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Plan

The Dirac operator in a Coulomb field exhibits an
interesting behavior depending on the charge which
produces the field. Whereas small charges cause no
particular difficulties the higher the charge the more
delicate the situation becomes. In particular from
Z = 119 on there is a 1-parameter freedom of choosing
selfadjoint extensions of the Dirac operator which has
significant physical consequences. The talk attempts
at presenting the relevant structure.

The plan of the talk is the following:

1. Introduction
2. Coulomb potential; small nuclear charges
3. Strong Coulomb potential

4. How does the extension influence energy levels?
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Introduction

The evolution in quantum mechanics is governed by
the Hamilton operator. More precisely the Hamiltonian
should generate a one-parameter unitary group U (t).

Def. If an operator operator 1T is symmetric
(ie. (Y, Tx) = (T1,x)) than it is selfadjoint if

D(T) = D(T*)

Only selfadjoint operators generate unitary dynamics.

A theorem!?! says:

T is selfadjoint if v4; (eigenfuctions to the
eigenvalues +i) do not belong to the domain
of the adjoint operator T*.

If H is not selfadjoint (but symmetric) than it
only generates the so-called contraction semi-group
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(e.g. dynamics of the heat-flow equation in a bounded
region with constant temperature at the boundary).
Physically this means that the particles escape from
the region of interest.

Suppose an operator H is given without its domain
and that the corresponding Schrodinger equation has
singular points. How do we check the selfadjointness?
Typically it is easy to check whether H is symmetric
on a certain C3° space. If H possesses the property
of essential selfadjointness than there exists only one
selfadjoint extension to the L? and therefore the
boundary conditions follow automatically from the
square integrability of the wave functions.

Essential selfadjointness has a fascinating
connection with the completeness of the classical
motion namely, if the Hamilton equations allow
a classical particle to leave the region of interest
(e.g.  hit the boundary) in finite time than the
quantum mechanical Hamiltonian almost for sure is
not essentially selfadjoint.
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The evolution of the Dirac field in some external
potential is governed by the Hamiltonian:

H = v~ [—i0; + eA;(t,x)] — eAo(t,x) + m~°.

By far the most important question in quantum
mechanics is whether the Hamilton operator (for
certain external field of interest) is selfadjoint. It
leads towards an analysis of the boundary conditions
(if the region of interest is bounded) and of the singular
points of the potential. The situation may be classified
into following hierarchy of difficulty:

e the potential is smooth

e the potential possesses singularities, but H remains
essentially selfadjoint

e the singularities cause breakdown of the essential
selfadjointness, but selfadjoint extensions of H exist

Mathematische Grundlagen der Quantenphysik 4



1. Introduction 2003/01/17

The first case is covered by a very important
theorem:

Thm 1. If the potential is smooth the Dirac
operator H defined on D(H) = C°(R’) is essentially
selfadjoint.

Message:

The Hamilton-Dirac operator must be
selfadjoint in order to generate a unitary

evolution. This is always the case for smooth
potentials.
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Coulomb potential; small nuclear charges

Separation of angular and radial part leads to the
radial Dirac operator:

1—2 _4d &k
hﬁ:(i_'_,r.ﬁ dr Z’r‘ ) (1)

which is first defined on D(h,) = C3°(0, 0c0) functions.
Here z denotes the nuclear charge (rescalled: z = 1
corresponds to Z = e?/hc = 137,036..) and —x the
eigenvalue of the operator K = v%(J? — L? + 1/4).
For instance

Level | &

S -1
P | 1
P35 | -2

The separation of variables is justified if all the radial
operators are essentially self adjoint on D(h)'s. The
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Hilbert space is now a L? space with scalar product:

(¥, x) = /0 (1x1 + ax2) dr.

The further analysis amounts to the investigation of the
ordinary differential operator (system) (1). For given
r this operator depends only on one dimensionless
parameter (nuclear charge). Therefore all the structure
will only depend on x and Z.

The following theorem holds!!:

Thm 2. For nuclear charges not greater than

Z = 118 the Dirac-Coulomb operator is essentially
selfadjoint on D(H) = C3°(R*\{0}).

Thus no boundary conditions are needed at r = 0
or r — 00. The extension from C§° is unique by the
requirement of square-integrability. The domain of the
extended operator coincides with the domain of the
free Dirac operator.
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Strong Coulomb potential

For Z greater than 118 the Dirac operator on
C(R\{0}) is not essentially selfadjoint anymorel*.
Indeed there exist eigenfunctions which in both cases
E = +1i are square integrable at » = 0 (and vanish
quickly at co). This corresponds to the von Neumann
deficiency indices (1,1) in which case an existance
of a 1-parameter family of selfadjoint extensions is
expected.

Thus it is possible to restore selfadjointness by
means of an extension of the domain of H. Either:

e a boundary condition at r = 0 is imposed, or

e a certain linear combination of v; and vy _; is added
to the domain (for each k)

Also a regularization of the potential at small r has
a similar effect.
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The spectrum (energy levels) depends strongly on

the type of the selfadjoint extension in usel®!.

A boundary condition that the solution should
vanish at 7 = 0 is acceptablel® (and also fulfilled
for Z < 118). It leads to the famous Sommerfeld
spectrum:

E’)’L,Ii — >
V' T

From the usual treatment it is hard to see the
breakdown of the essential selfadjointness because:

e one investigates the differential equation without
looking at the adjoint problem, or

e a boundary condition/particular extension is a priori
chosen which already makes the operator selfadjoint.
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Message:

In the case 118 < Z < 137 the Dirac operator
is not essentially selfadjoint.  Only certain
extensions reproduce the usual Sommerfeld

spectrum.
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How does the extension influence energy
levels?

In the case 118 < Z < 137 there exists a particular
linear combination of the two independent solutions of
the radial Dirac equation which has a property that,
after inserting EF = 41 one gets square integrable
solutions v; and 1 _;. If a linear combination

E-(Y_;+e%) kel 0el0,2n).

is added to the domain of the operator a selfadjoint
extension is obtained. Clearly as the core was
C5°(0,00) such a solution fixes only the boundary
condition at » = 0 (at infinity 4; vanish rapidly, so
they add nothing). Now any wavefunction ) in the
domain can be decomposed into

= o + k(h_; + e%1;),

where 1y belongs to the old domain. The eigenvalue
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problem sounds:
(hy — E)pg = k(E + i)_; + k(E — i)1;.

The solution of this inhomogeneous equation (1) has
to vanish at r = 0. It may be divided into a particular
solution (,) and a homogeneous solution (¢5). The
particular solution is

by = —k(P_; + ;).

and consequently one obtains a boundary condition for
the homogeneous equation:

Pr(0) = k(v_;(0) + e%4;(0)),

which certainly produces eigenvalues different from
those obtained in the usual treatment:

(hkc _ E)wo =0
Yr(0) =0
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Conclusions and outlook

The Dirac-Coulomb problem is characterized by a
Z-dependent structure:

o for Z < 118 the Hamiltonian is essentially
selfadjoint

o for 118 < Z < 137 there are selfadjoint extensions
of the Dirac operator which lead to different energy
levels.

The case Z > 137 has also received attention. In
that case the wavefunctions oscillate rapidly as r — 0,

roughly:
w ~ ,ri\/ 22—n2,

so that no usual boundary condition makes sense. An
important question arises as to whether the energy
levels approach the lower continuum (E = —1).
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