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The Boltzmann collision equation – Applications
A statndard tool in the non-equilibrium statistical mechanics toolbox

The “general relativistic quantum” Boltzmann equation in RW spacetime

ḟpψ(t) + 3
L̇(t)
L(t)

fpψ(t) = −
∫

dLIPS δ
(4−momentum

conservation

)
·

·
[
|Mψ+a+b+···→i+j+...|2fpψ fpa fpb . . . (1± fpi )(1± fpj ) . . .

− |Mi+j+...→ψ+a+b+...|2fpi fpj . . . (1± fpψ )(1± fpa)(1± fpb ) . . .
]

dLIPS = Lorentz Invariant Phase Space measure,

ds2 = −dt2 + L2(t)dx2, fp(t) =
1

V (t)
〈Np(t)〉

Applications (with successful quantitative predictions)
diffusion of classical gasses
computation of viscosity coefficients (ordinary liquids to quark–gluon
plasma)
nucleosynthesis and baryogenesis
. . .
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ḟpψ(t) + 3
L̇(t)
L(t)

fpψ(t) = −
∫

dLIPS δ
(4−momentum

conservation

)
·

·
[
|Mψ+a+b+···→i+j+...|2fpψ fpa fpb . . . (1± fpi )(1± fpj ) . . .

− |Mi+j+...→ψ+a+b+...|2fpi fpj . . . (1± fpψ )(1± fpa)(1± fpb ) . . .
]

dLIPS = Lorentz Invariant Phase Space measure,

ds2 = −dt2 + L2(t)dx2, fp(t) =
1

V (t)
〈Np(t)〉

Applications (with successful quantitative predictions)
diffusion of classical gasses
computation of viscosity coefficients (ordinary liquids to quark–gluon
plasma)
nucleosynthesis and baryogenesis
. . .

G. Leiler, (S. Hollands) The Boltzmann equation in QFT – LQP 24, Leipzig ’09 3/17



The problem
The Solution

Overview and conclusions

Beqn – Applications
Beqn – theoretical understanding

A peek into the literature
Standard references:

E. W. Kolb & M. S. Turner – 1990, The early universe
K. Huang – 1987, Statistical mechanics

Selected works on the quantum Boltzmann equation:
L. Boltzmann – 1872, Weitere studien über das Wärmegleichgewicht unter
gasmolekülen
E. A. Uehling & G. E. Uhlenbeck – 1933, Introduce the QBE
N. M. Hugenholtz – 1983, Derivation of QBE for lattice Fermi gas
L. Erdős & H.-T. Yau – 1998, Linear QBE for Lorentz gas
L. Erdős, M. Salmhofer & H-T. Yau – 2004, Heuristic derivation of QBE
D. Benedetto, F. Castella, R. Esposito & M. Pulvirenti – 2004, Quantum N body
system – Wigner function approach
D. Buchholz – 2003, Collisionless BE in QFT for free massless scalar field in LTE
states

The projection operator technique:

L. Van Hove – 1955, 1959; L. Prigogine & R. Balescu – 1959; R. Zwanzig – 1960
B. Robertson – 1967, 1970; K. Kawasaki & J. D. Gunton – 1973
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Issues with the Boltzmann collision equation

Problems:
What is a “particle” in CST?
“Flat” or “curved” scattering amplitude?
General covariance?
Not an “exact” equation (unlike Schrödinger or
Heiseneberg equations) – when does it provide a valid
approximate description?

Separation of the time scales
Weak coupling and/or low density

“Textbook” derivation requires Stosszahlansatz (“molecular
chaos”) – not really justified

Particle velocity distribution is assumed to be Gaussian at
all times not only at the initial time

“Weak coupling limit” derivations justify |M|2 in the Born
approximation – Need to do better (e.g. baryogenesis)
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This talk and future work

Aims of the talk:

Heuristic/formal derivation of the BE from first principles –
QFT on flat space
Understand better the approximations that go into the
derivation
Systematic understanding of corrections

Work in progress:

Generalization to curved spaces – curvature corrections
Applications
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The model

(1 + 1)-D spacetime R×S1 with metric ds2 = −dt2 + L2dx2

momentum discretization
Hamiltonian (self adjoint operator – Glimm & Jaffe):

H = H0(t) + V (t) = L
1
2

2π∫
0

dx
[
:π2(t , x) :+L2 :

(
∂xϕ(t , x)

)2
: +m2 :ϕ2(t , x) :

]
+

+ L
λ

4!

2π∫
0

dx :ϕ4(t , x) :

Dynamics of an observable A described by Heisenberg
equation of motion

dA(t)
dt

= iδ
[
A(t)

]
= i
[
H,A(t)

]
, A(t) = αt (A), ∀A ∈ A

Perturbation theory: interacting field = formal power series
in λ
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Set up of the notation
Would like to derive an eqn of the form:

∂t fp(t) = C
[
{fk(t)}

]
,

where:

fp(t) =
〈
Np(t)

〉
ψ
/L = np(t)/L,

Np(t) = a†p(t)ap(t), ap(t) := i

2π∫
0

dxe−ipx←→∂t ϕ(t ,x)

Heisenberg eqn contains info we don’t need

Idea: projection operator technique→ introduce linear maps

Pt : A 7→ A , Pt ◦ Ps = Ps, Qt := id − Pt

Ys,t : A 7→ A , ∂tYs,t = Ys,t ◦ iδ ◦ Qt , Ys,s = id

(This work: perturbative solution for Ys,t )
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Outline of the derivation

