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Noncommutative Geometry

General idea: X Hausdorf↔ C0(X )↔ abelian C*-algebras;∫
dµ→traces.

Slogan: noncommutative C*-algebras=algebras of “functions”
on noncommutative spaces.
Approach of Alain Connes: generalisation and extrapolation of
concepts of differential geometry: spectral triples! Advantages:
elegance and beauty. Successful stories: derivation from basic
assumptions of the (phenomenological) standard model;
reconstruction of commutative geometry. Disadvantages: lack
of guidance from physical concepts, physical spacetime neither
euclidean nor compact.
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Quantum Spacetime through
Quantisation of Coordinates

First attempt based on minimal length (Snyder ’49). Different
motivations: quest for ultraviolet regularisation.
DFR ’95: coordinate quantised according to 1) stability principle
of spacetime under measurements, 2) full Poincaré covariance.
DFR different in spirit from Mead treatment of Heisenberg
microscope, and from Ciafaloni–Veneziano (concept of minimal
length).
DFR: uncertainty relations do not prevent exact localisation in
some coordinates, like Heisenberg UR do not prevent sharp
position at the cost of totally uncertain momentum.
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Twisted Covariance

An apparently different approach to coordinate quantisation
was proposed by Chaichian and cols, Wess and cols.
• commutator matrix invariant in all frames (ordinary

covariance broken);
• covariance restored in a deformed sense (by Hopf algebra

techniques).
I want to show that this approach is equivalent to the fully
covariant DFR model, moneying an additional assumption on
admissible localisation states. I will conclude with some critical
remarks on this assumptions.
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Part I
Tensor character of θ



NC Coordinates and Twisted Products
Commutation Relations: [qµ,qν ] = iθµν , θ fixed once and for all
in a given reference frame. Weyl Form:

eihqeikq = e−
i
2 hθkei(h+k)q

Weyl quantisation:

Wθ(f ) =

∫
dk f̌ (k)eikq.

Twisted Product defined by:

Wθ(f )Wθ(g) = Wθ(f ?θ g).

Easier to work in momentum space:

f ?θ g = ˇ̂f ×θ ǧ

where hθk = hµθµνkν = htGθGk and

(f̌ ×θ ǧ)(k) =

∫
dh f̌ (h)ǧ(k − h)e−

i
2 hθk .
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Moyal Expansion; Drinfeld Twist

Let’s write for the ordinary and twisted convolution

c(f̌ ⊗ ǧ)(k) = (f̌ × ǧ)(k), cθ(f̌ ⊗ ǧ)(k) = (f̌ ×θ ǧ)(k);

We define the multiplication operator

(Tθ f̌ ⊗ ǧ)(h, k) = e−
i
2 hθk f̌ (h)ǧ(k),

fulfilling Tθ−1 = T−θ and (only on analytic symbols!)

(Fθf ⊗ g)(x , y) = ̂(Tθ f̌ ⊗ ǧ)(x , y) =
(

e
i
2 θ

µν∂µ⊗∂ν f ⊗ g
)

(x , y),

so that
cθ = c ◦ Tθ.

We recover position space definition (with Fθ =ˆ◦ Tθ ◦ˇ)

̂cθ(f ⊗ g) = mθ(f ⊗ g) = m(Fθf ⊗ g).
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We define the multiplication operator
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Twisted Poincaré Action

Define
(α(L)f̌ )(k) = e−ika f̌ (Λ−1k), L ∈P

(Fourier Transform of f 7→ Lf (x) = f (L−1x)).
Twisted product not covariant in general (θ constant):

α(L)cθ(f̌ ⊗ ǧ) 6= cθ(α(L)f̌ ⊗ α(L)ǧ).

Solution (Chaichian & cols, Wess & cols): twist the coproduct
action: namely replace α(2)(L) = α(L)⊗ α(L) by

α
(2)
θ (L) = Tθ−1 α(2)(L) Tθ.

Is an action:

α(2)(L)α(2)(M) = Tθ−1 α(2)(L) Tθ Tθ−1 α(2)(M) Tθ =

= Tθ−1 α(2)(L)α(2)(M) Tθ = α
(2)
θ (LM).
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Twisted Covariance; is θ a Tensor?
Easy to check that

α(L)cθ(f̌ ⊗ ǧ) = cθ(α
(2)
θ (L)f̌ ⊗ ǧ). (*)

Standard interpretation: θ not a tensor! Is that obvious? Other
way to check (*). Set θ′ = ΛθΛt (θ′µν = Λµµ′Λνν′θµ

′ν′
).

