The Boltzmann collision equation in quantum field theory

Gregor Leiler (supervisor Dr. Stefan Hollands)

Cardiff School of Mathematics Cardiff University

24th LQP Workshop 26 – 27 June 2009, Leipzig

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- ∢ ⊒ →

ъ

æ

The Boltzmann equation

- What is it and how is it used?
- Current theoretical understanding

A derivation

- The model
- Bits and pieces of the derivation
- Some results
- Overview and conclusions
 - Baryogenesis revisited
 - Conclusions

Beqn – Applications Beqn – theoretical understanding

The Boltzmann collision equation – Applications A statndard tool in the non-equilibrium statistical mechanics toolbox

The "general relativistic quantum" Boltzmann equation in RW spacetime

$$\begin{split} \dot{f}_{\mathbf{p}_{\psi}}(t) + 3 \frac{\dot{L}(t)}{L(t)} f_{\mathbf{p}_{\psi}}(t) &= -\int \mathrm{dLIPS} \, \delta \Big(\frac{4 - momentum}{conservation} \Big) \cdot \\ & \cdot \left[|\mathcal{M}_{\psi+a+b+\cdots \rightarrow i+j+\dots}|^2 f_{\mathbf{p}_{\psi}} f_{\mathbf{p}_{a}} f_{\mathbf{p}_{b}} \dots (1 \pm f_{\mathbf{p}_{i}})(1 \pm f_{\mathbf{p}_{j}}) \dots \right. \\ & - |\mathcal{M}_{i+j+\dots \rightarrow \psi+a+b+\dots}|^2 f_{\mathbf{p}_{i}} f_{\mathbf{p}_{j}} \dots (1 \pm f_{\mathbf{p}_{\psi}})(1 \pm f_{\mathbf{p}_{a}})(1 \pm f_{\mathbf{p}_{b}}) \dots \Big] \end{split}$$

dLIPS = Lorentz Invariant Phase Space measure,

$$ds^2 = -dt^2 + L^2(t)d\mathbf{x}^2, \qquad f_p(t) = \frac{1}{V(t)} \langle N_p(t) \rangle$$

Applications (with successful quantitative predictions)

- diffusion of classical gasses
- computation of viscosity coefficients (ordinary liquids to quark–gluon plasma)
- nucleosynthesis and baryogenesis
- . . .

イロト イポト イヨト イヨト 一臣

Beqn – Applications Beqn – theoretical understanding

The Boltzmann collision equation – Applications A statndard tool in the non-equilibrium statistical mechanics toolbox

The "general relativistic quantum" Boltzmann equation in RW spacetime

$$\begin{split} \dot{f}_{\mathbf{p}_{\psi}}(t) + 3 \frac{\dot{L}(t)}{L(t)} f_{\mathbf{p}_{\psi}}(t) &= -\int \mathrm{dLIPS} \, \delta \Big(\frac{4 - momentum}{conservation} \Big) \cdot \\ & \cdot \left[|\mathcal{M}_{\psi+a+b+\dots\rightarrow i+j+\dots}|^2 f_{\mathbf{p}_{\psi}} f_{\mathbf{p}_{a}} f_{\mathbf{p}_{b}} \dots (1 \pm f_{\mathbf{p}_{i}})(1 \pm f_{\mathbf{p}_{j}}) \dots \right. \\ & - |\mathcal{M}_{i+j+\dots\rightarrow \psi+a+b+\dots}|^2 f_{\mathbf{p}_{i}} f_{\mathbf{p}_{j}} \dots (1 \pm f_{\mathbf{p}_{\psi}})(1 \pm f_{\mathbf{p}_{a}})(1 \pm f_{\mathbf{p}_{b}}) \dots \Big] \end{split}$$

dLIPS = Lorentz Invariant Phase Space measure, $ds^2 = -dt^2 + L^2(t)d\mathbf{x}^2, \qquad f_{\mathbf{p}}(t) = \frac{1}{V(t)} \langle N_{\mathbf{p}}(t) \rangle$

Applications (with successful quantitative predictions)

- diffusion of classical gasses
- computation of viscosity coefficients (ordinary liquids to quark–gluon plasma)
- nucleosynthesis and baryogenesis
- . . .

