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Constructive AQFT

In AQFT the basic objects are

• algebras A(O) of observables associated with open O ⊂ Md

• states ω on A =
∨

O A(O)

subject to certain physically motivated conditions
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Constructive AQFT

From this structure we have learned how to extract physical information, e.g.

• superselection structure, charges and charge–carrying fields, statistics

• existence and properties of thermal equilibrium states

• particle interpretation (from infraparticles to ultraparticles), collision cross

sections

• quantum fields locally associated with {A(O)}, operator product

expansions, short distance structure

• representation U(P↑
+) which acts covariantly on {A(O)} and satisfies the

spectrum condition, dynamics

• the space–time itself
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Constructive AQFT

The conceptual advances made in AQFT in the past 50 years are truly admirable,

but there is a fly in the ointment. We still do not have physically relevant

interacting models for d = 4, much less models which reproduce the results of

the computation schemes developed by elementary particle theorists. A crucial

problem for the scientific program of AQFT (and, I believe, its survival) is to

demonstrate the existence of such models.
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Constructive AQFT

One strategy (Glimm & Jaffe, etc.) for obtaining such models is to construct first

suitable local quantum fields by beginning with certain well–defined cutoff

theories and controlling the limits as the cutoffs are removed. The net {A(O)} is

then generated from these local fields. These fields are constructed in a concrete

representation, which then determines a folium of states on A.

This strategy relies heavily on (quasi–)classical intuitions.
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Constructive AQFT

Purely Algebraic (and Quantum)
Construction of Quantum Field Models

(Further details at 14:00 on Tuesday in the ITP.)

• Strategies

• Concrete implementation of a strategy
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Constructive AQFT

Purely Algebraic (and Quantum) Construction Strategies

These strategies go beyond the quasi–classical picture and have already resulted

in models which either cannot be constructed by quasi–classical methods at all ,

or can only be done so (even in principle) with a much greater expenditure of

effort than that required by the purely algebraic methods.
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Constructive AQFT

Crucial to all purely algebraic constructions so far have been algebras associated

with wedge regions.

W’ W

edge
space

time

Figure 1: A wedge W , its causal complement W ′ and their common edge
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Constructive AQFT

One purely algebraic strategy (Wiesbrock) is to construct a small number of von

Neumann algebras satisfying certain relations (involving their modular structure

with respect to a certain state vector) and from them to generate the net {A(O)}
(in which the initial algebras are re-interpreted as certain wedge algebras).
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Constructive AQFT

Another algebraic strategy (Buchholz & Lechner, Buchholz & S., Longo & Rehren)

is to construct a net of nonlocal wedge algebras and use suitable relative

commutants of such algebras to construct a net {A(O)} of local algebras.
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Constructive AQFT

Yet another algebraic strategy (Buchholz & S.) is to construct a representation

U(P↑
+) satisfying the spectrum condition (it would suffice to do so on Fock

space) and for a fixed wedge W0 (e.g. WR
.
= {x ∈ M4 | x1 > |x0|} ) exhibit

an algebra G which satisfies the consistency conditions:

• U(λ)GU(λ)−1 ⊂ G whenever λW0 ⊂ W0 for λ ∈ P↑
+.

• U(λ′)GU(λ′)−1 ⊂ G′ whenever λ′ W0 ⊂ W ′
0 for λ′ ∈ P↑

+.

Any algebra G satisfying these conditions is the germ of a quantum field theory in

the following sense: setting

A(W)
.
= U(λ)GU(λ)−1 ,

where λ ∈ P↑
+ satisfies W = λW0 for given W ∈ W , then the definition of the

wedge algebras A(W) is consistent and satisfies the conditions of isotony,

covariance and locality.
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Constructive AQFT

The algebras corresponding to arbitrary causally closed convex regions O can

then consistently be defined by taking intersections of wedge algebras:

A(O)
.
=

⋂

W⊃O

A(W) . (1)

Conversely, any asymptotically complete quantum field theory with the given

particle content fixes an algebra G (namely the observable algebra associated

with W0) with the above properties. Thus any decent quantum field theory can, in

principle, be presented in this way. However, at present a dynamical principle by

which the algebra G can be selected is missing.

