UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK

Quantenmechanik I

Übungsblatt 8 (Abgabe: 11.12.2006)

23. Skalenoperator in zwei Dimensionen

Zeigen Sie explizit, dass der Operator

$$G = i(xp_x + yp_y)$$

mit dem Drehimpulsoperator $J=xp_y-yp_x$ kommutiert. Zeigen Sie ferner, dass die Anwendung von G den Grad, n, einer homogenen Funktion ergibt, d.h.

$$Gr^n = n r^n$$
.

wobei $r = \sqrt{x^2 + y^2}$ (und $\hbar = 1$).

24. Drehimpulsalgebra in \mathbb{R}^3

Betrachten Sie die Operatoren

$$J_x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & i \\ 0 & -i & 0 \end{pmatrix} \qquad J_y = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix} \qquad J_z = \begin{pmatrix} 0 & i & 0 \\ -i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

die im komplexen Hilbertraum der drei-komponentigen Vektoren wirken, und zeigen Sie, dass sie die Relationen der Drehimpulsalgebra

$$[J_a, J_b] = i\epsilon_{abc}J_c$$

erfüllen. Bestimmen Sie die Eigenwerte und die zugehörigen Eigenvektoren von J_z .

25. Kugelflächenfunktion $\ell = 1, m = -1$

Die Kugelflächenfunktion, $\psi = Y_{-1}^1(\theta, \varphi)$, ist eine Eigenfunktion von \vec{L}^2 zum Eigenwert $2\hbar$ und von L_z zum Eigenwert $-\hbar$. Benutzen Sie die Gleichungen

$$L_{-}\psi \equiv (L_{x} - iL_{y})\psi \equiv -\hbar(e^{-i\varphi}\partial_{\theta} - i\cot\theta e^{-i\varphi}\partial_{\varphi})\psi = 0$$
$$L_{3}\psi \equiv -i\hbar\partial_{\varphi}\psi = -\hbar\psi$$

um die Funktion ψ explizit zu bestimmen.