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Beqn – Applications Beqn – theoretical understanding

A peek into the literature

Standard references:

- E. W. Kolb & M. S. Turner 1990, The early universe
- K. Huang 1987, Statistical mechanics

Selected works on the quantum Boltzmann equation:

- L. Boltzmann 1872, Weitere studien über das Wärmegleichgewicht unter gasmolekülen
- E. A. Uehling & G. E. Uhlenbeck 1933, Introduce the QBE
- N. M. Hugenholtz 1983, Derivation of QBE for lattice Fermi gas
- L. Erdős & H.-T. Yau 1998, Linear QBE for Lorentz gas
- L. Erdős, M. Salmhofer & H-T. Yau 2004, Heuristic derivation of QBE
- D. Benedetto, F. Castella, R. Esposito & M. Pulvirenti 2004, *Quantum N body* system – Wigner function approach
- D. Buchholz 2003, Collisionless BE in QFT for free massless scalar field in LTE states

The projection operator technique:

- L. Van Hove 1955, 1959; L. Prigogine & R. Balescu 1959; R. Zwanzig 1960
- B. Robertson 1967, 1970; K. Kawasaki & J. D. Gunton 1973

Issues with the Boltzmann collision equation

Problems:

- What is a "particle" in CST?
- "Flat" or "curved" scattering amplitude?
- General covariance?
- Not an "exact" equation (unlike Schrödinger or Heiseneberg equations) – when does it provide a valid approximate description?
 - Separation of the time scales
 - Weak coupling and/or low density
- "Textbook" derivation requires *Stosszahlansatz* ("molecular chaos") not really justified
 - Particle velocity distribution is assumed to be Gaussian at *all* times not only at the initial time
- "Weak coupling limit" derivations justify |*M*|² in the Born approximation – Need to do better (e.g. baryogenesis)

Beqn – Applications Beqn – theoretical understanding

This talk and future work

Aims of the talk:

- Heuristic/formal derivation of the BE from first principles QFT on flat space
- Understand better the approximations that go into the derivation
- Systematic understanding of corrections

Work in progress:

- Generalization to curved spaces curvature corrections
- Applications

ヘロン 人間 とくほ とくほ とう

The problem The Solution The Solution The Solution The Solution Solutions So

The model The derivation Some results

The model

- (1 + 1)-D spacetime $\mathbb{R} \times \mathbb{S}^1$ with metric $ds^2 = -dt^2 + L^2 d\mathbf{x}^2$ • momentum discretization
- Hamiltonian (self adjoint operator Glimm & Jaffe):

$$\begin{split} H &= H_0(t) + V(t) = L \frac{1}{2} \int_0^{2\pi} \mathrm{d} \mathbf{x} \Big[:\pi^2(t,\mathbf{x}) :+ L^2 : \left(\partial_{\mathbf{x}} \varphi(t,\mathbf{x}) \right)^2 :+ m^2 : \varphi^2(t,\mathbf{x}) : \Big] + \\ &+ L \frac{\lambda}{4!} \int_0^{2\pi} \mathrm{d} \mathbf{x} : \varphi^4(t,\mathbf{x}) : \end{split}$$

• Dynamics of an observable A described by Heisenberg equation of motion

$$\frac{\mathrm{d} A(t)}{\mathrm{d} t} = i\delta[A(t)] = i[H, A(t)], \qquad A(t) = \alpha_t(A), \ \forall A \in \mathscr{A}$$

• Perturbation theory: interacting field = formal power series in λ

The model The derivation Some results

Set up of the notation

Would like to derive an eqn of the form:

$$\partial_t f_{\mathbf{p}}(t) = C[\{f_{\mathbf{k}}(t)\}],$$

where:

$$f_{\mathbf{p}}(t) = \langle N_{\mathbf{p}}(t) \rangle_{\psi} / L = n_{\mathbf{p}}(t) / L,$$
$$N_{\mathbf{p}}(t) = a_{\mathbf{p}}^{\dagger}(t) a_{\mathbf{p}}(t), \qquad a_{\mathbf{p}}(t) := i \int_{0}^{2\pi} \mathrm{d} \mathbf{x} \mathrm{e}^{-ipx} \overleftrightarrow{\partial_{t}} \varphi(t, \mathbf{x})$$

Heisenberg eqn contains info we don't need

• Idea: projection operator technique \rightarrow introduce linear maps

$$\begin{array}{ll} \mathcal{P}_t: \ \mathscr{A} \mapsto \mathscr{A}, & \mathcal{P}_t \circ \mathcal{P}_s = \mathcal{P}_s, & \mathcal{Q}_t := \textit{id} - \mathcal{P}_t \\ Y_{s,t}: \ \mathscr{A} \mapsto \mathscr{A}, & \partial_t Y_{s,t} = Y_{s,t} \circ \textit{i}\delta \circ \mathcal{Q}_t, & Y_{s,s} = \textit{id} \end{array}$$

(This work: perturbative solution for $Y_{s,t}$)

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(< ≥) < ≥)</p>

ъ

The model The derivation Some results

Outline of the derivation

- **1** Introduce the projectors \mathcal{P}_t and \mathcal{Q}_t
- A pre-Boltzmann equation
- The scaling limit
- The Boltzmann collision factor

イロト イポト イヨト イヨト

æ

The model The derivation Some results

The projector \mathcal{P}_t

Our \mathcal{P}_t is adapted to the observables $\{N_p(t)\}$ that we want to study

