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Content

I Motivation

• Noncommutative Geometry and the Standard Model of
Particle Physics (Alain Connes).

• Does the quantization procedure translate into NCG?
• Ashtekar and loop variables; Loop Quantum Gravity.

I The Model

• A spectral triple over a space of connections.
• The triple is based on a ordered system of finite graphs.

I Physical Interpretation

• Space of connections.
• The Poisson structure of General Relativity.
• Semi-classical states and a classical Dirac operator.
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Noncommutative Geometry

I A Spectral Triple is a collection (B,H,D):
a ∗-algebra B represented as operator in the Hilbert space H; a
self-adjoint, unbounded Dirac operator D with compact
resolvent, acting in H such that [D, b] is bounded ∀b ∈ B.

I Commutative algebra B ↔ Riemannian spin-geometry [Connes]:

B = C∞(M) , H = L2(M,S) , D =6D

I The Standard Model of Particle Physics (SM):
[Connes, Lott, Chamseddine, Marcolli, ...]

I B = C∞(M)⊗ BF , almost commutative algebra

BF = C⊕H⊕M3(C),

I D =6D ⊗ 1 + γ5 ⊗ DF ,

I H = fermionic content of SM

I Spectral action principle → classical action of SM + GR.
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Conclussion

Main point
- Formulation of the Standard Model coupled to General
Relativity as a single gravitational theory. The Standard Model
emerges from a modification of space-time geometry:

C∞(M)→ C∞(M)⊗ BF

- It is the noncommutativity of the algebra which entails the
unified picture:

gravity
nc−→

 - gravity
- gauge sector
- Higgs sector

→ SM + GR

Question
Does Quantum Field Theory translate into this language of
Noncommutative Geometry?

- this would presumably involve Quantum Gravity.

Our goal
To construct a framework which combines Noncommutative
Geometry with elements of Quantum Gravity.
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Gravity and Ashtekar variables

I Hamiltonian formulation of GR.

I Foliation of space-time: M = R× Σ

I Ashtekar variables (Ai
j ,E

i
j ) on Σ

- SU(2)-connection (∼ extrinsic curvature of Σ).
- orthonormal frame field (intrinsic geometry of Σ)

I Poisson brackets

{Ai
j(x),E k

l (y)} = δi
l δ

k
j δ(x − y)

I + Constraints related to the symmetries of GR
(spatial diffeomorphism, Hamilton, Gauss)
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I Shift focus from connections to holonomy and flux variables

hL(A) = Hol(L,A)

L loop on Σ

F a
S (E ) =

∫
S

εijkE a
i dx jdxk

S surface in Σ.

I Poisson brackets

{F a
S (E ), hC (A)} = ±hC1 (A)τ ahC2 (A)

C2

S

C1

τ a generator of su(2), C = C1C2 are curves in Σ.
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Our Project

I Aim: To construct a spectral triple that involves an algebra
of holonomy loops, i.e. functions on the space of smooth
connections, denoted A:

L : ∇ → Hol(∇, L) ∈ Mn(C)

I Such a spectral triple will be a geometrical construction
over the configuration space A,

I the Dirac-type operator will be a functional derivation
operator,

I the Hilbert space will be a space of states on A. Its inner
product will be a functional integral.

I Key point: An algebra of holonomy loops is naturally
noncommutative.

I This project is inspired by Loop Quantum Gravity (LQG) -
the construction of the Hilbert space
[Ashtekar-Lewandowski].
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The construction

A single lattice

I Let Γ be a finite 3-dim finite lattice
with edges {εi} and vertices {vi}

εj : {0, 1} → {vi}

I Assign to each edge εi a group
element gi ∈ G .

