On state spaces for perturbative QFT in curved spacetimes

Ko Sanders

jacobus.sanders@theorie.physik.uni-goettingen.de Institute of Theoretical Physics, University of Göttingen

26-27 June 2009, 24th Workshop "Foundations and Constructive Aspects of QFT", Leipzig

arXiv:0903.1021v1 [math-ph] (to appear in CMP)

On state spaces for perturbative QFT in curved spacetimes

Ko Sanders

Introduction: state spaces in perturbative QFT

Distributional approach to QFT

Microlocal spectrum and Hadamard spectrums

Commutation relations and Hadamard states

An axiomatic generalisation

Conclusions/open problems

Distributional approach to QF1

Microlocal spectrum and Hadamard conditions

Commutation relations and Hadamard states

An axiomatic generalisation

Conclusions/open

Introduction: state spaces in perturbative QFT

Distributional approach to QFT

Microlocal spectrum and Hadamard conditions

Commutation relations and Hadamard states

5 An axiomatic generalisation

6 Conclusions/open problems

Distributional approach to Q

Microlocal spectrum and Hadamard conditions

Commutation elations and ladamard states

An axiomatic generalisation

Conclusions/oper

For perturbative QFT in a background gravitational field:

- The vacuum is replaced by the set S_H of Hadamard states. These are states of finite energy density.
- The extended algebra of Wick powers and time-ordered products is related to the subset $S_{\mu SC} \subset S_H$ of states satisfying a microlocal spectrum condition.

Questions:

- What are the relations between S_H , $S_{\mu SC}$ and the set S^{ext} of all states on the extended algebra?
- Can the construction of the extended algebra, involving $S_{\mu SC}$, be generalised to an axiomatic framework?

Introduction: state spaces in perturbative QFT

Distributional approach to QFT

spectrum and Hadamard conditions

relations and Hadamard states

An axiomatic generalisation

Conclusions/oper

We will find:

Assuming (anti-)commutation relations:

$$S_H = S_{\mu SC} = S^{ext}$$
.

• Given a "nice" state space S on an algebra A, we can canonically construct an extended algebra A^{ext} with $S = S^{ext}$.

We define the *Borchers-Uhlmann algebra* \mathcal{U} on a spacetime $M = (\mathcal{M}, g)$ such that:

- \mathcal{U} is algebraically generated by a unit I and elements $\Phi(f)$ with $f \in C_0^{\infty}(M)$,
- Φ is \mathbb{C} -linear: $\Phi(f+g) = \Phi(f) + \Phi(g)$,
- Φ is real: $\Phi(f)^* = \Phi(\overline{f})$,
- there is some topology.

A state ω on $\mathcal U$ is a linear functional that is

- positive: $\omega(A^*A) \geq 0$, $A \in \mathcal{U}$,
- normalised: $\omega(I) = 1$,
- continuous, i.e. it is given by a sequence of *n*-point distributions ω_n on $M^{\times n}$:

$$\omega_n(x_n,\ldots,x_1):=\omega(\Phi(x_n)\cdots\Phi(x_1)).$$

We define the *Borchers-Uhlmann algebra* \mathcal{U} on a spacetime $M = (\mathcal{M}, g)$ such that:

- \mathcal{U} is algebraically generated by a unit I and elements $\Phi(f)$ with $f \in C_0^{\infty}(M)$,
- Φ is \mathbb{C} -linear: $\Phi(f+g) = \Phi(f) + \Phi(g)$,
- Φ is real: $\Phi(f)^* = \Phi(\overline{f})$,
- there is some topology.

