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Outline:

1. Quantum Inequalities as restrictions on the fluctuations
of the quantum electric field, (: E2(t, Z):)s

2. Remarks about balanced homodyne detection

3. BHD response to ground state quantum noise in Casimir cavities

Motivation: verified manifestations of quantum fluctuations

e Spontaneous emission of light from atoms
e Balanced homodyne detection of light

e Casimir forces between electrically neutral objects



(1) Quantum Inequalities
(L.Ford, T.Roman, C.Fewster)

Formal problems with quantum fluctuations:

(E(t,z)E(t,z))s is UV-divergent; “correct” operators are normal-ordered
E*(t,x): = E(t,2)E(t +¢,z) — (E(t,2) E(t + €, 7)) yae
Limit € — 0 corresponds to the rule “all creation operators to the left”
:E2(t, z): |vac) = 0.
Is this an “absolute” zero? No! For |S) = N(|vac) + «|2)) we find

(:E*(t,x))s <0 for some (¢, )



(: E*(t,x):) for various states of light

:Ez(t,x).A

superposition |S)

single photon




Quantum Inequalities:
Sub vacuum levels of quantum fluctuations cannot persist for long times.

e The quantum electric field must obey

/f(t)(:EQ(t,x):>5 >

const

-
duration

e f(t): is a probability density (time of measurement) - e.g. a Gaussian

e const is a functional of f and does not depend on S
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Example: Squeezed states of light
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The fluctuations of the electric field, (E?(t)) (restricted in frequencies to
w) for a squeezed and vacuum states.
Up to frequency-dependent and polarization-factors the electric field

Et) = — ezwta . e—zwta*
(t) ﬁ( )
with single-mode sqeezing: (aa) = — cosh(r)sinh(r), (a'a) = sinh*(r),

has

(E*(t))s = (E*(t))yae + sinh(r) {sinh(r) — cosh(r) cos[2(wt — px)|} .



e [t can be verified that single-mode squeezed light fulfills the QI.

e Full expression for QI

/f VCEA(t, x)) g 27?2/ dw/d?’p\p\‘ w+\p\‘

e The functional on the RHS has the —1/duration® property.
e RHS is independent of the state S

e The QI has a clear interpretation and must be fulfilled by all states (mul-
timode squeezed, superpositions of coherent or squeezed states etc.) Al-
though for in the single-mode regime the QI is related to the Heisenberg
inequality, the merit of QI is the clear picture it offers for multi-mode
excited states of the quantum fields.

e QI have been generalized to general wordlines of detectors and curved
spacetimes; in these cases the form of the RHS gets modified.

e In original form QIs have been developed for the energy density of
quantum fields (applications to GR)



Message of Quantum Inequalities:

long waves are flat, deep waves are short

(for sub-vacuum fluctuations of the free quantum electric field).



(2) Balanced homodyne detector with a local oscillator
e T'wo photodiodes with their output subtracted
e Additional coherent light of frequency w (“Local Oscillator”)
e The quantum field (S) de-balances the detector (stochastic process of

measurement)
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BHD with LO: output
<']>S = Qg - ELLO ) <Ez(t7f) -+ Ez(t7g)>5

(J%)g = o -pg(g{@ ([Ei(t,2) + Ei(t, E; ¢, ) + Ei(t, D))o

~
LO power Related to quantum field 2pt funct.

e the RHS contains expectation values of field operators; all of these
operators are restricted to the frequency of the LO

e For stationary states (thermal or ground) the (J?)g is related to the
spectral density

oyl &,5) = [ dte (Bt DB 0,7)s

e Almost all results of QFT under influence of external conditions are
derivable from the spectral density o;;. This quantity is usually known
analytically. It is of great interest to measure this quantity for interest-
ing states!



(3) BHD response in Casimir cavities

Hypothetical experimental setup:
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Spectral density o, related to the expected output of a BHD with the LO
polarized along the y-direction (parallel to the plates) for the ground state
in the Casimir cavity (S.Hacyan) [left]. Fluctuations (E?)g in the ground
state (for field operators restricted to the frequency w) relative to vacuum
fluctuations (in the absence of the plates) for a BHD at x = 0.25um and
x = 0.5um within the cavity [right].



Remarks:

e The ground state is stationary = quantum noise in the Casimir cavity
time-independent (i.e. independent of the phase of the Local Oscillator)

e An application of the proposed type is would amount to a “tomography”
of the ground state of the Casimir cavity

e Spectral densities reveal much finer details of the quantum ground state
than the already measured Casimir forces.



Message from Casimir cavities:
Static external conditions may suppress vacuum fluctuations

(will BHD-type detectors be sensitive enough to verify this prediction?).



Summary

e Regions with sub-vacuum fluctuations must be followed by regions with
greatly increased fluctuations no matter what the state of the quantum

field is

e Casimir geometries provide environments with non-trivial, & and w de-
pendent, time-independent often sub-vacuum (E?). An experimental
verification of this prediction would be highly desirable.

Details in J. Phys. A: Math. Theor. 41 164037 (2008) (also: arXiv:0711.1541 )



(Simplest) derivation of Quantum Inequalities (C.Fewster)
Normal ordering: (: E*(t) :)s = lim,_; (E(t)E(s))s — (E(t)E(S))vac]
Identity for symmetric function h(t, s) :

1 (0.9] (0.9] - (0. 9]
— / dw / dt dse “n(t, s) = / dt h(t,t)
™ Jo — 0 —00

[ o0 220 95 =
[T [ dvase = gtayg0s) RBWE)s ~ (BWE(S)w]

\ -
-
symmetric function

We get: /_ P BXt) g = /0 " dw [(ATALYs — (AL ALY vac]

with A, = [ dt exp(—iwt) g(t) E(t); first term on RHS is positive =QI.



In details:
Ei(t, 7) = / dp(p") e E (", D(p") + ¢ E (", D ("))
where p® is a multiindex (polarizations;momenta), &; classical solution, and

[b(p®), b (k)] = 6(p" — k)

The Quantum Inequality is:

/OO PO EXt) g > —/Oood?w/d,u(pa) 15w + w2 |E:(", B)2.

o0

In Minkowski spacetime (without boundaries etc)

c_ I

T exp(—ip7)e; (P)-



Spectral densities in Casimir cavities:

With (image-sums)

o

1

42 Z (zFz2—nL)?2+(y—9)>2+(z—2)?2—(t—1t)?

n=—oo

the two-point function is found from

(Ey(2")Ey(2")e = (0; + 0;) [F~ (2", 3") — F"(a", 2],



Correlation between photodiodes?

a(x,y)

ylpm]

o/c=2n
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o(x,y)/o(x,x)

ylum]

T,y rw—27rc/1,um T = (z,0,0), ¥ = (z,y,0) [left] and
o(w,Z,y)/o(w, T, Z) for x = 0. 75,wm [right].