∇ : εi → gi

G is a compact Lie-group. The space of such maps is
denoted AΓ. Notice:

AΓ ' G n because AΓ 3 ∇ → (∇(ε1), . . . ,∇(εn)) ∈ G n

I The space AΓ is a coarse-grained approximation of A.
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I Algebra: A loop L is a finite sequence
of edges L = {εi1 , εi2 , . . . , εin} running
in Γ (choose basepoint v0). Discard
trivial backtracking.

v0

I Product by gluing L1 ◦ L2 = {L1, L2}

I Inversion: L∗ = {ε∗in , . . . , ε
∗
ij
, . . . , ε∗i1}

with ε∗j (τ) = εj(1− τ) , τ ∈ {0, 1}

I Consider formal, finite series of loops

a =
X

i

aiLi , ai ∈ C
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Conclussion

I The product between two elements a and b is defined

a ◦ b =
X
i,j

(ai · bj)Li ◦ Lj

I The involution of a is defined

a∗ =
X

i

āiL
∗
i

I These elements have a natural norm

‖a‖ = sup
∇∈AΓ

‖
X

ai∇(Li )‖G

where the norm on the rhs is the matrix norm in G . The
closure of the ?-algebra of loops with respect to this norm is
a C?-algebra. We denote this loop algebra by B.
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closure of the ?-algebra of loops with respect to this norm is
a C?-algebra. We denote this loop algebra by B.
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I Hilbert space: There is the (somewhat) natural Hilbert
space

H = L2(G n,Cl(T ∗G n)⊗Ml(C))

involving the Clifford bundle over G n (l size of rep. of G ).
L2 is with respect to the Haar measure on G n.

I The two factors in H (Clifford bundle, matrix factor) are
needed:

- to define a Dirac type operator,

- to have a representation of the algebra of holonomy loops.

I The loop algebra B has a natural representation on H

fL · ψ(∇) = (1⊗∇(L)) · ψ(∇) , ψ ∈ H

where the first factor acts on the Clifford-part of the Hilbert
space and the second factor acts by matrix multiplication on
the matrix part of the Hilbert space. Also

∇(L) = ∇(εi1 ) · ∇(εi2 ) · . . . · ∇(εin )

with L = {εi1 , εi2 , . . . , εin} .
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I Dirac operator: Choose a Dirac operator D on G n

(choose a metric on G and use Levi-Civita) and obtain

I a candidate for a spectral triple

(B,D,H)Γ ,

on the level of the lattice Γ.
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A family of lattices

I Consider a system of nested lattices

Γ0 → Γ1 → Γ2 → . . .

with Γi a subdivision of Γi−1

....

Γ0 Γ1 Γ2

On the level of the associated manifolds AΓi this gives rise
to projections

G n0
P10←− G n1

P21←− G n2
P32←− G n3

P43←− . . .



Spectral Triples of
Holonomy Loops

Jesper Møller Grimstrup

Content

Noncommutative
Geometry

Gravity and Ashtekar
variables

The Project

The construction

Spaces of Connections

The interaction btw D
and the algebra

A semi-classical analysis

D and the volume of Σ

Spectral action functional

Connes Distance Formula

Conclussion

A family of lattices

I Consider a system of nested lattices

Γ0 → Γ1 → Γ2 → . . .

with Γi a subdivision of Γi−1

....

Γ0 Γ1 Γ2

On the level of the associated manifolds AΓi this gives rise
to projections

G n0
P10←− G n1

P21←− G n2
P32←− G n3

P43←− . . .



Spectral Triples of
Holonomy Loops

Jesper Møller Grimstrup

Content

Noncommutative
Geometry

Gravity and Ashtekar
variables

The Project

The construction

Spaces of Connections

The interaction btw D
and the algebra

A semi-classical analysis

D and the volume of Σ

Spectral action functional

Connes Distance Formula

Conclussion

I Consider next a corresponding system of spectral triples

(B,D,H)Γ0 ↔ (B,D,H)Γ1 ↔ (B,D,H)Γ2 ↔ . . .

with the requirement that the spectral triples are compatible
with the projections/embeddings between graphs and
Hilbert spaces.

I For the Hilbert space compatibility is easily obtained and
compatibility for the algebra is clear.
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I For the Dirac operator, the
problem boils down to the simple
case

P : G 2 → G , (g1, g2)→ g1 · g2

G G

G

P

corresponding to the compatibility condition

P∗(D1v)(g1, g2) = D2(P∗v)(g1, g2) , v ∈ L2(G ,Cl(T ∗G ))

where D1 is a Dirac operator on G and D2 is a Dirac
operator on G 2.
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I We have found several ways to solve this consistency
problem. One solution is to consider the change of variables:

(g1, g2)→ (g1 · g2, g2) ≡ (g ′1, g
′
2)

which gives the structure map

P : (g ′1, g
′
2)→ g ′1

I A Dirac operator compatible with this structure map is of
the form

D = D1 + aD2

where a is a real parameter and D1, D2 are Dirac operators
on G

Dj(ξ) =
∑

i

ei · dei (ξ) ξ ∈ L2(G ,Cl(TG ))

where ei are left-translated vectorfields.
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I After repeated subdivisions this gives rise
to a series of free parameters {ak}.

