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We propose a generic model of driven DNA under the influence of an oscillatory force of amplitude F and
frequency ν and show the existence of a dynamical transition for a chain of finite length. We find that the area of
the hysteresis loop, Aloop, scales with the same exponents as observed in a recent study based on a much more
detailed model. However, towards the true thermodynamic limit, the high-frequency scaling regime extends to
lower frequencies for larger chain length L and the system has only one scaling (Aloop ≈ ν−1F 2). Expansion
of an analytical expression for Aloop obtained for the model system in the low-force regime revealed that there
is a new scaling exponent associated with force (Aloop ≈ ν−1F 2.5), which has been validated by high-precision
numerical calculation. By a combination of analytical and numerical arguments, we also deduce that for large
but finite L, the exponents are robust and independent of temperature and friction coefficient.
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Living systems are open systems and hence never in equilib-
rium. Biological processes, e.g., transcription and replication
of nucleic acids, packing of DNA in a capsid, synthesis and
degradation of proteins, etc., are driven by different types
of molecular motors in vivo [1]. These motors act like a
repetitive force generator due to the chemomechanical cycles
resulting through the hydrolysis of adenosine triphosphate
(ATP) [2–9]. Surprisingly, application of an oscillatory force
remains elusive in single molecule force spectroscopy (SMFS)
experiments. Rather a constant force or loading rate frequently
used in SMFS experiments have enhanced our understanding
[10–13], but provided a limited picture of these processes.
For example, by varying the frequency of the applied force, it
is possible to observe a dynamical transition, where without
changing the physiological condition, the system may be
brought from the zipped or unzipped state to a new dynamic
(hysteretic) state [14–19]. Thus, the application of oscillatory
force will open a new domain of observations and provide
further insight into these processes, which would not be
possible in the case of a steady force.

When a DNA chain is driven by an oscillatory force, a finite
relaxation time produces a lag between force and response,
and hence produces hysteresis [14–19]. The area of hysteresis
loop, Aloop, under a periodic force with amplitude F and
frequency ν was found numerically in a rather detailed model
to scale as Fανβ [16]. Here, α and β are the characteristic
exponents similar to the ones seen in the case of isotropic spin
systems [20–23]. Using Langevin dynamics (LD) simulations
for different chain lengths, Mishra et al. [18] found that these
exponents remain independent of solvent quality (varying
friction coefficient) and interactions involved in the stability
of biomolecules (e.g., native interaction for DNA and non-
native interaction for a polymer globule). Moreover, they also
reported the dependence of loop area on the length of the
chain, which shows a power-law scaling. In the low-frequency
regime, the area of the hysteresis loop per nucleotide Aloop/N

scales as F 0.5ν0.5N0.75, where N is the total number of
nucleotides. However, scaling arguments suggest that Aloop/N

should scale as N0.5. In the high-frequency limit, Aloop remains

independent of the chain length with α = 2 and β = −1. Em-
ploying Monte Carlo simulations on two interacting directed
random walks, Kapri [19] observed that in the high-frequency
limit, the scaling exponents remain the same, whereas at low
frequency, he reported α = 1 and β = 5/4. At this stage, there
is no unanimity, thus these discrepancies must be resolved
either by longer simulations based on the realistic model
of DNA or through a minimal model for which an analytic
solution can be derived.

The model and method adopted in Ref. [16] can describe
equilibrium and nonequilibrium aspects of DNA quite well
[24–28], but simulations of longer chain length appear to be
computationally challenging. An analytical solution of this
model is not easy because of the many degrees of freedom
involved. The aim of this work is to successively reduce
the complexity of the model system and to identify the
distinguishing degrees of freedom and parameters involved
and thereby to develop a minimal model to understand the
underlying mechanism behind the robustness of these scaling
exponents.

