Inst. f. Theoretische Physik

Wintersemester 2008/09

Musterlösungen zu Übungen zur Allgemeinen Relativitätstheorie Aufgabenblatt 5

Aufgabe 13

Die Produktregel der kovarianten Ableitung liefert:

$$\partial_{k}g_{ij} = \frac{\partial}{\partial x^{k}}g\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right) \\
= g\left(\nabla_{\frac{\partial}{\partial x^{k}}}\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right) + g\left(\frac{\partial}{\partial x^{i}}, \nabla_{\frac{\partial}{\partial x^{k}}}\frac{\partial}{\partial x^{j}}\right) \\
= g\left(\Gamma_{ki}^{l}\frac{\partial}{\partial x^{l}}, \frac{\partial}{\partial x^{j}}\right) + g\left(\frac{\partial}{\partial x^{i}}, \Gamma_{kj}^{l}\frac{\partial}{\partial x^{l}}\right) \\
= \Gamma_{ki}^{l}g_{lj} + \Gamma_{kj}^{l}g_{il}$$

Hieraus folgt sofort $\Gamma^k_{ij}=0\Rightarrow rac{\partial}{\partial x^k}g_{ij}=0$. Durch Vertauschen der Indices obiger Gleichung erhält man:

$$\partial_k g_{ij} = \Gamma^l_{ki} g_{lj} + \Gamma^l_{kj} g_{il} \tag{1}$$

$$\partial_i g_{ik} = \Gamma^l_{ii} g_{lk} + \Gamma^l_{ik} g_{il} \tag{2}$$

$$\partial_i g_{kj} = \Gamma^l_{ik} g_{lj} + \Gamma^l_{ij} g_{kl} \tag{3}$$

Nun folgt aus (1)-(2)+(3) unter Berücksichtigung der Torsionsfreiheit $\Gamma^k_{ij}=\Gamma^k_{ji}$:

$$\partial_k g_{ij} - \partial_j g_{ik} + \partial_i g_{kj} = 2\Gamma^l_{ki} g_{lj}$$

Multiplikation von rechts mit dem Inversen von g_{ij} :

$$\begin{array}{rcl} \left(\partial_k g_{ij} - \partial_j g_{ik} + \partial_i g_{kj}\right) g^{jm} & = & 2\Gamma^l_{ki} g_{lj} g^{jm} \\ & = & 2\Gamma^l_{ki} \delta_l{}^m \\ & = & 2\Gamma^m_{ki} \\ \frac{1}{2} g^{jm} \left(\partial_k g_{ij} - \partial_j g_{ik} + \partial_i g_{kj}\right) & = & \Gamma^m_{ki} \end{array}$$

Nun folgt auch sofort $\frac{\partial}{\partial x^k}g_{ij}=0 \Rightarrow \Gamma^k_{ij}=0$.

Aufgabe 14

Gegeben ist eine Mannigfaltigkeit $M=\{y=(y^1,y^2,y^3)\in\mathbb{R}^3:(y^2)^2+(y^3)^2=1\}\simeq\mathbb{R}\times S^1$, ein stehender Zylinder. Koordinatisiert wird dieser durch $y(x^0,x^1)=\begin{pmatrix}x^0\\\cos(x^1)\\\sin(x^1)\end{pmatrix},\ x^0\in\mathbb{R},\ x^1\in(0,2\pi).$ Die zugehörige Metrik soll sein

 $g=\mathrm{d} x^0\otimes\mathrm{d} x^0+\mathrm{d} x^1\otimes\mathrm{d} x^1\in\mathcal{T}_2^0$. Der Tangentialraum $T_{y_0}M$ wird aufgespannt durch $\frac{\partial y}{\partial x^0}|_{y^{-1}(y_0)}$ und $\frac{\partial y}{\partial x^1}|_{y^{-1}(y_0)}$. Sei nun $x(t):[a,b]\to\mathbb{R}\times(0,2\pi)$ eine C^2 -Parameterkurve. $\gamma(t)=y\circ x(t)$ ist die im weiteren zu betrachtende Kurve auf der Mannigfaltigkeit M. Dann ist:

$$\dot{\gamma}(t) = (Dy \circ x(t))\dot{x}(t) = \dot{x}^0 \partial_{x^0} y + \dot{x}^1 \partial_{x^1} y$$

Für die Länge einer Kurve gilt

$$L\gamma(t) = \int_a^b \sqrt{g(\dot{\gamma}(t), \dot{\gamma}(t))} dt = \int_a^b F(x^0, x^1, \dot{x}^0, \dot{x}^1, t) dt,$$

mit $g(\dot{\gamma}(t),\dot{\gamma}(t))=(\dot{x}^0)^2+(\dot{x}^1)^2$. Die Länge soll extremal werden (die Enden sind fixiert). D.h. die gesuchte Kurve löst die Euler-Lagrange Gleichungen.