I By solving the G 2 → G problem repeatedly
we end up with a Dirac type operator on
the level of Γi

.

.

.

.

.

.

D =
∑

k

akDk

where Dk is a Dirac type operator corresponding to the k’th
level.
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The limit

I In the limit, this gives us a candidate for a spectral triple

(B,D,H)Γi −→ (B,D,H)A

I Result: For a compact Lie-group G the triple (B,D,H)A is
a semi-finite? spectral triple:

. D’s resolvent (1 + D2)−1 is compact (wrt. trace) and

. the commutator [D, a] is bounded

Provided the sequence {ai} approaches ∞ sufficiently fast.

?semi-finite: everything works up to a symmetry group with
a trace (CAR algebra) [Carey, Phillips, Sukochev].
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What physical interpretation does this
spectral triple construction have?

- how should the graphs be interpreted?
- how should the sequence {an} be interpreted?

It appears that the spectral triple construction lies somewhere
between Hamiltonian lattice gauge theory and LQG.
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Spaces of connections

I Denote
A := lim

Γ←−
AΓ

or roughly:

G n1 ← G n2 ← . . .← G∞ ∼ A

I Result:
A ↪→ A

which means that A is a space of generalized connections.

I This result mirrors a similar result from LQG, based on the
system of piece-wise analytic graphs. Here: it is possible to
capture the full information of A with a countable system of
graphs.
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I Thus: A contains all smooth connections. This implies:

I The Dirac operator is a kind of (global) functional
derivation operator over A

D ∼ δ

δ∇

of connections (more on this later).
I The inner product of the Hilbert space is a functional

integral over A
〈Ψ|...|Ψ〉 ∼

Z
A
...

I Interpretation: nonperturbative quantum field theory.



Spectral Triples of
Holonomy Loops

Jesper Møller Grimstrup

Content

Noncommutative
Geometry

Gravity and Ashtekar
variables

The Project

The construction

Spaces of Connections

The interaction btw D
and the algebra

A semi-classical analysis

D and the volume of Σ

Spectral action functional

Connes Distance Formula

Conclussion

I Thus: A contains all smooth connections. This implies:
I The Dirac operator is a kind of (global) functional

derivation operator over A

D ∼ δ

δ∇

of connections (more on this later).

I The inner product of the Hilbert space is a functional
integral over A

〈Ψ|...|Ψ〉 ∼
Z
A
...

I Interpretation: nonperturbative quantum field theory.



Spectral Triples of
Holonomy Loops

Jesper Møller Grimstrup

Content

Noncommutative
Geometry

Gravity and Ashtekar
variables

The Project

The construction

Spaces of Connections

The interaction btw D
and the algebra

A semi-classical analysis

D and the volume of Σ

Spectral action functional

Connes Distance Formula

Conclussion

I Thus: A contains all smooth connections. This implies:
I The Dirac operator is a kind of (global) functional

derivation operator over A

D ∼ δ

δ∇

of connections (more on this later).
I The inner product of the Hilbert space is a functional

integral over A
〈Ψ|...|Ψ〉 ∼

Z
A
...

I Interpretation: nonperturbative quantum field theory.



Spectral Triples of
Holonomy Loops

Jesper Møller Grimstrup

Content

Noncommutative
Geometry

Gravity and Ashtekar
variables

The Project

The construction

Spaces of Connections

The interaction btw D
and the algebra

A semi-classical analysis

D and the volume of Σ

Spectral action functional

Connes Distance Formula

Conclussion

I Thus: A contains all smooth connections. This implies:
I The Dirac operator is a kind of (global) functional

derivation operator over A

D ∼ δ

δ∇

of connections (more on this later).
I The inner product of the Hilbert space is a functional

integral over A
〈Ψ|...|Ψ〉 ∼

Z
A
...