A *state* ω on \mathcal{U} is a linear functional that is:

- positive: $\omega(A^*A) \geq 0$, $A \in \mathcal{U}$,
- normalised: $\omega(I) = 1$,
- continuous, i.e. it is given by a sequence of *n*-point distributions ω_n on $M^{\times n}$:

$$\omega_n(x_n,\ldots,x_1):=\omega(\Phi(x_n)\cdots\Phi(x_1)).$$

The *truncated n-point distributions* ω_n^T for $n \ge 1$ are defined implicitly by:

$$\omega_n(x_n,\ldots,x_1) = \sum_{P} \prod_{r \in P} \omega_{|r|}^T(x_{r(|r|)},\ldots x_{r(1)}),$$

where P is a partition of $\{1, \ldots, n\}$ into disjoint ordered subsets r with |r| elements. In detail:

$$\omega_{1}(x_{1}) = \omega_{1}^{T}(x_{1})
\omega_{2}(x_{2}, x_{1}) = \omega_{2}^{T}(x_{2}, x_{1}) + \omega_{1}^{T}(x_{2})\omega_{1}^{T}(x_{1})
\omega_{3}(x_{3}, x_{2}, x_{1}) = \omega_{3}^{T}(x_{3}, x_{2}, x_{1}) + \omega_{2}^{T}(x_{3}, x_{2})\omega_{1}^{T}(x_{1})
+ \omega_{2}^{T}(x_{3}, x_{1})\omega_{1}^{T}(x_{2}) + \omega_{2}^{T}(x_{2}, x_{1})\omega_{1}^{T}(x_{3})
+ \omega_{1}^{T}(x_{3})\omega_{1}^{T}(x_{2})\omega_{1}^{T}(x_{1})$$

A state is *quasi-free* if and only if $\omega_n^T = 0$ for $n \neq 2$.

To study the singularities of n-point distributions we use the notion of wave front set from microlocal analysis.

For a distribution (density) u on a manifold M

- the wave front set WF(u) is a subset of T^*M ,
- u is smooth near $x \in M$ iff $WF(u) \cap T_x^*M = \emptyset$,
- $WF(u+v) \subset WF(u) \cup WF(v)$,
- and many more nice properties...

For a distribution u with values in a Banach space B we define: $WF(u) := \bigcup_{I \in B'} WF(\overline{I \circ u}) \setminus \{(x,0)\}.$

 Many properties for these wave front sets follow from the scalar case.

For distributions u, v with values in a Hilbert space \mathcal{H} one uses the Cauchy-Schwartz inequality to prove:

Theorem (Strohmaier-Verch-Wollenberg (2002))

$$(x,k) \in WF(u) \Leftrightarrow (x,-k;x,k) \in WF(\langle u,u\rangle).$$

and

$$(x, k; y, l) \in WF(\langle u, v \rangle) \Rightarrow (y, l) \in WF(v) \text{ or } l = 0.$$

Microlocal spectrum condition - 1

Definition

A state ω on \mathcal{U} satisfies the *microlocal spectrum condition* (μ SC) iff $WF(\omega_n) \subset \Gamma_n$ for all n.

We call a state ω on \mathcal{U} Hadamard iff $WF(\omega_2) \subset \Gamma_2$.

Here the sets $\Gamma_n \subset T^*M^{\times n}$ are physically motivated by embedding (Feynman) graphs into M:

$$(x_n, k_n; \dots; x_1, k_1) \in \Gamma_n \Leftrightarrow \text{there are}$$

- finitely many points $y_1, \ldots, y_m \in M$,
- an ordering of $\{x_1, \ldots, x_n, y_1, \ldots, y_m\}$ such that $x_1 < x_2 < \ldots < x_n$,
- finitely many piecewise smooth curves γ_e between a source s(γ_e) and a target t(γ_e) ≥ s(γ_e) in {x₁,...,x_n,y₁,...,y_m},
- on each γ_e a causal, future pointing covector field ξ_e such that $\nabla \xi_e = 0$ along γ_e ,

On state spaces for perturbative QFT in curved spacetimes

Ko Sanders

Introduction: state spaces in perturbative QFT

Distributional approach to QFT

Microlocal spectrum and Hadamard conditions

Commutation relations and Hadamard states

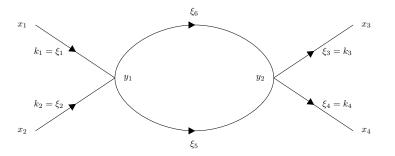
An axiomatic generalisation

Conclusions/open problems

Microlocal spectrum condition – 2

such that for each i = 1, ..., n, j = 1, ..., m:

$$\begin{aligned} k_i &= \sum_{\gamma_e: \ s(\gamma_e) = x_i} \xi_e(x_i) - \sum_{\gamma_e: \ t(\gamma_e) = x_i} \xi_e(x_i), \\ 0 &= \sum_{\gamma_e: \ s(\gamma_e) = x_i} \xi_e(x_i) - \sum_{\gamma_e: \ t(\gamma_e) = x_i} \xi_e(x_i). \end{aligned}$$