1 Introduce the projectors Pt and Qt

2 A pre-Boltzmann equation

3 The scaling limit

4 The Boltzmann collision factor
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The projector Pt

Our Pt is adapted to the observables {Np(t)} that we want to study

1 Introduce, ∀t ∈ R, unique quasifree state 〈 · 〉ω(t) s.t., given
np(t) ≥ 0

〈Np(t)〉ω(t) = np(t)~� (formally)

〈A〉ω(t) :=
1

Z (t)
Tr
[
e−

∑
q λq(t)Nq(t) A

]
, λq(t) = log

(1 + nq(t)
nq(t)

)

2 Set ∆Np(t) := Np(t)− np(t)1 and Cω(t)
pq := 〈∆Np(t)∆Nq(t)〉ω(t)

Pt (A) :=〈A〉ω(t)1 +
∑

p,q∈Z
(Cω(t)

pq )−1〈∆Nq(t)A〉ω(t)∆Np(t), ∀A ∈ A
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The Robertson equation
With the above projector we can derive (the “Robertson eqn”):

ṅp(t) =

t∫
t0

ds
〈
αs ◦ iδ ◦ Ys,t ◦ iδ Np(t0)

〉
ω(s)

.

Further progress by solving the equation for Ys,t and
expressing it in terms of V (t) = λ

4!

∫ 2π
0 dx :ϕ4(t ,x) :

We define

B(E ,p, s) := E
∫
R

dτ e−iEτ
〈
R
[
Np(τ); V (0)⊗exp⊗

(
−i

∞∫
0

V (T ) dT
)]〉

ω(s)

R – retarded product
V (t) – interaction potential
D = 2 – don’t need renormalization
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Some results – a pre-Boltzmann equation
A lengthy calculation yields

A pre-Boltzmann equation

ṅp(t) =

t∫
t0

ds
∫
R

dE eiE(t−s)B(E ,p, s) +
∞∑

n=1

(−1)n

t∫
t0

ds
∫

s≤τ1≤...≤τn≤t

dτ1 . . . dτn

∑
k1,...,kn∈Z

·
{∫

R

dE eiE(τ1−s)B(E , k1, s)

[ n−1∏
i=1

∂

∂nki (τi)

τi+1∫
τi

dτ ′i

∫
R

dEi eiEi (τ
′
i −τi )B(Ei , ki+1, τi)

]
·

· ∂

∂nkn (τn)

t∫
τn

dτ ′n

∫
R

dEn eiEn(τ ′
n−τn)B(En,p, τn)

}

Remarks:
Exact (non–Markovian) equation
“Rescattering” correction terms (n ≥ 1)
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Some results – Towards the Boltzmann collision factor

Next step: Relate B(E ,p, s) to S-matrix elements. We have

ṅp(t) =

t∫
t0

ds
∫
R

dE eiE(t−s)B(E ,p, s) + . . .

Further progress: consider various limits
Infinite volume limit: L→∞
Scaling limit [Van Hove, Hugenholtz, ESY, . . .]

Weak coupling (λ2t): t 7→ t/ε, λ 7→ λ
√
ε

Low density limit: t 7→ t/ε, fp(t) 7→ εαfp(t/ε)
Curved space: L(t)→ L(εt)

The “long time limit”: B(E ,p, s) 7→ B(0,p, s)δ(t − s)
(Up to interchange of limits and integrals, ... )
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Some results – the Boltzmann collision factor
After a long computation:

The Boltzmann collision factor

B(0,p, s) = 2π
∑
r→l

processess

∫
R

dp1

2ω(p1)
. . .

dpr

2ω(pr )

dq1

2ω(q1)
. . .

dql

2ω(ql)

∣∣∣M̃(r → l
)∣∣∣2·

· δ2
( r∑

i=1

pi −
l∑

j=1

qj

)[ r∑
i=1

δ(p− pi)−
l∑

j=1

δ(p− qj)

] r∏
i=1

fpi(s)
l∏

j=1

(
1 + fqj(s)

)

with fp(s) = lim
L→∞

np(s)

L
Remarks:

Sum over all r → l scattering processess

“Dressed” amplitude M̃ (to compute with Feynman rules)
∆̃F ,t (x − y) = ∆F (x − y)+ correction depending on fp(t)

All orders in λ
Single scattering amplitude (CP invariant model)
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An application – Baryogenesis revisited
Experimental “fact”: maximal matter–anti-matter asymmetry.

Question: Why?

Answer: Baryogenesis (Sakharov – 1967)
Baryon number violating interactions

√
(GUT)

B =


+1 for baryons
−1 for anti-baryons
0 for mesons

C and CP violation
√

(Electroweak sector of SM)
Thermal non–equilibrium

√
(Expansion of the Universe)

F Beqn used to trace evolution of nb(t ,p)− nb̄(t ,p) (net
baryon nr)

Crucial: Loop effect (invisible at tree level)
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Overview

Heuristic Beqn Our Beqn

Single process vs All scattering processess
Vacuum amplitude vs “Dressed” amplitude
Single scattering vs Rescattering correction terms

CP violating terms vs (Does not apply to ϕ4 thy)
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Conclusions

(Formal) Derivation of BE in QFT model!
Low density and/or weak coupling are crucial for the
Boltzmann equation
Non–Markovian equation if the nature of the quantum does
not allow such limits
Higher order corrections to the amplitude, i.e. beyond the
Born approximation
Reconsider the application to baryogenesis (loop effect)
Framework adapted to deal with RW-spacetime
Open issues:

Make formal steps rigorous! (lim’s, convergence, domains,
etc...)
Non perturbative derivation?
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