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1. Time flow from the modular group

Time, state and temperature

Let A be the algebra of observables of a system, a; be the time evolution
(e.g. asa= e Htaeit) then an equilibrium state w at temperature 371
is a state that satisfies the KMS condition

w((ara)b) = w(b(aryiga)).

Equivalent to Gibbs definition (w(a) = Tr(e™#"a)) and still makes

sense at the thermodynamical limit (whereas Z is no longer defined).

An equilibrium state at temperature 371 is a state that satisfies the KMS
condition with respect to the time evolution «;.




"Von Neumann algebras naturally evolve with time” (Connes)

- a von Neumann algebra A acting on H a l-parameter group o
= of automorphisms of A
- a vector Q in H cyclic and separating (modular group)

The state w : a+— (Q, aQ) is KMS with respect to os,

w((osa)b) = w(b(os—;a)) Va,be A, seR.
Hence w is thermal at temperature —1 with respect to the evolution os.
Writing a_gs = 0,

w((a-psa)b) = w(b(a_g(s-ia)) = w(b(a—ps+ipa))

An equilibrium state at temperature 371 is a faithful state over the algebra
of observables whose modular group o5 is the physical time translation, up
to rescaling t = —fs.
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The thermal time hypothesis (Connes, Rovelli 1993):
assuming the system is in a thermal state at temperature 371, then the
physical time t is the modular flow up to rescaling t = —fs.

If another notion of time is available (e.g. geometrical time 7), one
should check that 7 =t, i.e. 0= —ZI.
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’2. Temperature for the wedge‘

algebra of observables A(W)
W% w . .
vacuum modular group o/° — boosts — geometrical action

uniformly accelerated observer's trajectory orbit of the modular group

T €] — 00, +o0f - s €] — 00, +0[




To be a physical time 05 should be normalised:
0
0= with 5= .

Identifying 0; to 0. yields

Os o dr
87—§:>/8—|E.

For wedges, (3 is constant along each orbits,

T 2w 1
6 = |g‘ = ? = TUnruh'

» Temperature is the inverse of the norm of the modular flow.

» Assuming an infinitesimal interpretation of the KMS condition,
same analysis should make sense when 3 is no longer constant along
a given modular orbit.



‘ 3. Temperature for the double-cone ‘

D algebra of observables A(D)
vacuum modular group o?

D = (W) for a certain conformal map ¢. So for a conformal qft:

uniformly accelerated observer's trajectory orbit of the modular group
T €] — 70, +70] B s €] — 00, +oo]

Ratio g no longer constant,

_d7(s) 2wl

o) ds 1+ a?[2 +ch(2rs)’




Equivalently

Br) = oo (V¥ 212 —char)

PN W g o N
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For most of the observer's lifetime,

1 1
B(LT) R B(LO) = Tyl = -+ O(5) = To(D)
> To(L)azo = 7og = 10" K — thermal effect for inertial observer.




Interpretation

For eternal observers: causal horizon <= acceleration.
For non-eternal observers, whatever a, there is a " life horizon”

D = future(birth) ﬂ past(death).
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Temperature as a conformal factor

The conformal map ¢ : W — D induces on W a metric g,
E(U,V) = g(p.U,p.V) = C’g(U, V),
with conformal factor
.o2L
=N
The double-cone temperature is proportional to the inverse of C,

3 = 22 (o)

where a is the acceleration characterizing the modular orbit of ¢ ~1(x).

X

with N(x) =1+ 2x* — t2 4|

» o shrinks W to D so C # +o0. The inertial trajectory in D comes
from a non-inertial trajectory in W so a # 0. Therefore

B < +oo0.

» Transient effects: by conformal transformation, the asymptotic limit
is mapped to a sharp divergence of the temperature,

infinite lifetime — infinite temperature.