On state spaces for perturbative QFT in curved spacetimes

Ko Sanders

Introduction: state spaces in perturbative QFT

Distributional approach to QFT

Microlocal spectrum and Hadamard conditions

Commutation relations and Hadamard states

An axiomatic generalisation

Conclusions/open problems

Some useful properties of the Γ_n are:

- Each Γ_n is a convex cone and $\Gamma_n \cap \underline{0} = \emptyset$,
- $\Gamma_n \cap -\Gamma_n = \emptyset$,
- for every partition P of $\{1, \ldots, n\}$ as before with the permutation $\pi: (1, \ldots, n) \to (r_1, \ldots, r_m)$ we have

$$(\Gamma_{|r_1|} \cup \underline{0}) \cup \ldots \cup (\Gamma_{|r_m|} \cup \underline{0}) \subset \Gamma_{\pi(n)} \cup \underline{0},$$

where π reorders the factors in $(T^*M)^{\times n}$.

Corollary

A state ω enjoys the μ SC if and only if WF(ω_n^T) $\subset \Gamma_n$ for all n > 1.

Hadamard conditions

relations and Hadamard states

An axiomatic generalisation

Conclusions/oper problems

The algebra \mathcal{U}^E of a "generalised free field" is defined like \mathcal{U} with the additional requirement:

Φ satisfies commutation relations:

$$[\Phi(f),\Phi(g)]=iE(f,g)I$$

for a scalar distribution E on $M^{\times 2}$.

I.e. we divide \mathcal{U} by the ideal $\langle [\Phi(f), \Phi(g)] - iE(f,g)I \rangle$.

Proposition

A state ω on \mathcal{U} descends to a state on \mathcal{U}^E for some E if and only if ω_n^T is fully symmetric in its arguments for all $n \neq 2$. Then, $iE(x_2, x_1) = \omega_2(x_2, x_1) - \omega_2(x_1, x_2)$.

(For anti-commutation relations the $\omega_{n\neq 2}^T$ are anti-symmetric and $iE(x_2, x_1) = \omega_2(x_2, x_1) + \omega_2(x_1, x_2)$.)

An axiomatic generalisation

Conclusions/open problems

Proof.

Assume all ω_n^T are fully symmetric for $n \neq 2$. Expressing

$$\omega_n(x_n,\ldots,x_1)-\omega_n(x_n,\ldots,x_i,x_{i+1},\ldots,x_1)$$

in terms of ω_n^T most terms cancel, namely:

- if the indices i, i + 1 appear in the same $\omega_{n \geq 3}^T$,
- if i, i + 1 don't appear in the same factor ω_n^T .

The remaining terms can be rewritten as

$$(\omega_2(x_{i+1},x_i)-\omega_2(x_i,x_{i+1}))\omega_{n-2}(x_n,\ldots\widehat{x_{i+1}},\widehat{x_i},\ldots,x_1).$$

The opposite direction uses the same combinatorics. \Box

Corollary

A Hadamard state ω on \mathcal{U}^E satisfies the μ SC and each $\omega_{n\neq 2}^T$ is smooth. It follows that $\mathcal{S}_H = \mathcal{S}_{\mu SC}$.

Proof.

Using Hilbert space-valued distributions:

$$(x_n, k_n; \dots; x_1, k_1) \in WF(\omega_n), k_1 \neq 0 \Rightarrow$$

 $(x_1, k_1) \in WF(\pi_{\omega}(\Phi(.))\Omega_{\omega}) \Rightarrow$
 $(x_1, -k_1; x_1, k_1) \in WF(\omega_2),$

so k_1 must be future pointing by the Hadamard condition. Similarly, k_n must be past pointing. This also holds for ω_n^T , so by symmetry each $\omega_{n\neq 2}^T$ is smooth! Hence $WF(\omega_n^T) \subset \Gamma_n$ for all n.

distributional approach to QF

Hadamard conditions

Commutation

relations and Hadamard states An axiomatic

generalisation

Conclusions/oper problems

Corollary (Brunetti-Fredenhagen-Köhler (1996))

The space S_H on \mathcal{U}^E is closed under operations from the algebra.