In this spirit, we first revisited the mesoscopic model
proposed in Ref. [16] and performed LD simulations [29,30]
at different temperatures (T = 0.1, 0.08, and 0.06) for a fixed
length (N = 32). Remarkably, for all these temperatures, the
values of the exponents remain the same. Thus, one can
speculate that these exponents are insensitive to temperature
and for a better understanding of the dynamics, the system can
also be studied at T = 0. In the following, we consider two
interacting strings of length L (Fig. 1) to model DNA [31].
One end of the DNA is fixed, and an oscillatory force F (t) is
applied on the other end. The total energy of such system can
be expressed as

E = −εbpNp + εbp

2a
|x| − F (t)x, (1)

where Np, εbp, and |x| are the total number of base pairs, the
base pairing interaction, and the length of the unzipped part of
the DNA, respectively. The length of the completely unzipped
DNA is given by xmax = 2L = 2aNp, where a (=1) is the
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FIG. 1. Schematic representations of DNA: (a) zipped, (b) par-
tially zipped, and (c) unzipped state. One end is kept fixed (indicated
by the solid circle), while the other end may move in positive (shown
by the solid line) or negative direction (shown by the dashed line)
depending on the force direction.

distance between two adjacent bases. The following equation
of motion has been used to study the dynamics of the system
at T = 0 [29,30]:

m
d2x

dt2
= −ζ

dx

dt
− ε

x

|x| + F (t), (2)

where ε ≡ εbp/2 has been set equal to 0.2. Here, m (=1) and
ζ (=0.4) are the mass of the string and friction coefficient,
respectively. We used the fourth-order Runge-Kutta method
(RK4) to solve Eq. (2) [29,30] with time step dt = 0.01. The
singularity at x = 0 was removed by considering x = 0 as part
of one of the two nonsingular domains, i.e., ε x

|x| is replaced
by ε for x � 0 and −ε otherwise. This prescription leads to
small oscillations of the numerical solution around x = 0 and
creates an error of the order of dt4 = 10−8 [32]. The system
achieved a steady state after about ten cycles, but we took
averages after 100 cycles.

For a staircaselike periodic force [16], the force-extension
(F -x) curves for length L = 24 are depicted in Fig. 2(a) for
different frequencies ν. The qualitative nature of these curves
remains the same as seen at finite temperature (T = 0.1) in the
mesoscopic model. In order to arrive at an analytic solution,
we choose F (t) = F sin(ωt), where ω = 2πν. In Fig. 2(b),
we have plotted the F -x curves for this sinusoidal force. One
can see the existence of hysteresis at different frequencies,
but due to the sinusoidal nature of force, the extension will
also go in the negative direction [33]. In the overdamped
limit, the contribution of inertia term on the left-hand side
of Eq. (2) is small and can be dropped. We perform Brownian
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FIG. 3. (a) Variation of Aloop with ν for a staircase (LD1) and
sinusoidal force (LD2) using LD simulations, and sinusoidal force
in the overdamped limit using BD simulations. (b) After rescaling
(A∗

loop,ν
∗), all three curves collapse onto a single master curve, which

justifies the use of Eq. (3) for the further understanding.

dynamics (BD) simulations to obtain F -x curves [Fig. 2(c)].
It is evident from all these plots that the qualitative behavior
of the hysteresis does not change.

For a quantitative comparison, we plot in Fig. 3(a) for all
three cases the variation of Aloop with ν, which exhibits a
maximum that corresponds to a critical frequency [22]. The
variation of the loop area with frequency qualitatively remains
similar to the one seen in Ref. [16]. Moreover, by rescaling the
frequency ν∗ = aν for the overdamped case and rescaling the
area A∗

loop = bAloop for the staircase results, all three curves
collapse onto a single master curve [Fig. 3(b)]. This conveys
that the qualitative features and associated scaling will not
change, if one performs simulations in the overdamped limit
with sinusoidal force. Therefore, Eq. (2) can now be put in the
following form:

dx

dt
= ẋ = −ε̃

x

|x| + F̃ sin(ωt), (3)

where ε̃ = ε/ζ and F̃ = F/ζ are rescaled values of ε and F ,
respectively. The area of the hysteresis loop scales as

Aloop � (F̃ − ε̃)αωβLγ �
(

F − Fc

ζ

)α

ωβLγ , (4)

where Fc ≡ ε is the critical force for the unzipping and γ is
the exponent associated with length. Equation (4) implies that
the scaling is independent of ζ [34].