3. Double-cone in 2d boundary CFT\

A CFT on the half plane (t,x > 0) has stress
energy-tensor T such that

T = %(Too + To1) = Tu(t—x),
Tr = %(Too —To1) = Tr(t+x).
Ty, Tr generate a chiral net
I— A(Z), I=]A B[R,
which generates a net

O=hxXb— A(O) = .A(/l) ® A(/z)

work in progress with R. Longo
and K. H. Rehren
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Cayley transform

1+ —1)/i
z= +I,X€51<:>X:u€RU{oo}.
1—ix z+1

Square and square root:

z 72 = xn—>U(x)£27X
1—x2’

+v1 2_1

z— +Vz = XHpi(X)IL.
X

Ambiguity in the square root:

. 1
T —rotation : W — —w <<= X — T(X) = __,
X



Modular group

For a pair of symmetric intervals 1,/ , i.e.
o(h) = o(b) =1,
consider the state ¢ = 1 ® @, where i = w; o ¢, and
Ok All) — A(T)
is an isomorphism implemented by ¢ and
w = {wy, ! € I} such that w; = wg o AdU,

is the local vacuum on A(/). The associated modular group has a
geometrical action

(u,v) € O — (us,vs) €0 seR,

with orbits us = promodlsom toa(u),

Loo(v),

V¢ = p_omolsom
where A\;(x) = e®x is the dilation of R, and
(x) ax+b
m(x) =
cx+d
is a Mobius transformation which maps R to /.

(ad — bc =1)




Implicit equation of the orbits

(us — A)(Aus +1) (vs— B)(Bvs +1)

(us — B)(Bus +1) (vs — A)(Avs +1)

= const,

» This equation only depends on the end
points of b =]A, B[, h =] — %, —%[.

» All orbits areare time-like, hence
B = % makes sense as a temperature.

> One and only one orbit is a boost
(const = 1).




The orbits of the modular group of O are trajectories of observers going
from the bottom of O to its top, with acceleration x = k(x, t).

0 is strictly positive everywhere on O and vanishes on the edges of the
double-cone.

The product k3 vanishes at the tips of the double-cone, is negative close
to the left corner, positive close to the right corner.

» By continuity, any curve joining the left to the right corner of O
should intersect at least once a modular orbit at a point (x, to) such
that k(xo, to) = 0.

» Either all the (xo, to) belong to the same orbit, which then is the
segment joining the bottom of O to its bottom, or there exist some
orbits whose acceleration has not a constant sign.



Explicit solution:

Considering | € R*, then L =]A, B[C (0, 1) hence

A
A:tanh?A, B =tanh 2,

A
ue]A,B[:tanhE for Aa < A < Ag,

1 1 N
ve]fE,fZ[:fcothE for Aa < N < Ag,

Orbit of (u,v),

— \/(es ka_kb)2+(es kab_kba)z _(es ka—kb)

€°kap—Kbpa

o(u) =sinh A,

o(v) =sinh \.

)

~(ER R (e, k) (€K k)

Vs = S 17 7
e kab - kbs

where

ki =sinh A —sinh X;, kj = k;sinh\; i) € {a,b}.



A zoom on the modular orbit (us, vs)
going through the center of the double-
cone. The plot represents the curve

(s, vs)
where
b = f * (us — ud8) 4 ydice
with (ud8 v,) the straight line joining

the two tips of the double-cone and f a
zoom-factor. Here f = 100.



Temperature on the boost trajectory

d71? = du dv hence

dr
= —_— = UIV/
s ds
with ' = %. On the boost orbit, vs = —ui hence
u’ d
8= v Elnu5:>7'(s): Inus — Inuy = us = upe™®).

Knowing

' () = (us — A)(Aus + 1)(B — us)(Bus + 1)
s = TAB\US) = B A1+ AB) - (1 + &2)

one finally gets

() = elte)



Conclusion /

In 2d-boundary-CFT, temperature along /
modaular orbits still makes sense.

Inertial trajectory is not a modular orbit.
Contrary to double-cone in Minkowski,

the temperature on the boost-orbit does
not present any plateau region.
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