An important question for both the interpretation and the physical content of the

model is: For which classes of regions O is the intersection (1) nontrivial, resp. is

a vector invariant under U(P↑
+) cyclic for (1)?
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Constructive AQFT

Three Concrete, Purely Algebraic
Construction Techniques
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Modular Localization

Brunetti, Guido & Longo (2002) , Schroer (1997 . . . ) (d ≥ 2)

Initial data: strongly continuous (anti)unitary representation U1(P+) on H1

satisfying the spectrum condition. Yields U(P+) on H, bosonic Fock space with

one–particle space H1.

Let U1(vR(t)) = eitK1 and define

∆
1/2
WR

.
= eπK1 , JWR

.
= U1(θR)

SWR

.
= U1(θR)eπK1 = JWR

∆
1/2
WR

KWR

.
= {f ∈ D(SWR

) | SWR
f = f}

(real subspace of H1)
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Constructive AQFT

eh .
= ⊕∞

n=0

1√
n!

h⊗n , h ∈ H1

V (f)e0 .
= e−

1

4
‖f‖2

e
i√
2
f
, f ∈ H1

V (f)V (g)
.
= e−

i

2
Im〈f,g〉V (f + g) , f, g ∈ H1

(unitary operators on H)

Define A(WR)
.
= {V (f) | f ∈ KWR

}′′.
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Constructive AQFT

Theorem 1 (Brunetti, Guido & Longo, 2002). The structure (U(P↑
+),A(WR))

satisfies the consistency conditions and determines a local, Poincaré covariant

net {A(O)}. The Fock vacuum vector Ω is cyclic for A(W), for any wedge W ,

and for A(C), for any spacelike cone C. In the case that U1(P+) is irreducible

with half integer spin, Ω is also cyclic for A(O), for any double cone O.

Further results were obtained by Fassarella & Schroer (2002) and Mund, Schroer

& Yngvason (2004) in the special case of massless, “infinite spin” representations

U1. In particular, Ω is not cyclic for double cone algebras. So there is no local

quantum field associated with the net in this case. (Yngvason, 1970)
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Factorizing S–Matrix Models — Using Nonlocal Fields to Define

Local Nets

Schroer (1997, 1999), Lechner (2003–2008)

It turns out that this approach is very productive for d = 2, but it results in

theories with trivial scattering for d = 4 (Borchers, Buchholz & Schroer (2001)).

Important Lesson: The construction is implemented using easily constructed

nonlocal fields to obtain nonlocal wedge algebras A(W). For d = 2, if

W1,W2 ∈ W satisfy W2 ⊂ W1, then O = W1 ∩W2
′ is a double cone. And

every double cone can be obtained in this manner. Defining for such a double

cone

A0(O)
.
= A(W1) ∩ A(W2)

′

results in a local, Poincaré covariant net, and the vacuum is cyclic for the resulting

double cone algebras (Lechner (2008)). But arguments (Smirnov (1992), Schroer

(1999)) and examples (McCoy, Tracy & Wu (1977)) indicate that the associated

local fields must be infinite power series in the (simple) nonlocal fields.
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Constructive AQFT

Buchholz & S. studied a special case of these models for d ≥ 2. Indeed, acting

on antisymmetric Fock space is a scalar Fermi field φ satisfying (Jost, 1964)

φ
(

(� + m2)f
)

= 0 ,

and

{

φ(f), φ(g)
} .

= φ(f)φ(g) + φ(g)φ(f) =
(

〈g|f〉 + 〈f |g〉
)

· 1I .

These fields are used to obtain a maximally nonlocal wedge net {A(W)}
W∈W .
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Constructive AQFT

For d = 4, such an O = W1 ∩W2
′ is unbounded (spacelike cylinder). Defining

A0(O)
.
= A(W1) ∩ A(W2)

′ ,

one has

Theorem 2 (Buchholz & S., 2007). For d = 4, the net of spacelike cylinder

algebras determined by any fixed coherent family W0 of wedges is local,

nontrivial and is covariant under U(P0), where P0 is the largest subgroup of P+

leaving the set W0 fixed. Two body scattering can be defined, but is trivial. For

d = 2, Haag–Ruelle scattering theory is applicable, and one has

S = (−1I)N(N−1)/2 .
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Deformations

Grosse & Lechner (2007, 2008), Buchholz & S. (2008,2009) (d ≥ 2)

In order to construct concrete models on noncommutative Minkowski space,

Grosse and Lechner (2007) performed a certain deformation upon the free

quantum field on Minkowski space. They remarked that the resultant net could be

interpreted either on Minkowski space or on noncommutative Minkowski space.