Even under this simplified description, because of the
singularity at x = 0, the analytical solution of Eq. (3) is
not easy. However, imposing physical boundary conditions

0

10

20

30

40

50

0 0.05 0.1 0.15 0.2 0.25 0.3

x
(t

)

F (t)

(a) (b) (c)ν = 0.05
0.13
0.33
1.32

-40

-20

0

20

40

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

x
(t

)

F (t)

-40

-20

0

20

40

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

x
(t

)

F (t)

FIG. 2. Comparative plots of the area of hysteresis loop for (a) staircase and (b), (c) sinusoidal force for F = 0.33 and chain length L = 24.
In (c) the overdamped limit is taken. For the sinusoidal force, ν was taken as ν/2 to compare the positive branch of the hysteresis loop with the
staircase force. Here ν is given in units of 10−3.
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(discussed below), its solution has the form

x(t) =
{

c1 − ε̃t − F̃
ω

cos(ωt), if x > 0

c2 + ε̃t − F̃
ω

cos(ωt), if x < 0,
(5)

which (due to relaxing the constraint |x| � xmax = 2L)
corresponds to the asymptotic limit L → ∞. Here, c1 and
c2 are the constants of integration, which can be evaluated
by substituting x(t) = 0. Let us assume that at time t = 0,
the DNA is in the fully zipped state. As time t elapses, the
magnitude of the applied force increases. If the magnitude of
the applied force is less than the equilibrium critical force Fc,
DNA remains in the zipped state and as a consequence the
velocity of the bead, where the force is applied, remains zero.
After a certain time, t1 = 1

ω
sin−1(ε̃/F̃ ), the applied force

exceeds Fc, and the bead follows the force. After time t ′ = π
2ω

,
the magnitude of the applied force acquires its maximum value.
Thus the time needed to reach maximum velocity from zero is
π
2ω

− t1. With further increase in time, the extension increases
until ẋ becomes zero, i.e., up to time t ′′ = π

ω
− t1. After that the

extension approaches towards zero with maximum velocity. If
we assume the time needed ( π

2ω
− t1) to increase the velocity

from zero to maximum remains the same, then the time t2
needed to reach x(t) = 0 can be approximated as 3π

2ω
− 2t1.

In Fig. 4(e) we have plotted t2 as a function of t1 obtained
numerically [from Eqs. (3) or (5)] and from the approximate
form. A nice agreement can be noticed at low force for the
hysteretic state. However, these values differ at high force,
where DNA always remains in the open state over the cycle.
In such case, the values of t1 and t2 shift continuously over
cycles until they acquire steady-state values after many cycles,
and therefore, one has to resort to their numerical values.

The lag between the applied force and the extension
constitutes hysteresis, which is depicted in Figs. 4(a) and 4(b)
for low (F = 0.25) and high (F = 0.65) amplitudes of the
force at different frequencies, respectively. In contrast to a
finite chain length L, where the area of the hysteresis loop
first increases and then decreases (Fig. 2), here, the area of the
loop always increases with decreasing frequency. Multiplying
the numerator and denominator of Eq. (3) by ω, it can be
shown that νx(t) will be a constant implying that all curves of
different ν should collapse onto a single curve. This indeed we
see in Figs. 4(c) and 4(d). In fact, for a given length L, there
exists a critical frequency νc such that for ν > νc, the scaling
is L independent and the system inhibits the same solution as
in the limit L → ∞ and vice versa.

