UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK

Theoretische Mechanik

Übungsblatt 1
Musterlösungen

1 Aufgabe

In der Ekliptik ist die räumliche Bahnkurve des Mondes gegeben durch

$$x(t) = x_E(t) + r\cos(365.25/27.3 \cdot t)$$

$$y(t) = y_E(t) + r\sin(365.25/27.3 \cdot t)$$

wobei

$$x_E(t) = R\cos(t)$$

$$y_E(t) = R\sin(t)$$

die Position der Erde bezeichnen, $r = 0.4 \cdot 10^6 km$, $R = 150 \cdot 10^6 km$. Die Weltlinie ist parametrisch durch $\{x(t), y(t), t\}$ gegeben.

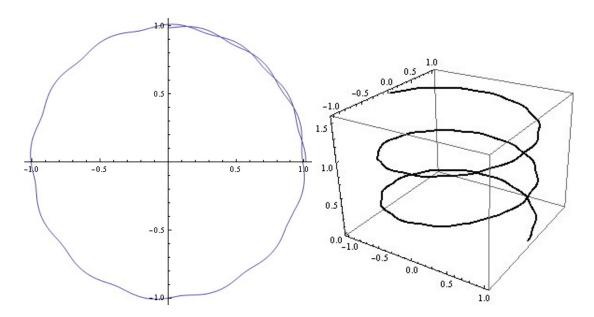


Abbildung 1: Die räumliche Bahnkurve (während 5/4 des Jahres) und die Weltlinie des Mondes. Der Abstand zwischen Erde und Mond wurde 5 Mal vergrößert.

2 Aufgabe

Wir nehmen an, dass es sich um reellen Matrizen handelt. Wegen det $D^T = \det D$ folgt aus $DD^T = \mathbf{1}$ dass $(\det D)^2 = 1$, d.h. det $D = \pm 1$. Wenn det $D \neq 0$ ist, dann existiert auch die inverse Matrix D^{-1} . Aus der Relation

$$DD^T = \mathbf{1}$$

folgt durch Multiplikation von Links mit D^{-1} dass

$$D^T = D^{-1}$$
.

Anderseits, wenn D=D(t) eine Matrixwertige funktion bezeichnet, dann aus $DD^T=\mathbf{1}$ zusammen mit

$$\frac{d}{dt} \big[A(t) \cdot B(t) \big] = \left[\frac{d}{dt} A(t) \right] \cdot B(t) + A(t) \cdot \frac{d}{dt} B(t)$$

folgt an der Stelle t = 0 (wo D(t) = 1)

$$\dot{D} \cdot \mathbf{1} + \mathbf{1} \cdot \dot{D}^T = \dot{\mathbf{1}} = 0$$

also

$$\dot{D} = -\dot{D}^T.$$

3 Aufgabe

Wir betrachten nur den Fall $\beta = 1$ (die Verallgemeinerung für $\beta \neq 1$ ist klar). Die allgemeinen Galilei-Transformationen $T_{G,g}$ lassen sich verstehen als eine Komposition von

- Translationen $V(\mathbf{g})$ mit $D = \mathbf{1}$ und $\vec{w} = 0$,
- Drehungen/Spiegelungen D mit $D \neq \mathbf{1}$, $\vec{w} = 0$, $\mathbf{g} = 0$
- Eigentlichen Galilei-Transformationen $G(\vec{w})$ mit $D=\mathbf{1},\,\mathbf{g}=0,\,\vec{w}\neq0$

Es gilt

$$T_{G,g} = V(\mathbf{g}) \circ G(\vec{w}) \circ D.$$

Offensichtlich existiert die inverse Transformation T^{-1} dann und nur dann, wenn V^{-1} , G^{-1} und G^{-1} existieren. Nun für die Translationen, $V(\mathbf{g})$, ist $[V(\mathbf{g})]^{-1} = V(-\mathbf{g})$. Wegen der Orthogonalität von den Matrizen D gilt auch $D^{-1} = D^T$. Für die eigentliche Galilei-Transformationen $G(\vec{w})$ die inverse Transformation ist gegeben durch

$$[G(\vec{w})]^{-1} = G(-\vec{w}).$$

Offensichtlich existieren die Inversen von V, G und D immer.

Zur Kompositionseigenschaft: mit

$$G_1 G_2 = \left(\begin{array}{cc} D_1 D_2 & D_1 \vec{w_2} + \vec{w_1} \\ 0 & 1 \end{array} \right)$$

und

$$G_1 g_2 = \left(\begin{array}{c} D_1 \vec{k} + \lambda w_1 \\ \lambda \end{array}\right)$$

verifiziert man die Kompositionseigenschaft durch Vorwartsrechnen.