Buchholz and S. realized that the deformation of Grosse and Lechner was a

special case of a deformation which could be applied to (essentially) any model,

not just the free field.
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Constructive AQFT

Begin with an initial net {A(O)} and representation U(P↑
+) satisfying the

spectrum condition. Consider the set F of all operators F which are smooth

under the adjoint action αx(F )
.
= U(x)FU(x)−1, x ∈ R

4. With

U(x) = eiPx =

∫

eipx dE(p) , x ∈ R
d ,

and any skew–symmetric 4 × 4–matrix Q, define for any F ∈ F

QF
.
=

∫

αQp(F ) dE(p) , FQ
.
=

∫

dE(p) αQp(F ) . (2)

The operators QF and FQ are typically unbounded, even if F is bounded.

Stephen J. Summers University of Florida Page 21



Constructive AQFT

Theorem 3 (Buchholz & S., 2008). For all F ∈ F one has:

(a) QF = FQ

(b) F ∗
Q ⊂ FQ

∗

(c) (FQ1
)Q2

= FQ1+Q2
for all skew–symmetric Q1, Q2

(d) αλ(FQ) =
(

αλ(F )
)

ΛQΛ−1 for all λ ∈ P↑
+

(e) QFΩ = FQΩ = FΩ
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Now consider Q which, with respect to the chosen proper coordinates (those for

which W0 = WR ), has the form

Q
.
=















0 κ 0 0

κ 0 0 0

0 0 0 ρ

0 0 −ρ 0















for some fixed κ > 0, ρ ∈ R. Note that this matrix is skew symmetric with

respect to the Lorentz inner product.
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For such Q’s Grosse and Lechner (2007) observed

(i) Let λ = (Λ, x) ∈ P↑
+ be such that λW0 ⊂ W0. Then ΛQΛ−1 = Q.

(ii) Let λ′ = (Λ′, x′)∈P↑
+ be such that λ′ W0⊂W0

′. Then Λ′QΛ′ −1 =−Q.

(iii) QV+ = W0.
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Definition 0.1. Let W ∈ W and let λ = (Λ, x) ∈ P↑
+ be such that

W = λW0. Let AQ(W) be the polynomial algebra generated by all warped

operators AΛQΛ−1 with A ∈ A(W)
.
= A(W) ∩ F.

Theorem 4 (Buchholz & S., 2008, 2009). Let A(W), W ∈ W , be a family of

wedge algebras having the Reeh–Schlieder property and satisfying the conditions

of isotony, covariance, and locality. Then the family of deformed algebras

AQ(W) ⊂ F, W ∈ W , also has these properties. In addition, if W1 ⊂ W ′
2

and B1 ⊂ B∗
1 ∈ AQ(W1), B2 ⊂ B∗

2 ∈ AQ(W2), then B1 and B2 commute

strongly.
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Theorem 5 (Buchholz & S., 2009). Under the same assumptions as above, if

AQ(WR)
.
= {AQ | A ∈ A(WR)}′′, then AQ(WR) satisfies the consistency

conditions, resulting in a local and covariant net {AQ(O)}.

Moreover, if the original theory describes a scalar massive particle, then two body

scattering is well defined in the deformed theory, resulting in the following relation

between the deformed (improper) scattering states and the original (improper)

scattering states:

|p ⊗Q q〉in = ei|pQq| |p ⊗ q〉in

|p ⊗Q q〉out = e−i|pQq| |p ⊗ q〉out .

Note that the deformed scattering states depend upon the choice of W0 through

the choice of Q and thus break the Lorentz symmetry.
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The kernels of the elastic scattering matrices in the deformed and undeformed

theory are related by

out〈p ⊗Q q|p′ ⊗Q q′〉in = ei|pQq|+i|p′Qq′| out〈p ⊗ q|p′ ⊗ q′〉in .

Thus they differ from each other, showing that the initial and deformed theories

are not isomorphic.
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Observables With Localizations Smaller Than Wedges?

• Algebras associated with double cones are trivial.

• At least for a one parameter family of admissible Q’s, algebras associated

with spacelike cylinders are nontrivial.
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