Basic Remark

α(2)(L)Tθ = Tθ′α(2)(L)

so that α(2)
θ (L) = T−1

θ α(2)(L)Tθ = T−1
θ Tθ′α(2)(L) and

cθ(α
(2)
θ (L)f̌ ⊗ ǧ) = c(Tθα

(2)
θ (L)f̌ ⊗ ǧ) = c(TθTθ−1Tθ′α(2)(L)f̌ ⊗ ǧ) =

= cθ′(f̌ ′ ⊗ ǧ′) = f̌ ′ ×θ′ ǧ′.

where f̌ ′(k) = e−ika f̌ (Λ−1). in other words:
(twstd covariance + θ invariant)⇔ (ordinary cov’nce + θ tensor):

(f ?θ g)′ = f ′ ?θ′ g′.
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Standard interpretation: θ not a tensor! Is that obvious? Other
way to check (*). Set θ′ = ΛθΛt (θ′µν = Λµµ′Λνν′θµ

′ν′
).

Basic Remark

α(2)(L)Tθ = Tθ′α(2)(L)

so that α(2)
θ (L) = T−1

θ α(2)(L)Tθ = T−1
θ Tθ′α(2)(L) and

cθ(α
(2)
θ (L)f̌ ⊗ ǧ) = c(Tθα
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(2)
θ (L)f̌ ⊗ ǧ). (*)
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θ (L)f̌ ⊗ ǧ) = c(Tθα

(2)
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Same Remark in Different Notations
Poincaré action in position space: γ(L)f (x) = f ′(x) = f (L−1x),
γ(2)(L) = γ(L)⊗ γ(L),

γ
(2)
θ (L)f ⊗ g = Fθ−1γ(2)(L)Fθf ⊗ g = Fθ−1(Fθf ⊗ g)′
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so that the twisted action is

γ
(2)
θ (L)f ⊗ g = Fθ−1Fθ′ f ′ ⊗ g′.

Hence

mθ(γ(2)(L)f⊗g) := m(FθFθ−1Fθ′ f ′⊗g′) = m(Fθ′ f ′⊗g′) = mθ′ f ′⊗g′.

Same conclusion:
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(f ?θ g)′ = f ′ ?θ′ g′.



Same Remark in Different Notations
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Tensor or not? Back to Interpretation!

Untwisted form covariance + tensoriality of θ may seem
appealing, but form covariance alone not a guidance, when
equivalence of observers is broken at a fundamental level. Up
to now the two formalisms have same dignity.
Problem is: above only formal remark. To decide, go back to
interpretation of iθ as the commutator of the coordinates.
Assume Jack=preferred observer, Jane=observer connected to
Jack by L.
Jane:
• [q′µ,q′ν ] =? (no a priori assumption),
• W ′(f ′) =

∫
dk f̌ ′(k)eikq′

(same physics),

• W ′(mθ(α
(2)
θ (f ⊗ g)) = W ′(f ′)W ′(g′) (twstd cov).
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Weyl quantisation requires θ tensor

We first compute (L = (Λ,0) for simplicity) )

W ′(f ′)W (g′) =

(∫
dhf̌ ′(h)eihq′

)(∫
dhǧ′(k)eikq′

)
=

=

∫
dh
∫

dk f̌ ′(h)ǧ′(k)eihq′
eikq′

,

W ′(mθ(α
(2)
θ )(f ⊗ g)) =

∫
dk eikq′

∫
dh e−

i
2 hθke

i
2 (hθk−hθ′k)

f̌ ′(h)ǧ′(k − h) =

=

∫
dk ei(h+k)q′

∫
dh f̌ ′(h)ǧ′(k)e−

i
2 hθ′(k+6h)

where θ′µν = Λµµ′Λνν′θµ
′ν′

. It follows

eihq′
eikq′

= e−
i
2 hθkei(h+k)q′

,

i.e. the Weyl form of [q′µ,q′ν ] = iθ′µν . Conclusion: θ is a tensor!
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dk f̌ ′(h)ǧ′(k)eihq′
eikq′

,

W ′(mθ(α
(2)
θ )(f ⊗ g)) =

∫
dk eikq′

∫
dh e−

i
2 hθke

i
2 (hθk−hθ′k)
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i
2 hθ′(k+6h)

where θ′µν = Λµµ′Λνν′θµ
′ν′

. It follows

eihq′
eikq′

= e−
i
2 hθkei(h+k)q′

,

i.e. the Weyl form of [q′µ,q′ν ] = iθ′µν . Conclusion: θ is a tensor!



