this value of ρΛ

“would not even reach to the moon”)

aAs quoted by Straumann in qr-qc/0208027.
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Ansätze

The mathematical solution employed in QFT on Minkowski space (normal
ordering)... is specific to this space. It can be understood as a subtraction of a
vacuum expectation value from the products of fields,

: φ(x)2 := lim
y→x

[φ(x)φ(y) − 〈φ(x)φ(y)〉vac ]

In a curved spacetime we use the “Hadamard parametrix”, H(x, y), instead of the
vacuum 〈〉, as the later is too ambiguous. A pattern of non-trivial 〈: φ2(x) :〉S
emerges for every state S. For “quiet states” these are, luckily, small (at least
away from boundaries and horizons).

P. Marecki (Universität Leipzig) 2 / 17



Outline of the talk

1 Quantum fields interacting with atoms

2 Experimental characterization of quantum fluctuations

3 Spectrum of the Casimir effect
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Section 1: Quantum fields interacting with atoms

Interactions of fields with simple quantum systems:

Two-level atom interacting with quantum electromagnetic field

Hilbert space: C2 ⊗F , where F : Fock space,

... F build upon Ω, not necessarily the vacuum (GNS); single excitations
created by E(f)|Ω〉

standard dipole interaction, V = e ~x · ~E(t, ~x), when restricted to the two
levels of the atom:

V = e σ2 ⊗ Et(χ),

Et(χ) =

∫

d3x ~Ei(t, ~x) · ψe(~x)xiψg(~x)
︸ ︷︷ ︸

χ: wavefunctions

The evolution is unitary for all times (χ is real).
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Spontaneous emission: simplifying assumptions and the evolution

A particularly attractive description possible when states of the field restricted to
Ω ⊕ {single excitation subspace}. Recalling V = e σ2 ⊗ Et(χ), we find:

Starting from |1〉 ⊗ |Ω〉 the state never leaves the form

Ψ(t) = c(t) |1〉 ⊗ |Ω〉 + |0〉 ⊗ |E(f(t))Ω〉

After a short, exact, computation one arrives at the closed equation

ċ(t) = −e2
∫ t

0

dτ ei∆E·(t−τ) (Ω, Et(χ)Eτ (χ)Ω) c(τ)

Multiscale problem: short structure is rich (∼ 10−18s), the intermediate
structure is extremely uniform 10−18s− 10−10s...
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Spontaneous emission: remarks and observations

There are no free parameters in the model; numerical approach is
complicated by the extreme span of scales.

There emerges a “revival” if the momenta, ~p, of the quantized fields are
discretized (∼ reflecting mirrors).

The whole structure is encoded in (a) the 2-point function of the initial state
of the field (b) the atomic wavefunctions.

Extrapolating arguments (larger e2) indicate the decay time by 1 order to
large (perhaps need to include atomic recoil?)
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Interactions of fields and atoms:

The system consisting of a quantum field and a few-level atom is simple enough
to allow for an approximate solution of the spontaneous emission problem. In the
evolution (the strength of which is controlled by the fine-structure constant e2)
the state of the atom initially entangles with the state of the field. Depending on
the 2-point function of the initial state of the quantum field the amplitude of the
excited state either becomes very small or “revives”. (quant-ph/0407186)
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Section 2: Characterization of quantum states

Photodetector (e.g. photodiode)

initial state: |0 ⊗ S〉, with a bound-state |0〉 well-localized around certain x0,
and the state of interest, S, of the quantum field

final states of the electron: scattering states (Psc)

Perturbative calculation of the response. First order result:

Wexc(g) = 〈0 ⊗ S| U∗

g (Psc ⊗ 1)Ug |S ⊗ |0〉

explicitly

Wexc(g) =

∫

g(τ)g(s) dτ ds 〈0|xi(τ)Psc x
j(s)|0〉

︸ ︷︷ ︸

electronic correlation funct.

