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1. Time flow from the modular group

Time, state and temperature

Let A be the algebra of observables of a system, αt be the time evolution
(e.g. αta = e−iHtae iHt) then an equilibrium state ω at temperature β−1

is a state that satisfies the KMS condition

ω((αta)b) = ω(b(αt+iβa)).

Equivalent to Gibbs definition (ω(a) = 1
Z Tr(e−βHa)) and still makes

sense at the thermodynamical limit (whereas Z is no longer defined).

An equilibrium state at temperature β−1 is a state that satisfies the KMS
condition with respect to the time evolution αt .



”Von Neumann algebras naturally evolve with time” (Connes)

- a von Neumann algebra A acting on H

- a vector Ω in H cyclic and separating

⇒ a 1-parameter group σ
of automorphisms of A
(modular group)

The state ω : a 7→ 〈Ω, aΩ〉 is KMS with respect to σs ,

ω((σsa)b) = ω(b(σs−ia)) ∀a, b ∈ A, s ∈ R.

Hence ω is thermal at temperature −1 with respect to the evolution σs .

Writing α−βs
.

= σs ,

ω((α−βsa)b) = ω(b(α−β(s−i)a)) = ω(b(α−βs+iβa))

An equilibrium state at temperature β−1 is a faithful state over the algebra
of observables whose modular group σs is the physical time translation, up
to rescaling t = −βs.



{
time flow αt

temperature β−1 =====⇒
KMS

equilibrium state ω{
state ω
temperature β−1 ==========⇒

modular theory
time flow α−βs

The thermal time hypothesis (Connes, Rovelli 1993):

assuming the system is in a thermal state at temperature β−1, then the
physical time t is the modular flow up to rescaling t = −βs.

If another notion of time is available (e.g. geometrical time τ), one
should check that τ = t, i.e. β = − τ

s .{
state
time

=⇒ temperature



2. Temperature for the wedge

W−→
{

algebra of observables A(W )
vacuum modular group σW

s → boosts→ geometrical action

uniformly accelerated observer’s trajectory
τ ∈]−∞,+∞[

=
orbit of the modular group

s ∈]−∞,+∞[

X

T

W



To be a physical time ∂s should be normalised:

∂t =
∂s

β
with β

.
= ‖∂s‖ .

Identifying ∂t to ∂τ yields

∂τ =
∂s

β
⇒ β = |dτ

ds
|.

For wedges, β is constant along each orbits,

β = |τ
s
| =

2π

a
= T−1

Unruh.

I Temperature is the inverse of the norm of the modular flow.

I Assuming an infinitesimal interpretation of the KMS condition,
same analysis should make sense when β is no longer constant along
a given modular orbit.



3. Temperature for the double-cone

D−→
{

algebra of observables A(D)
vacuum modular group σD

s

D = ϕ(W ) for a certain conformal map ϕ. So for a conformal qft:

uniformly accelerated observer’s trajectory
τ ∈]− τ0,+τ0[

=
orbit of the modular group

s ∈]−∞,+∞[

T

X

−L

L

Ratio τ
s no longer constant,

β(s) =
dτ(s)

ds
=

2πL√
1 + a2L2 + ch(2πs)

.



Equivalently

β(τ) =
2π

La2
(
√

1 + a2L2 − ch aτ)
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For most of the observer’s lifetime,

β(L, τ)−1 ≈ β(L, 0)−1 = TU(1− 1

aL
+O(

1

L2
))

.
= TD(L).

I TD(L)a=0 = ~
πkbL
' 10−11

L K → thermal effect for inertial observer.



Interpretation

For eternal observers: causal horizon ⇐⇒ acceleration.
For non-eternal observers, whatever a, there is a ”life horizon”

D = future(birth)
⋂

past(death).



Temperature as a conformal factor

The conformal map ϕ : W → D induces on W a metric g̃ ,

g̃(U,V ) = g(ϕ∗U, ϕ∗V ) = C 2g(U,V ),

with conformal factor

C (x)
.

=
2L

N(x)
with N(x)

.
= 1 + 2x1 − t2 + |−→x |2.

The double-cone temperature is proportional to the inverse of C ,

β(x) =
2π

a
C (ϕ−1(x))

where a is the acceleration characterizing the modular orbit of ϕ−1(x).

I ϕ shrinks W to D so C 6= +∞. The inertial trajectory in D comes
from a non-inertial trajectory in W so a 6= 0. Therefore

β < +∞.
I Transient effects: by conformal transformation, the asymptotic limit

is mapped to a sharp divergence of the temperature,

infinite lifetime 7→ infinite temperature.



3. Double-cone in 2d boundary CFT work in progress with R. Longo
and K. H. Rehren

A CFT on the half plane (t, x > 0) has stress
energy-tensor T such that

TL
.