Weyl quantisation requires θ tensor

We first compute (L = (Λ,0) for simplicity) )

W ′(f ′)W (g′) =

(∫
dhf̌ ′(h)eihq′

)(∫
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Part II

From DFR Model

to

Twisted Covariance



DFR coordinates

∃! the regular representation of the relations

[qµ,qν ] = iQµν , [qµ,Qν,ρ] = 0,

where
jSp(Q) = Σ = {σ : σ = Λσ0Λ

t , Λ ∈ L }.
Motivations: cf preceding talk. Covariance:

U(a, Λ)−1qµU(a, Λ) = Λµµ′qµ
′

+ aµ,

U(a, Λ)−1QµνU(a, Λ) = Λµµ′Λνν′Qµ′ν′
.

Weyl quantisation:

W (f ) =

∫
dk f̌ (k)eikq.

Problem with twisted product: they depend on an operator Q,
not on a C-number matrix. Need more general symbols.



Algebra of generalised symbols

Symbol in Fourier space:

ϕ : Σ→ L1(R4)continuous, vanish at∞

Generalised twisted product:

(ϕ×̃ψ)(σ; k) =

∫
dk ϕ(σ; h)ψ(σ; k − h)e−

i
2 hσk

Involution and norm:

‖ϕ‖ = sup
σ
‖ϕ(σ; ·)‖L1 , ϕ∗(σ; k) = ϕ(σ;−k).

Action of Poincaré group:

(α(a, Λ)ϕ)(σ; k) = (detΛ)e−ikaϕ(Λ−1σΛ−1t
;Λ−1k).

N.B. maps each fibre over sigma onto the fibre onto σ′ = ΛσΛt .



Algebra of generalised symbols

Symbol in Fourier space:

ϕ : Σ→ L1(R4)continuous, vanish at∞

Generalised twisted product:

(ϕ×̃ψ)(σ; k) =

∫
dk ϕ(σ; h)ψ(σ; k − h)e−

i
2 hσk

Involution and norm:

‖ϕ‖ = sup
σ
‖ϕ(σ; ·)‖L1 , ϕ∗(σ; k) = ϕ(σ;−k).

Action of Poincaré group:

(α(a, Λ)ϕ)(σ; k) = (detΛ)e−ikaϕ(Λ−1σΛ−1t
;Λ−1k).

N.B. maps each fibre over sigma onto the fibre onto σ′ = ΛσΛt .



DFR C*algebra, and symbol calculus
Theorem [DFR 95]; there is a unique C*-norm; the
corresponding C*-completion is isomorphic (as a
continuous field of C*-algebras) to C0(Σ,K), K=compact
operators.
Representation of the algebra:

π(ϕ) =

∫
dkϕ(Q; k)eikq

(replacement σ → Q understood as functional calculus).
Relation with Weyl quantisation:

W (f ) = π(f̌ ).

Symbol calculus:

W (f )W (g) = W (f ?Q g),

(f ?Q g)(k) = (f̌ ×̃ǧ)(Q; k).
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A certain class of localisation states

A localisation state is a linear functional formally written as

ϕ 7→
∫∫

dσ dk K (σ; k)ϕ(σ; k)

with K such to ensure positivity and normalisation.We are
interested in states with kernel of the form

K (σ; k) = δ(σ − θ)w(k),

which give

ϕ 7→
∫

dk w(k)ϕ(θ; k)

More cleanly: we define the projection on the fibre over θ:

Πθ[ϕ](k) = ϕ(θ; k);

extend it by continuity to a map Πθ : C(Σ,K)→ K. Then we are
interested in the states of the form ω ◦ Πθ with ω ∈ S(K).
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θ-Universality