I Interpretation: nonperturbative quantum field theory.



Spectral Triples of
Holonomy Loops

Jesper Møller Grimstrup

Content

Noncommutative
Geometry

Gravity and Ashtekar
variables

The Project

The construction

Spaces of Connections

The interaction btw D
and the algebra

A semi-classical analysis

D and the volume of Σ

Spectral action functional

Connes Distance Formula

Conclussion

D interacting with the algebra

I First, for a single group element g corresponding to the i ′th
copy of G in G n we find

[D, g ] =
∑

k

(
± gσa

)
· ea

i (ai ≡ 1)

where ea
i ∈ Cl(T ∗G n) and σa are generators of the Lie

algebra g.

I Next, the commutator between D and the loop L is

[D, fL] = [D, gi1 ]gi2 . . . gik + gi1 [D, gi2 ] . . . gik + . . .

I In short: the action of D is to insert Lie algebra generators
at each vertex in the loop.

I This resembles the Poisson structure between loop and flux
variables: A Lie-group generator is inserted into a loop in an
intersection point.
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I In fact, the left-invariant vector fields in D corresponds to
flux-operators sitting at the vertices in the graphs.

I This means that D can be
interpreted as a sum of flux
operators, one for each copy of G .

ε2

ε1

Si

vi

I The corresponding surfaces are ’dummy’ in the sense that
only the intersection points play any role in the following.
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I In the limit of repeated subdivisions the spectral triple
contains information equivalent to a representation of the
Poisson brackets of General Relativity:

I The holonomy loops builds the algebra.
I The flux operators are stored in the Dirac type operator.
I These objects are build on a ”dense” system of graphs.
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Semi-classical states

I Goal: To find states which are peaked around classical
geometries. To find a classical interpretation of the Dirac
operator D.

v1 v2ε1

I First: Coherent states φ(g) on a compact Lie-group
[Hall 1994]

〈φ̄(g)|fL|φ(g)〉 = Hol(L,A) +O(~)

〈φ̄(g)|dea
1
|φ(g)〉 = iE a

1 (v2) +O(~)

where E and A are classical fields.

I These are the same states which Thomas Thiemann has
used to construct semi-classical states in a LQG-setup.



Spectral Triples of
Holonomy Loops

Jesper Møller Grimstrup

Content

Noncommutative
Geometry

Gravity and Ashtekar
variables

The Project

The construction

Spaces of Connections

The interaction btw D
and the algebra

A semi-classical analysis

D and the volume of Σ

Spectral action functional

Connes Distance Formula

Conclussion

Semi-classical states

I Goal: To find states which are peaked around classical
geometries. To find a classical interpretation of the Dirac
operator D.

v1 v2ε1

I First: Coherent states φ(g) on a compact Lie-group
[Hall 1994]

〈φ̄(g)|fL|φ(g)〉 = Hol(L,A) +O(~)

〈φ̄(g)|dea
1
|φ(g)〉 = iE a

1 (v2) +O(~)

where E and A are classical fields.

I These are the same states which Thomas Thiemann has
used to construct semi-classical states in a LQG-setup.



Spectral Triples of
Holonomy Loops

Jesper Møller Grimstrup

Content

Noncommutative
Geometry

Gravity and Ashtekar
variables

The Project

The construction

Spaces of Connections

The interaction btw D
and the algebra

A semi-classical analysis

D and the volume of Σ

Spectral action functional

Connes Distance Formula

Conclussion

Semi-classical states

I Goal: To find states which are peaked around classical
geometries. To find a classical interpretation of the Dirac
operator D.

v1 v2ε1

I First: Coherent states φ(g) on a compact Lie-group
[Hall 1994]

〈φ̄(g)|fL|φ(g)〉 = Hol(L,A) +O(~)

〈φ̄(g)|dea
1
|φ(g)〉 = iE a

1 (v2) +O(~)

where E and A are classical fields.

I These are the same states which Thomas Thiemann has
used to construct semi-classical states in a LQG-setup.