=
1

2
(T00 + T01) = TL(t − x),

TR
.

=
1

2
(T00 − T01) = TR(t + x).

TL,TR generate a chiral net

I 7→ A(I), I =]A,B[∈ R,

which generates a net

O = I1 × I2 7→ A(O) = A(I1)⊗A(I2).
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Cayley transform

z =
1 + ix

1− ix
∈ S1 ⇐⇒ x =

(z − 1)/i

z + 1
∈ R ∪ {∞}.

Square and square root:

z 7→ z2 ⇐⇒ x 7→ σ(x)
.

=
2x

1− x2
,

z 7→ ±
√

z ⇐⇒ x 7→ ρ±(x) =
±
√

1 + x2 − 1

x
.

Ambiguity in the square root:

π−rotation : w 7→ −w ⇐⇒ x 7→ τ(x) = −1

x
.



Modular group

For a pair of symmetric intervals I1, I2 , i.e.

σ(I1) = σ(I2) = I ,

consider the state ϕ = ϕ1 ⊗ ϕ2 where ϕk = ωI ◦ φk and

φk : A(Ik)→ A(I )

is an isomorphism implemented by σ and

ω = {ωI , I ∈ I} such that ωI = ωgI ◦ AdUg

is the local vacuum on A(I ). The associated modular group has a
geometrical action

(u, v) ∈ O 7→ (us , vs) ∈ O s ∈ R,

with orbits us = ρ+ ◦m ◦ λs ◦m−1 ◦ σ(u),

vs = ρ− ◦m ◦ λs ◦m−1 ◦ σ(v),

where λs(x) = esx is the dilation of R, and

m(x) =
ax + b

cx + d
(ad − bc = 1)

is a Möbius transformation which maps R+ to I .



Implicit equation of the orbits

(us − A)(Aus + 1)

(us − B)(Bus + 1)
· (vs − B)(Bvs + 1)

(vs − A)(Avs + 1)
= const,

A

B

!1
A

!1
B

u

v

!1

0

1

I This equation only depends on the end
points of I2 =]A,B[, I1 =]− 1

A ,−
1
B [.

I All orbits areare time-like, hence
β = dτ

ds makes sense as a temperature.

I One and only one orbit is a boost
(const = 1).



The orbits of the modular group of O are trajectories of observers going
from the bottom of O to its top, with acceleration κ = κ(x , t).

β is strictly positive everywhere on O and vanishes on the edges of the
double-cone.

The product κβ vanishes at the tips of the double-cone, is negative close
to the left corner, positive close to the right corner.

I By continuity, any curve joining the left to the right corner of O
should intersect at least once a modular orbit at a point (x0, t0) such
that κ(x0, t0) = 0.

I Either all the (x0, t0) belong to the same orbit, which then is the
segment joining the bottom of O to its bottom, or there exist some
orbits whose acceleration has not a constant sign.



Explicit solution:

Considering I ∈ R+, then I2 =]A,B[⊂ (0, 1) hence

A = tanh
λA

2
, B = tanh λA

2 ,

u ∈ ]A,B[ = tanh
λ

2
for λA < λ < λB , σ(u) = sinhλ,

v ∈ ]− 1

B
,− 1

A
[ = − coth

λ′

2
for λA < λ′ < λB , σ(v) = sinhλ′.

Orbit of (u, v),

us =

√
(eska−kb)2+(eskab−kba)2−(eska−kb)

eskab−kba
,

vs =
−
√

(esk′a−k′b)
2+(esk′ab−k′ba)

2−(esk′a−k′b)

esk′ab−k′ba

where

ki
.

= sinhλ− sinhλi , kij
.

= ki sinhλj i , j ∈ {a, b} .
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A zoom on the modular orbit (us , vs)
going through the center of the double-
cone. The plot represents the curve

(ũs , vs)

where

ũs = f ∗ (us − udiag
s ) + udiag

s

with (udiag
s , vs) the straight line joining

the two tips of the double-cone and f a
zoom-factor. Here f = 100.



Temperature on the boost trajectory

dτ 2 = du dv hence

β =
dτ

ds
=
√

u′v ′

with ′ = d
ds . On the boost orbit, vs = − 1

us
hence

β =
u′

u
=

d

ds
ln us =⇒ τ(s) = ln us − ln u0 =⇒ us = uoe

τ(s).

Knowing

u′s = fAB(us)
.

=
(us − A)(Aus + 1)(B − us)(Bus + 1)

(B − A)(1 + AB) · (1 + u2
s )

.

one finally gets

β(τ) =
fAB(uoe

τ )

uoeτ
.



Conclusion

In 2d-boundary-CFT, temperature along
modular orbits still makes sense.

Inertial trajectory is not a modular orbit.

Contrary to double-cone in Minkowski,
the temperature on the boost-orbit does
not present any plateau region.
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