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial F}{\partial \dot{x}^i} - \frac{\partial F}{\partial x^i} = 0$$

In diesem Fall ergibt sich

$$\dot{x}^i \left((\dot{x}^0)^2 + (\dot{x}^1)^2 \right)^{-\frac{1}{2}} = 0,$$

d.h.

$$\dot{x}^i = c_i \sqrt{(\dot{x}^0)^2 + (\dot{x}^1)^2}, \ c_i \in \mathbb{R}.$$

Somit ist $x^0 = \frac{c_1}{c_2}x^1 + d$, $d \in \mathbb{R}$, und die Parameterkurve hat eine Gestalt in Form von $x(t) = \left(\frac{c_1}{c_2}t + d, t\right)^T$ bzw. $x(t) = \left(t, \frac{c_2}{c_1}(t-d)\right)^T$. Diese erfüllt die Geodätengleichung $\ddot{x}^i + \Gamma^i_{jk}\dot{x}^j\dot{x}^k = 0$, da $\Gamma^i_{jk} \equiv 0$.

Sei nun $g=\mathrm{d} x^0\otimes\mathrm{d} x^0-\mathrm{d} x^1\otimes\mathrm{d} x^1$ und $\gamma(t)=y\circ x(t)$ zeitartig, d.h. $g(\dot{\gamma}(t),\dot{\gamma}(t))=(\dot{x}^0)^2-(\dot{x}^1)^2>0,\ \forall t\in[a,b].$ O.B.d.A. sei $\dot{x}^0>0$ (Wahl einer Zeitrichtung). Euler-Lagrange Gleichungen sehen wie folgt aus

$$\dot{x}^i \left((\dot{x}^0)^2 - (\dot{x}^1)^2 \right)^{-\frac{1}{2}} = 0,$$

d.h.

$$\dot{x}^i = c_i \sqrt{(\dot{x}^0)^2 - (\dot{x}^1)^2}, \ c_i \in \mathbb{R}$$

mit der Bedingung $\frac{\dot{x}^0}{|\dot{x}^1|} = \frac{c_1}{|c_2|} > 1$.

Aufgabe 15

Die Metriken waren:

$$ds^{2} = dt^{2} - \cosh^{2} t (d\xi^{2} + \sin^{2} \xi (d\theta^{2} + \sin^{2} \theta d\phi^{2}))$$
(4)

$$d\tilde{s}^2 = (dx^0)^2 - e^{2x^0}((dx^1)^2 + (dx^2)^2 + (dx^3)^2)$$
(5)

Wir verwenden den Lagrangeformalismus um die Geodäten auszurechnen

$$\mathcal{L} = \frac{1}{2} (\dot{t}^2 - \cosh^2 t (\dot{\xi}^2 + \sin^2 \xi (\dot{\theta}^2 + \sin^2 \theta \,\dot{\phi}^2)))$$

Nun stellen wir die Euler-Lagrangegleichungen auf:

$$\frac{d}{d\tau}\frac{d\mathcal{L}}{d\dot{x}^{\alpha}} = \frac{d\mathcal{L}}{dx^{\alpha}}$$

 $\ddot{t} = -\cosh t \sinh t (\dot{\xi}^2 + \sin^2 \xi (\dot{\theta}^2 + \sin^2 \theta \,\dot{\phi}^2))$

- $-2\sinh t\cosh t\,\dot{t}\dot{\xi}-\cosh^2 t\,\ddot{\xi}=-\cosh^2 t\sin\xi\cos\xi(\dot{\theta}^2+\sin^2\theta\,\dot{\phi}^2)$
- $-2\sinh t\cosh t\sin^2\xi\,\dot{t}\dot{\theta}-2\cosh^2t\sin\xi\cos\xi\,\dot{\xi}\dot{\theta}-\sin^2\xi\cosh^2t\,\ddot{\theta}=-\cosh^2t\sin^2\xi\sin\theta\cos\theta\,\dot{\phi}^2$
- $-2\cosh t\sinh t\sin^2\xi\sin^2\theta\,\dot{t}\dot{\phi}-2\cosh^2t\sin\xi\cos\xi\sin^2\theta\,\dot{\xi}\dot{\phi}-2\cosh^2t\sin^2\xi\sin\theta\cos\theta\,\dot{\theta}\dot{\phi}-\cosh^2t\sin^2\xi\sin^2\theta\,\ddot{\phi}=0$

Aus einem Koeffizientenvergleich mit der Geodätengleichung lesen wir ab:

$$\begin{array}{lll} \Gamma^t_{\xi\xi} = \cosh t \sinh t & \Gamma^t_{\theta\theta} = \cosh t \sinh t \sin^2 \xi & \Gamma^t_{\phi\phi} = \cosh t \sinh t \sin^2 \xi \sin^2 \theta \\ \Gamma^t_{\xi\xi} = \tanh t & \Gamma^\xi_{\theta\theta} = -\sin \xi \cos \xi & \Gamma^\xi_{\phi\phi} = -\sin \xi \cos \xi \sin^2 \theta \\ \Gamma^\theta_{t\theta} = \tanh t & \Gamma^\theta_{\xi\theta} = \coth \xi & \Gamma^\theta_{\phi\phi} = -\sin \theta \cos \theta \\ \Gamma^\phi_{t\phi} = \tanh t & \Gamma^\phi_{\xi\phi} = \cot \xi & \Gamma^\phi_{\theta\phi} = \cot \theta \end{array}$$

Die anderen sind 0. Für die zweite Metrik sieht man leicht: $\Gamma^0_{ii}=e^{2x^0}, \Gamma^i_{0i}=1$ für $i\in\{1,2,3\}$ und wieder 0 sonst.

¹ Euler-Lagrange Gleichung und Geodätengleichung sind äquivalent, daher ist auch in komplizierteren Fällen, nichts anderes zu erwarten.