Proof.

One checks that $WF(\omega(A^*\Phi(.)\Phi(.))A) \subset \Gamma_2$ for all $\omega \in \mathcal{S}_H = \mathcal{S}_{\mu SC}$.

For a free real scalar field:

Corollary (cf. Hollands-Ruan (2002))

All Hadamard states on A extend to A^{ext} , i.e. $S_H = S_{\mu SC} = S^{ext}$.

Distributional approach to QF

Microlocal pectrum and ladamard

Commutation relations and Hadamard states

An axiomatic generalisation

Conclusions/open problems

The choice of S_H on A and the definition of A^{ext} are related.

- Can this relation be generalised to an axiomatic framework?
- Can we always ensure that S^{ext} is the initial state space?
- What is a suitable topology on A^{ext}?

These questions are related: a weaker topology on \mathcal{A}^{ext} admits less (continuous) states.

The weakest l.c. topology that leaves all initial states continuous is generated by the semi-norms:

$$A \mapsto |\omega(A)|.$$

Microlocal spectrum and Hadamard

Commutation relations and Hadamard states

An axiomatic generalisation

Conclusions/ope problems

Theorem

Let \mathcal{A} be any topological *-algebra and \mathcal{S} a state space such that

- ullet ${\cal S}$ is closed under operations from ${\cal A}$
- if a state ρ satisfies $|\rho(A)| \le c|\omega(A)|$ for all $A \in \mathcal{A}$ and some c > 0, $\omega \in \mathcal{S}$, then $\rho \in \mathcal{S}$.

Then one can canonically construct a (Hausdorff) topological *-algebra \mathcal{A}^{ext} and a continuous algebraic homomorphism $\alpha: \mathcal{A} \to \mathcal{A}^{\text{ext}}$ such that:

- $\alpha(A) \subset A^{ext}$ is dense,
- the full state space $S^{\text{ext}} = S$ (affine bijection),
- A^{ext} carries the weak topology induced by S^{ext} .

spectrum and Hadamard conditions

Commutation relations and Hadamard states

An axiomatic generalisation

Conclusions/open problems

Remarks:

- For a free scalar field our \mathcal{A}^{ext} contains the extended algebra of Brunetti-Fredenhagen.
- $A \in \ker(\alpha) \Leftrightarrow \pi_{\omega}(A) = 0 \text{ for all } \omega \in \mathcal{S}.$
- The state space S can be encoded entirely in the choice of topology (under the given assumptions).
- A similar theorem holds for locally covariant QFT's if the state spaces
 - are locally covariant,
 - satisfy local physical equivalence.

Injective morphisms $\mathcal{A}_1 \to \mathcal{A}_2$ then extend to injective morphisms $\mathcal{A}_1^{ext} \to \mathcal{A}_2^{ext}$, but the algebras \mathcal{A}^{ext} are not the same as above.

• In general A^{ext} is not (sequentially) complete.

An axiomatic

Conclusions/open problems

- (Anti-)commutation relations are characterised by
- For generalised free fields we have $S_H = S_{\mu SC}$, because $\omega_{n\neq 2}^T$ is smooth in this case.

(anti)-symmetry of $\omega_{n\neq 2}^T$ in its arguments.

- For free scalar fields it follows that $S_H = S_{uSC} = S^{ext}$.
- In an axiomatic framework we can characterise "nice" state spaces S in terms of a topology on Aand construct an extended algebra \mathcal{A}^{ext} .

An axiomatic

Conclusions/open problems

- Can we extend the equality $S_H = S_{uSC}$ to the axiomatic OPE approach?
- Is our A^{ext} bigger than that of Brunetti-Fredenhagen?
- How is our weak topology on A^{ext} related to the Hörmander topology?
- Can we choose a better topology on \mathcal{A}^{ext} such that $S = S^{ext}$ and the algebra is (sequentially) complete?