· 〈Ei(τ, x0)Ej(s, x0)〉S
︸ ︷︷ ︸

field correlation funct.

for many interesting states Wexc(g) is unmeasurably small
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Balanced homodyne detector, frequency, phase

Two photodiodes with their output subtracted

External, coherent, monochromatic light (LO) “blended” with S

〈pol[E(t, x)]〉S and LO = 〈pol[ELO(t, x) + E(t, x)]〉S

Balancing: |ELO(t, x0)| = |ELO(t, y0)|

Statistic properties of the state S de-balance the detector (stochastic process
of measurement)
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Charge J accumulated between the diodes

expectation value
〈J〉 = αel ·E

i
LO ·

〈
Ei(t0, x0)

〉

S

standard deviation (if exp. value vanishes)

〈J2〉 = α2
el ·E

i
LOE

j
LO

︸ ︷︷ ︸

LO power

·
〈
Ei(t0, x0)Ej(t0, x0)

〉

S
︸ ︷︷ ︸

Quantum field 2pt funct.

purpose: measure properties of the state S for a well-characterized LO

all field operators are restricted to the frequency of the LO

αel depends on the electronic structure of the semiconductor

t0 is the LO phase and can be varied easily in experiments

〈J2〉 is proportional to LO power
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Summary (detectors):

By exploiting a trick with subtraction of the output balanced photodiodes it is
apparently possible to quantify the fluctuations of the quantum field (even in the
vacuum!). Quantity of interest:

〈
Ei(t0, x0)Ej(t0, x0)

〉

S
(fields restricted to the

frequency of the local oscillator). Relative character of the zero-level set by the
vacuum is uncovered by the squeezed states of light (above). In some regions they
are “darker than vacuum”. (quant-ph/0703076)
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3: Spectrum of the Casimir effect

Electromagnetic fields in waveguides; quantization; ground-state

Electromagnetic fields in stationary, z−invariant cavities expressed thru two
scalar potentials E ,M, each of which fulfills the d’Alembert equation with
Dirichlet, Neumann boundary conditions on the surface.

Electromagnetic fields expressed by the second-order partial derivatives of the
potentials. In the TE case, e.g.

Bx = ∂z∂xM, Ex = ∂t∂yM, Bz = −(∂2
x + ∂2

y)M.

The potentials are quantized as independent scalar fields. The two-point
functions have a form of “sums of images” (∼ electrostatics).
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Considered setup

Side view:

Central idea: consider the Fourier transform of the two-point function

σij(ω, ~x, ~y) = Ft 〈Ei(t, ~x)Ei(0, ~y)〉G

This quantity (spectral density) is simply related to the output of an balanced
detector with LO of frequency ω

Ei
LOE

j
LO ·

〈
Ei(t0, ~x)Ej(t0, ~x)

〉

S
≈

∫

dω ki(ω)kj(ω)σij(ω, ~x, ~x)

Shortly: σij(ω, ~x, ~x) is the fluctuation of the field of frequency ω at ~x.
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Spectral density, sub-vacuum fluctuations (Hadamard)
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[Left:] Casimir ground-state spectral density normalized by Hadamard density,
[σS(ω, ~x, ~x) − σH(ω, ~x, ~x)]/σH(ω, ~x, ~x), (with ~x = (x, 0, 0)), as a function of the
position x ∈ [0, a] between the plates (plate separation, a = 1µ m is assumed).
Negative values (suppression of fluctuations) are black. [Right:] Suppression of
fluctuations in dB, that is 10 · log10 [σS(ω, ~x, ~x)/σH(ω, ~x, ~x)], for x = 0.25a
(solid) and x = 0.5a (dashed). Frequency range is ω ∈ [0, 4πc/a]
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Summary (Casimir):

Casimir setups are the simplest nontrivial modifications of the homogeneous
(Minkowski) situation. Fluctuations in the ground state are lower than the
Minkowski-vacuum ones in some regions, for some frequencies. Minkowski-vacuum
two-point function provides the simplest case of the Hadamard parametrix.
(arXiv:0711.1541)

P. Marecki (Universität Leipzig) Section: Spectrum of the Casimir effect 15 / 17



Summary of the talk

There are various situations where subtle QFT effects can be seen.

In the case of an atom the spontaneous emission is directly influenced by the
2pt function (measure of fluctuations) of the initial state of the quantum
field.

Balanced detectors provide a tool quantifying the diagonal values of the
(frequency-restricted) two point functions.

In the Casimir situation there is a rich (frequency-, position-, polarization-)
dependent pattern to look for in, hopefully, future experiments.
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Spectral densities and measured quantities

electric field in ground-state representation restricted in frequencies

E(t, x0)|k(ω) =

∫

dν(pa)ki(ωp)
[

e−iωpt ψi(p
a, x0)b(p

a) + eiωpt ψi(pa, x0)b
∗(pa)

]

,

ki(ω) will correspond to restrictions due to the LO
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