Inst. f. Theoretische Physik

Sommersemester 2009

Übungsaufgaben Kosmologie – Blatt 4

8. $g^{\mu\nu}$

Die Funktionen-Matrix $(g^{\mu\nu})$ ist definiert als die zu $(g_{\alpha\beta})$ inverse Matrix, d.h. durch $g^{\mu\lambda}g_{\lambda\nu} = \delta^{\mu}_{\nu}$, wobei $g_{\alpha\beta}$ die Koordinatenkomponenten eines $\binom{0}{2}$ Tensorfelds sind. Zeigen Sie, dass $g^{\mu\nu}$ die Koordinatenkomponenten eines $\binom{0}{2}$ Tensorfelds bilden, indem Sie die entsprechenden Transformationseigenschaften bei Koordinatenkarten-Wechsel nachweisen.

9. Transformationsverhalten von $\Gamma^{\alpha}_{\beta\gamma}$

Es seien $\Gamma^{\alpha}_{\beta\gamma}$ und $\bar{\Gamma}^{\lambda}_{\mu\nu}$ die Christoffelsymbole bzgl. der Koordinatenkarten (x^{α}) bzw. (\bar{x}^{λ}) . Verifizieren Sie das folgende Transformationsverhalten der Christoffelsymbole:

$$\bar{\Gamma}^{\lambda}_{\mu\nu} = \frac{\partial x^{\gamma}}{\partial \bar{x}^{\nu}} \frac{\partial x^{\beta}}{\partial \bar{x}^{\mu}} \frac{\partial \bar{x}^{\lambda}}{\partial x^{\alpha}} \Gamma^{\alpha}_{\beta\gamma} + \frac{\partial^{2} x^{\alpha}}{\partial \bar{x}^{\mu} \partial \bar{x}^{\nu}} \frac{\partial \bar{x}^{\lambda}}{\partial x^{\alpha}}$$

10. Krümmung einer einfachen Metrik

In einem Koordinatensystem (x^0, x^1, x^2, x^3) einer 4-dimensionalen Lorentzschen Mannigfaltigkeit habe die Metrik $g_{\mu\nu}$ die Form

$$g_{00}(x) = 1$$
, $g_{11}(x) = g_{22}(x) = g_{33}(x) = -f(x^0)$,

alle anderen Koordinatenkomponenten = 0, mit einer glatten Funktion $f(x^0)$, die strikt positive Werte annimmt.

Berechnen Sie:

- 1. Die Christoffelsymbole $\Gamma^{\lambda}_{\mu\nu}$,
- 2. Den Riemanntensor $\mathfrak{R}^{\lambda}{}_{\beta\mu\nu}$,
- 3. Den Riccitensor $Ric_{\beta\nu}$,
- 4. Die Skalarkrümmung R,
- 5. Den Einsteintensor $G_{\alpha\beta} = \text{Ric}_{\alpha\beta} \frac{1}{2}g_{\alpha\beta}R$.