We now make an additional assumption: while in the DFR
model all localisation states are available to each observer,

θ-universality.
• There is a privileged class of observers;
• The privileged observers are connected by Λ’s in the

stabiliser of θ;
• The only available localisation states are those which, in

the reference frame of a privileged observer, are of the
form ω ◦ Πθ, where ω ∈ S(K);

Unprivileged observers connected to privileged observers by
some Λ only may localise with states of the form ω ◦ Πθ′ , where
θ′ = ΛθΛt .
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Twisted Covariance Recovered

The privileged observer can test the algebra only at θ; he only
sees θ-twisted products:

Πθϕ×̃ψ = (Πθϕ)×θ (Πθψ)

Let
ϕ′(σ; k) = (detΛ)ϕ(Λ−1σΛ−1t

;Λ−1k)

be the Lorentz transform of ϕ, and analogously for ψ′; the
(possibly) unprivileged primed observer only sees the fibre over
θ′ = ΛθΛt :

(Πθ′ϕ′)(k) = ϕ′(θ′; k) = (detΛ)ϕ(θ;Λ−1k),

as expected.Finally the primed observer only sees θ′-twisted
products:

Πθ′(ϕ′×̃ψ′) = (Πθ′ϕ′)×θ′ (Πθ′ψ′).
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Interlude
Many Events



Many Events

Different inequivalent possibilities for defining polylocal
products:
• Translations: f (q)f (q + a2)f (q + a3) · · ·; investigated in

DFR. Feature: they depend on one single localisation
state.

• Independent coordinates: [qµj ,q
µ
k ] = iδjkQµν ; investigated

in P,BDFP. They naturally lead to ultraviolet finite theories.
Note that [qj ,qj ] = iQ does not depend on j ; corresponds
to tensor products of Z -moduli. Irreps:

q1 = qσ ⊗ I ⊗ I · · · , q2 = I ⊗ qσ ⊗ · · · , · · ·

fulfil [qj ,qk ] = iδjkσ.
• Fiore Wess:

[qµj ,q
ν
k ] = iθµν

(no δjk )
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“No Deformation without
Representation!”

Problem with Fiore–Wess coordinates: assume qj regular irrep,
then:

[qµj , (qk − q1)ν ] = 0 strongly

hence by Schur’s Lemma:

qk − q1 ⊂ R4 · I

which we rewrite as

qk = q1 + ak · I

There is only one set of 4 coordinates; all the other sets are just
(classical) translations of the basic coordinates of a single
event.
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Quantum Fields



Third Quantisation (DFR 95)

W (φ) = (W ⊗ id)(φ) = φ(q) =

∫
dk eikq ⊗ φ̌(k)“∈”E ⊗F ,

where φ̌(k) = 1
(2π)4

∫
dk eikxφ(x),.

φ“∈”C0(R4)⊗F , W (φ)“∈”E ⊗F .

We have γ(L)f (x) = f (L−1x) α(L) action on E , and
ρ(L) = AdU(L) on P+

↑ . φ covariant:

γ(L)⊗ id φ = id⊗ ρ(L) φ.

Then W (φ) covariant:

γ(L)⊗ id W (φ) = id⊗ ρ(L) W (φ).

It follows (upon projecting over fibres)

ρ(L)(φ ?σ φ)(x) = (ρ(L)φ) ?σ′ (ρ(L)φ).
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Warped Convolutions

The fields

W σ(φ) = ΠσW (φ) =

∫
dk eikq ⊗ φ̌(k)

where Πσ = Πσ ⊗ id, may be represented by a family of fields
φθ on the same (Fock) Hilbert space, by a GNS construction
(Grosse, Lechner). It is equivalent to “warping” (in the sense of
Buchholz,Summers) a local net of algebras A() to obtain a non
local, wedge-local net of algebras Aw (); if A generated by φ,
each Aw (W ) is generated by φθ, with θ ↔W . Different point of
view: assume θ-universality, then each Lorentz frame has its
field φθ.
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Conclusions 1

We have shown that (twisted covariance + θ invariant) is
equivalent to (untwisted covariance + θ covariant), and given an
argument in favour of the latter, based on physical
interpretation.

Moreover, we have seen that the latter is equivalent to (DFR
model + θ-universality).