Spectral Triples of
Holonomy Loops

Jesper Møller Grimstrup

Content

Noncommutative
Geometry

Gravity and Ashtekar
variables

The Project

The construction

Spaces of Connections

The interaction btw D
and the algebra

A semi-classical analysis

D and the volume of Σ

Spectral action functional

Connes Distance Formula

Conclussion

One copy of G

I Let ψ(x) be a two-spinor field on Σ. Let E (x) and A(x) be
a triad and connection field on Σ.

I Since D is odd wrt the Clifford algebra, a state which gives
a non-trivial expectation value of D must mix even and odd
terms.

v1 v2ε1

I The state

Ψ(g) =
(
gψ(v2) + iea

1σ
aψ(v1)

)
φ(g)

gives, to lowest order, the expectation value of D

〈Ψ̄(g)|D|Ψ(g)〉 = an

(
− ψ̄(v1)σaE 1

a (ψ(v2)− ψ(v1))

+(ψ̄(v2)− ψ̄(v1))σaE 1
aψ(v1)

+ψ̄(v1){εA, σaE 1
a }ψ(v1)

)
+O(~)

where we used g ∼ 1 + εA, with ε = 2−n. Here ”1” denotes
the direction of ε1.
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I We now set
an = 2n

I In the limit an →∞, the edge gets ”small” and we find

〈Ψ̄(g)|D|Ψ(g)〉
∣∣∣
ai→∞

= ψ(v0)(σaE 1
a∇1+∇1σ

aE 1
a )ψ(v0)+O(~)

where we ”cheated” by using a partial integration, and
where ∇1 = ∂1 + A1.

I This looks like a self-adjoint Dirac operator in 3-dimensions
- in one point and in one direction.

I A clear interpretation of the sequence {an}: In the
semi-classical limit, the parameters an are the inverse
infinitesimal line elements:

an ∼
1

∆x
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Three copies of G

I The state

Ψ(g1, g2, g3) =
(

g1σ
aea

2σ
beb

3ψ(v1)

+g2σ
aea

1σ
beb

3ψ(v2)

+g3σ
aea

1σ
beb

2ψ(v3)

+iσaea
1σ

beb
2σ

cec
3ψ(v0)

)
φ1(g1)φ2(g2)φ3(g3)

v1

v2

v3

ε1

ε2

ε3

v0

gives the expectation value

〈Ψ̄|D|Ψ〉
∣∣∣
an→∞

= ψ̄(v0)(σaEm
a ∇m +∇mσ

aEm
a )ψ(v1) +O(~)

with ∇m = ∂m + Am, m ∈ {1, 2, 3}.
I Recall that Em

a is the densitised triad field. It involves
e = det(em

a ), where em
a is a spatial triad field.
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Semiclassical states on A

At the n’th level, the state

Ψn(A) =
1

N

(∑
i

Ψvi

)
Φn(A) ∈ H , vi

vi1

vi2

vi3

where N =
√

(#new boxes) and where

Ψvi (gi1 , gi2 , gi3 ) = gi1σ
aea

2σ
beb

3ψ(vi1 ) + gi2σ
aea

1σ
beb

3ψ(vi2 )

+gi3σ
aea

1σ
beb

2ψ(vi3 ) + iσaea
1σ

beb
2σ

cec
3ψ(vi )

and
Φn(A) =

∏
i

φi (gi )

gives the expectation value of D

lim
n→∞
〈Ψ̄n(A)|D|Ψn(A)〉 =

∫
Σ

d3x
√

g ψ̄(x)(σaem
a ∇m+∇mσ

aem
a )ψ(x)+O(~)

where em
a is a spatial triad field on Σ.
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I We have found states which leads to a classical Dirac
operator on Σ. Notice that the classical expression is
invariant.

I The sum in D over all copies of G is naturally converted
into an integral over Σ, in a semi-classical limit.

I The role of the lattices is that of a coordinate system.

I The spectral triple construction works for many systems of
ordered graphs. This semi-classical analysis singles out
lattices.

I Also, there are several ways to solve the consistency
conditions for the Dirac operator. This semi-classical
analysis singles out one of these solutions as natural.