The area of hysteresis loop Aloop may be calculated numer-
ically. By symmetry, Aloop will be equal to 2

∫ t2
t1

F (t)ẋ(t)dt .
Because of the transcendental nature of Eq. (5), an analytical
expression for t2 appears to be difficult. The approximate value
of t2 discussed above [Fig. 4(e)] leads to

Aloop = F 2

ωζ 2
[y(2y − 3)(1 + 2y)

√
1 − y2 + 3 cos−1(y)], (6)

where y = ε/F . Because of the approximation involved in
t2, Eq. (6) is still in an approximate form. In Fig. 4(f), we
plot Aloop as obtained from Eqs. (3), (4), and (6) with ν

for low and high amplitudes of the applied force. The nice
agreement among the scaling proposed, numerical solution and
analytical (approximate) solution reconfirms that the system
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FIG. 4. (a) and (b) show the F -x curves at different frequencies
obtained from Eq. (3) for F = 0.25 (low) and 0.65 (high) amplitudes,
respectively. (c) and (d) show the collapse of the data in (a) and (b)
onto a single hysteresis curve. (e) Comparison of numerical (RK4)
values of t2 as a function of t1 with the approximate analytical form for
ω = 1. (f) shows the comparison of νAloop-F curves obtained from
different approaches [Eqs. (3), (4), and (6)]. The inset of Fig. 4(f) is
a log-log plot showing that the numerical data (RK4) agree with the
expansion of Eq. (6) in the limit y → 1 (F → Fc), i.e., Eq. (4) scales
with α = 2.5 instead of 2.

has only one scaling. In the high-force limit, one can see from
Fig. 4(f) and Eq. (6) that Aloop ≈ ν−1F 2, which is consistent
with the earlier studies [16,18,19]. However, in the low-force
limit (y → 1), the leading term of the expansion of Eq. (6) is
42
5

√
2(F−Fc

Fc
)2.5, which is consistent with the numerical results

[inset of Fig. 4(f)] obtained here [32].
Let us now turn to the case of finite length L and analyze

the scaling in the low-frequency regime. For this Eq. (3) can be
solved numerically by fixing x = xmax = 2L, over which the
chain cannot be stretched. In Fig. 5(a), we show the variation
of Aloop with ν0.5(F − Fc)0.33 in the low-frequency regime,
and in Fig. 5(b) with ν−1(F − Fc)2 in the high-frequency
limit. Interestingly, the scaling involved in frequency for low-
and high-frequency regimes (Fig. 5) remains here the same
compared to the model having enough mesoscopic details.
The scaling associated with F here is found to be equal to 0.33
and 2 in the low- and high-frequency regimes, respectively
[35]. Collapse of Aloop/2L onto a single line for all lengths in
the low-frequency regime confirms that the area scales with
length as L0.5 [Fig. 5(c)]. It is also evident from Fig. 5(d) that at
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FIG. 5. Scaling of Aloop with respect to (a) ν0.5(F − Fc)0.33 in the low-frequency regime and (b) ν−1(F − Fc)2 in the high-frequency regime

for a fixed length L = 24. (c) Scaling of
Aloop

2L
with respect to ν0.5(F − Fc)0.33L0.5 in the low-frequency regime. Each color represents here

three different values of L. (d) Scaling of Aloop with respect to ν−1(F − Fc)2 for a particular value of F (= 0.3), demonstrating the length
independence in the high-frequency limit.

high frequency, scaling remains independent of L as predicted
by Eq. (6) and seen in simulations [18].

This Rapid Communication reports many unexplored as-
pects of the dynamical transition associated with DNA un-
zipping under an oscillatory force. By successive elimination
of the degrees of freedom and parameters, we developed a
minimal model which presumably remains a good description
for a wide range of parameters and captures the essential
physics of the dynamical transition. These results are in
agreement with Refs. [16] and [19] in the high-frequency limit,
but strongly differ from Ref. [19] in the low-frequency regime.
The analytical solution based on the minimal model provides
unequivocal support for the absence of the dynamical transi-
tion in the thermodynamic limit. Moreover, scaling remains
independent of temperature. The most notable outcome of
the present study is the existence of a new scaling exponent
associated with force in the low-force regime, which has

been overlooked in all the previous studies [15,16,18]. While
the model developed here neglects mesoscopic details, such
as excluded volume effect, spring nature of covalent bonds,
helical nature of DNA, heterogeneity in the sequence, etc., the
robustness of the exponents suggests that it is not restricted to
the study of DNA only, but may be extended to many other
periodically driven complex systems [36,37].
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