1 Introduce, $\forall t \in \mathbb{R}$, unique quasifree state $\langle \cdot \rangle_{\omega(t)}$ s.t., given $n_{\mathbf{p}}(t) \geq 0$

(2) Set $\Delta N_{\mathbf{p}}(t) := N_{\mathbf{p}}(t) - n_{\mathbf{p}}(t)\mathbf{1}$ and $C_{\mathbf{pq}}^{\omega(t)} := \langle \Delta N_{\mathbf{p}}(t)\Delta N_{\mathbf{q}}(t) \rangle_{\omega(t)}$

$$\mathcal{P}_{t}(A) := \langle A \rangle_{\omega(t)} \mathbf{1} + \sum_{\mathbf{p}, \mathbf{q} \in \mathbb{Z}} (C_{\mathbf{pq}}^{\omega(t)})^{-1} \langle \Delta N_{\mathbf{q}}(t) A \rangle_{\omega(t)} \Delta N_{\mathbf{p}}(t), \quad \forall A \in \mathscr{A}$$

The model The derivation Some results

The projector \mathcal{P}_t

Our \mathcal{P}_t is adapted to the observables $\{N_p(t)\}$ that we want to study

1 Introduce, $\forall t \in \mathbb{R}$, unique quasifree state $\langle \cdot \rangle_{\omega(t)}$ s.t., given $n_{\mathbf{p}}(t) \geq 0$

$$\mathcal{P}_t(\mathcal{A}) := \langle \mathcal{A}
angle_{\omega(t)} \mathbf{1} + \sum_{\mathbf{p}, \mathbf{q} \in \mathbb{Z}} (C_{\mathbf{pq}}^{\omega(t)})^{-1} \langle \Delta N_{\mathbf{q}}(t) \mathcal{A}
angle_{\omega(t)} \Delta N_{\mathbf{p}}(t), \quad orall \mathcal{A} \in \mathscr{A}$$

The model The derivation Some results

The Robertson equation

With the above projector we can derive (the "Robertson eqn"):

$$\dot{n}_{\mathbf{p}}(t) = \int_{t_0}^t \mathrm{d}s \left\langle lpha_s \circ i\delta \circ Y_{s,t} \circ i\delta \ N_{\mathbf{p}}(t_0) \right\rangle_{\omega(s)}$$

• Further progress by solving the equation for $Y_{s,t}$ and expressing it in terms of $V(t) = \frac{\lambda}{4!} \int_0^{2\pi} d\mathbf{x} : \varphi^4(t, \mathbf{x})$: We define

$$B(E,\mathbf{p},s) := E \int_{\mathbb{R}} \mathrm{d}\tau \, \mathrm{e}^{-iE\tau} \Big\langle \mathcal{R}\Big[N_{\mathbf{p}}(\tau); \, V(0) \otimes \exp_{\otimes}\Big(-i \int_{0}^{\infty} V(T) \, \mathrm{d}T\Big) \Big] \Big\rangle_{\omega(s)}$$

- \mathcal{R} retarded product
- V(t) interaction potential
- D = 2 don't need renormalization

- 2

The model The derivation Some results

Some results – a pre-Boltzmann equation

A lengthy calculation yields

A pre-Boltzmann equation

$$\dot{n}_{\mathbf{p}}(t) = \int_{t_0}^t \mathrm{d}s \int_{\mathbb{R}} \mathrm{d}E \, \mathrm{e}^{iE(t-s)} B(E,\mathbf{p},s) + \sum_{n=1}^{\infty} (-1)^n \int_{t_0}^t \mathrm{d}s \int_{s \leq \tau_1 \leq \ldots \leq \tau_n \leq t} \mathrm{d}\tau_n \sum_{\mathbf{k}_1,\ldots,\mathbf{k}_n \in \mathbb{Z}} \\ \cdot \left\{ \int_{\mathbb{R}} \mathrm{d}E \, \mathrm{e}^{iE(\tau_1-s)} B(E,\mathbf{k}_1,s) \left[\prod_{i=1}^{n-1} \frac{\partial}{\partial n_{\mathbf{k}_i}(\tau_i)} \int_{\tau_i}^{\tau_{i+1}} \mathrm{d}\tau_i' \int_{\mathbb{R}} \mathrm{d}E_i \, \mathrm{e}^{iE_i(\tau_i'-\tau_i)} B(E_i,\mathbf{k}_{i+1},\tau_i) \right] \cdot \\ \cdot \frac{\partial}{\partial n_{\mathbf{k}_n}(\tau_n)} \int_{\tau_n}^t \mathrm{d}\tau_n' \int_{\mathbb{R}} \mathrm{d}E_n \, \mathrm{e}^{iE_n(\tau_n'-\tau_n)} B(E_n,\mathbf{p},\tau_n) \right\}$$