Now one may raise the question: which are the physical
motivations for restricting the admissible localisation states?
Namely why θ?
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Conclusions 2

Let me more precise by means of a trivial example: consider
Newton laws for motions of a point mass in the 3-space. Let’s
say that we state z-universality: the preferred observers only
can see motions with z(0) > 0. Then we may distinguish the
privileged observers from unprivileged ones; e.g. Jane, who is
rotated by 180◦ around x axis, only sees z ′(0) < 0.
The principle of relativity requires instead that, together with
each admissible state, all the states which can be reached by a
symmetry of the system must be available to all observers,
including the privileged ones.
In the same way, on QST amy trasnformed θ′ should be
available together with θ to a privileged (or not) observer.
To say it differently, it is not sufficient that the set of admissible
localisation states is form-covariant; it must be invariant.



Conclusions 2

Let me more precise by means of a trivial example: consider
Newton laws for motions of a point mass in the 3-space. Let’s
say that we state z-universality: the preferred observers only
can see motions with z(0) > 0. Then we may distinguish the
privileged observers from unprivileged ones; e.g. Jane, who is
rotated by 180◦ around x axis, only sees z ′(0) < 0.
The principle of relativity requires instead that, together with
each admissible state, all the states which can be reached by a
symmetry of the system must be available to all observers,
including the privileged ones.
In the same way, on QST amy trasnformed θ′ should be
available together with θ to a privileged (or not) observer.
To say it differently, it is not sufficient that the set of admissible
localisation states is form-covariant; it must be invariant.



Conclusions 2

Let me more precise by means of a trivial example: consider
Newton laws for motions of a point mass in the 3-space. Let’s
say that we state z-universality: the preferred observers only
can see motions with z(0) > 0. Then we may distinguish the
privileged observers from unprivileged ones; e.g. Jane, who is
rotated by 180◦ around x axis, only sees z ′(0) < 0.
The principle of relativity requires instead that, together with
each admissible state, all the states which can be reached by a
symmetry of the system must be available to all observers,
including the privileged ones.
In the same way, on QST amy trasnformed θ′ should be
available together with θ to a privileged (or not) observer.
To say it differently, it is not sufficient that the set of admissible
localisation states is form-covariant; it must be invariant.



Conclusions 2

Let me more precise by means of a trivial example: consider
Newton laws for motions of a point mass in the 3-space. Let’s
say that we state z-universality: the preferred observers only
can see motions with z(0) > 0. Then we may distinguish the
privileged observers from unprivileged ones; e.g. Jane, who is
rotated by 180◦ around x axis, only sees z ′(0) < 0.
The principle of relativity requires instead that, together with
each admissible state, all the states which can be reached by a
symmetry of the system must be available to all observers,
including the privileged ones.
In the same way, on QST amy trasnformed θ′ should be
available together with θ to a privileged (or not) observer.
To say it differently, it is not sufficient that the set of admissible
localisation states is form-covariant; it must be invariant.



This talk based on the following preprints:
• G.P., [arXiv:0901.3109] (short letter)
• G.P., [arXiv:0902.0575] (long, technical).

References:
• Doplicher et al, [arXiv:hep-th/0303037] (DFR model, 1995).
• Chaichian et al, [arxiv:hep-th/0408069] (on twisted

covariance, 2004; see also Wess and cols).
• Balachandran et al, [arXiv:hep-th/0608179] (on twisted

CCR, tw. statistics, 2006).
• Buchholz, Summers, [arXiv:0806.0349] (on warped

convolutions, 2008)
• Grosse, Lechner, [arXiv:0808.3459] (w’pd convolutions as

tw. fields, 2008)

http://arxiv.org/abs/0901.3109
http://arxiv.org/abs/0902.0575
http://arxiv.org/abs/hep-th/0303037
http://arxiv.org/abs/hep-th/0408069
http://arxiv.org/abs/hep-th/0608179
http://arxiv.org/abs/0806.0349
http://arxiv.org/abs/0808.3459

	Introduction
	Part I. Tensor character of 
	
	
	
	
	
	

	Part II. From DFR Model to Twisted Covariance
	
	
	
	
	
	

	Interlude: Many Events
	Part III. Quantum Fields
	Conclusions
	Bibliography