I In the semi-classical limit all dependency on any finite part
of the lattices vanish:

ψ(x + ε)− ψ(x) → 0

an → ∞ , only in the continuum limit

of ”infinitesimal” edges.
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Comments and questions

I What about the Hamiltonian of GR?
I We believe that the term ”EEF” should come out of the

square of D. But more structure is probably needed.

I What about the algebra of functions?
I So far we have not considered inner fluctuations of D:

D → D + a[D, b] , a, b ∈ B

It is an interesting question if the algebra C∞(Σ) can be
obtained in a semi-classical limit. Also, will this algebra be
commutative?

C∞(Σ)→ C∞(Σ)⊗Mn(C) , - additional matrix factor?
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I What about the algebra of functions?
I So far we have not considered inner fluctuations of D:

D → D + a[D, b] , a, b ∈ B

It is an interesting question if the algebra C∞(Σ) can be
obtained in a semi-classical limit.

Also, will this algebra be
commutative?

C∞(Σ)→ C∞(Σ)⊗Mn(C) , - additional matrix factor?
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D and the volume of Σ

I There exist an interesting similarity between D and the
volume of Σ.

First:

Vol(Σ) =

∫
Σ

eεmnldxmdxndx l

where m, n, l runs through 1, 2, 3. We can rewrite this as

Vol(Σ) =

∫
Σ

εmnleem
a dxadxndx l =

∫
Σ

dxadFa

I Thus, we can rewrite the volume in terms of inifitesimal flux
variables.
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I Next, write the integral as a
limit of cubes

Vol(Σ) = lim
δ→0

∑
∆xiF∆Si

∆x1

vi

lj

∆S1
j

I This formulation of Vol(Σ) is very similar to the Dirac
operator D:

I it is written in terms of an inductive system of lattices.
I it is a sum of flux variables.

I To get from Vol(Σ) to D :

1. Quantize according to Poisson structure:

F a
∆Sm

j
→ dea

j

2. exchange dxa with a corresponding element in the Clifford
algebra Cl(T ∗G n)

dxa → ea
j
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I The Dirac operator D splits the infinitesimal constituents of
the Riemannian integral, quantizes them and throws them
into an infinite dimensional Clifford bundle.
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Spectral action functional

I The spectral action functional (trace of heat-kernel)
resembles a Feynman integral

Tr exp(−s(D)2) ∼
∫
A∆

[d∇] exp
(
−s(D)2

)
δ∇(∇)

where D2 plays the role of an action or an energy.

I This object is finite.

I Perhaps the Hamiltonian of GR should be extracted from
this object?
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Connes Distance Formula

I Connes distance formula: Given a spectral triple
(A,D,H) over a manifold M the distance formula reads

d(ξx , ξy ) = sup
a∈A

{
|ξx(a)− ξy (a)|

∣∣|[D, a]| ≤ 1
}

where ξx , ξy are homomorphisms A → C. This can be
generalized to noncommutative spaces/algebras.

I Question: What about Connes distance formula for the
spectral triple (B,D,H)? A distance between field
configurations? Yes.

I If two configurations differ on a large scale, then the
distance between them will be ’large’ (difference weighted
with small a’s - large distance)

I If they differ only on short scales, then the distance will be
’small’ (difference weighted with large a’s - small distance).
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Summary

I We constructed a semi-finite spectral triple (B,D,H) where:

I B is an algebra of (holonomy) loops.
I D is a global functional derivation operator.
I The triple (B,D,H) depends on a set {an} of scaling

parameters.
I The interaction between B and D encodes the Poisson

structure of GR.
I The construction is based on a countable system of

embedded graphs. The construction is essentially
combinatorial.

I We have constructed semi-classical states. The expectation
value of D leads to a classical Dirac operator on Σ.

I In this semi-classical limit the scaling parameters {an} play
the role of the inverse line-element. The lattices represent a
coordinate system.

I This semi-classical analysis singles out one spectral triple
construction as natural (graphs, Dirac operator).
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Outlook

I The general setup permits a lot of structure which we have
not yet analyzed/exploited.

I What happens to the algebra in the semi-classical limit
which we have found?

I How to formulate the Hamiltonian of GR within this
framework?

I The spectral action. It resembles a Feynman integral - what
exactly is it?
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