Remarks:

- Exact (non–Markovian) equation
- "Rescattering" correction terms ($n \ge 1$)

The problem The model The Solution Overview and conclusions Some results

Some results – Towards the Boltzmann collision factor

Next step: Relate $B(E, \mathbf{p}, s)$ to S-matrix elements. We have

$$\dot{n}_{\mathbf{p}}(t) = \int_{t_0}^t \mathrm{d}s \int_{\mathbb{R}} \mathrm{d}E \, \mathrm{e}^{iE(t-s)}B(E,\mathbf{p},s) + \dots$$

Further progress: consider various limits

- Infinite volume limit: $L \to \infty$
- Scaling limit [Van Hove, Hugenholtz, ESY, ...]
 - Weak coupling $(\lambda^2 t)$: $t \mapsto t/\epsilon, \lambda \mapsto \lambda \sqrt{\epsilon}$
 - Low density limit: $t \mapsto t/\epsilon, f_p(t) \mapsto \epsilon^{\alpha} f_p(t/\epsilon)$
 - Curved space: $L(t) \rightarrow L(\epsilon t)$

The "long time limit": $B(E, \mathbf{p}, s) \mapsto B(0, \mathbf{p}, s)\delta(t - s)$ (Up to interchange of limits and integrals, ...) The problem The The Solution The Overview and conclusions Sol

The model The derivation Some results

Some results – the Boltzmann collision factor

After a long computation:

The Boltzmann collision factor

$$B(0,\mathbf{p},s) = 2\pi \sum_{\substack{r \to l \\ processess}} \int_{\mathbb{R}} \frac{\mathrm{d}\mathbf{p}_1}{2\omega(\mathbf{p}_1)} \cdots \frac{\mathrm{d}\mathbf{p}_r}{2\omega(\mathbf{p}_r)} \frac{\mathrm{d}\mathbf{q}_1}{2\omega(\mathbf{q}_1)} \cdots \frac{\mathrm{d}\mathbf{q}_l}{2\omega(\mathbf{q}_l)} \Big| \widetilde{\mathcal{M}}(r \to l) \Big|^2.$$

$$\cdot \,\delta^2 \Big(\sum_{i=1}^r p_i - \sum_{j=1}^l q_j\Big) \Big[\sum_{i=1}^r \delta(\mathbf{p} - \mathbf{p}_i) - \sum_{j=1}^l \delta(\mathbf{p} - \mathbf{q}_j)\Big] \prod_{i=1}^r f_{\mathbf{p}_i}(s) \prod_{j=1}^l \Big(1 + f_{\mathbf{q}_j}(s)\Big)$$

with $f_{p}(s) = \lim_{L \to \infty} \frac{n_{p}(s)}{L}$ Remarks:

- Sum over all $r \rightarrow l$ scattering processess
- "Dressed" amplitude $\widetilde{\mathcal{M}}$ (to compute with Feynman rules)

• $\widetilde{\Delta}_{F,t}(x-y) = \Delta_F(x-y) + \text{correction depending on } f_p(t)$

- All orders in λ
- Single scattering amplitude (CP invariant model)

- -

An application – Baryogenesis revisited

Experimental "fact": maximal matter-anti-matter asymmetry.

Question: Why?

Answer: Baryogenesis (Sakharov - 1967)

• Baryon number violating interactions $\sqrt{~}$ (GUT)

 $B = \begin{cases} +1 & \text{for baryons} \\ -1 & \text{for anti-baryons} \\ 0 & \text{for mesons} \end{cases}$

- C and CP violation $\sqrt{}$ (Electroweak sector of SM)
- Thermal non–equilibrium $\sqrt{}$ (Expansion of the Universe)

★ Beqn used to trace evolution of $n_b(t, \mathbf{p}) - n_{\overline{b}}(t, \mathbf{p})$ (net baryon nr)

Crucial: Loop effect (invisible at tree level)

An application Conclusions

Overview

Heuristic Beqn		Our Beqn
Single process	VS	All scattering processess
Vacuum amplitude	VS	"Dressed" amplitude
Single scattering	VS	Rescattering correction terms
CP violating terms	VS	(Does not apply to φ^4 thy)

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 →

An application Conclusions

Conclusions

- (Formal) Derivation of BE in QFT model!
- Low density and/or weak coupling are crucial for the Boltzmann equation
- Non–Markovian equation if the nature of the quantum does not allow such limits
- Higher order corrections to the amplitude, i.e. beyond the Born approximation
- Reconsider the application to baryogenesis (loop effect)
- Framework adapted to deal with RW-spacetime
- Open issues:
 - Make formal steps *rigorous*! (lim's, convergence, domains, etc...)
 - Non perturbative derivation?

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()